File: RangeConvex.cpp

package info (click to toggle)
siril 1.4.0~rc2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 47,352 kB
  • sloc: ansic: 174,082; cpp: 28,254; python: 7,891; makefile: 974; xml: 777; sh: 271
file content (1250 lines) | stat: -rw-r--r-- 43,316 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
//# Filename: RangeConvex.cpp # # The RangeConvex # classes are
//defined here.  # # Author: Peter Z. Kunszt based on A. Szalay's code
//# # Date: October 23, 1998 # # SPDX-FileCopyrightText: 2000 Peter Z. Kunszt
//Alex S. Szalay, Aniruddha R. Thakar # The Johns Hopkins University #
//# Modification History: # # Oct 18, 2001 : Dennis C. Dinge --
//Replaced ValVec with std::vector

#include "RangeConvex.h"

#include "SpatialGeneral.h"

#define N(n)     index_->nodes_[(n)]
#define NC(n, m) index_->nodes_[(n)].childID_[(m)] // the children n->m
#define NV(m)    index_->nodes_[id].v_[(m)]        // the vertices of n
#define V(m)     index_->vertices_[(m)]            // the vertex vector m

#define SGN(x) ((x) < 0 ? -1 : ((x) > 0 ? 1 : 0)) // signum

// ===========================================================================
//
// Member functions for class RangeConvex
//
// ===========================================================================

RangeConvex::RangeConvex()
{
}

/////////////CONSTRUCTOR FROM A TRIANGLE//////////////////
//
// Initialize convex from a triangle. The corners of these vectors
// form a triangle, so we just add three ZERO constraints to the convex
// where the direction is given by the cross product of the corners.
// Of course, the sign has to be determined (on which side of the triangle
// are we?) If the three points lie on one line, no constraints are added.
//
RangeConvex::RangeConvex(const SpatialVector *v1, const SpatialVector *v2, const SpatialVector *v3)
{
    SpatialVector a1 = (*v2) ^ (*v3); // set directions of half-spheres
    SpatialVector a2 = (*v3) ^ (*v1);
    SpatialVector a3 = (*v1) ^ (*v2);
    float64 s1       = a1 * (*v1); // we really need only the signs of these
    float64 s2       = a2 * (*v2);
    float64 s3       = a3 * (*v3);

    if (s1 * s2 * s3 != 0) // this is nonzero if not on one line
    {
        if (s1 < 0.0L)
            a1 = (-1) * a1; // change sign if necessary
        if (s2 < 0.0L)
            a2 = (-1) * a2;
        if (s3 < 0.0L)
            a3 = (-1) * a3;
        constraints_.push_back(SpatialConstraint(a1, 0.0)); // we don't care about the
        constraints_.push_back(SpatialConstraint(a2, 0.0)); // order since all angles are
        constraints_.push_back(SpatialConstraint(a3, 0.0)); // 90 degrees.
    }
    sign_ = zERO;
}

/////////////CONSTRUCTOR FROM A RECTANGLE/////////////////
//
// Initialize convex from a rectangle. The vectors that form a rectangle
// may be in any order, the code finds the edges by itself.
// If one of the vectors lies within the triangle formed by the
// other three vectors, the previous constructor is used.
//
RangeConvex::RangeConvex(const SpatialVector *v1, const SpatialVector *v2, const SpatialVector *v3,
                         const SpatialVector *v4)
{
    int i, j, k, l, m; // indices
    // to simplify things, copy input into a 4-array
    const SpatialVector *v[4] = { v1, v2, v3, v4 };
    SpatialVector d[6];
    float64 s[6][2];
    for (i = 0, k = 0; i < 4; i++)
        for (j = i + 1; j < 4; j++, k++) // set directions of half-spheres
        {
            d[k] = (*v[i]) ^ (*v[j]); // two of these are diagonals.
            d[k].normalize();
            for (l = 0, m = 0; l < 4; l++)
                if (l != i && l != j)
                    s[k][m++] = d[k] * (*v[l]); // set the 'sign'
        }

    // the sides are characterized by having both other corners
    // to the same (inner) side. so it is easy to find the edges.
    // again, the sign has to be taken care of -> direction of d
    // the nice thing here is that if one of the corners is inside
    // a triangles formed by the other three, only 3 constraints get
    // added.
    for (i = 0; i < 6; i++)
        if (s[i][0] * s[i][1] > 0.0) // not >= because we don't want aligned corners
            constraints_.push_back(SpatialConstraint((s[i][0] > 0.0 ? d[i] : (-1 * d[i])), 0.0));

    // Special cases: 1
    // if three of the corners are aligned, we end up with
    // only two constraints. Find the third and append it.
    // Indeed, there are 3 identical constraints among the d[],
    // so the first that qualifies gets appended.
    if (constraints_.size() == 2)
    {
        for (i = 0; i < 6; i++)
            if (s[i][0] == 0.0 || s[i][1] == 0.0)
            {
                constraints_.push_back(SpatialConstraint(((s[i][0] + s[i][1]) > 0.0 ? d[i] : (-1 * d[i])), 0.0));
                break;
            }
    }
    // Special cases: 2
    // if all four corners are aligned, no constraints have been appended.
    sign_ = zERO;
}

/////////////ADD//////////////////////////////////////////
//
void RangeConvex::add(SpatialConstraint &c)
{
    constraints_.push_back(c);
    // order constraints: by ascending opening angle. Since we append
    // always at the end, we only need one ordering sweep starting at
    // the end
    for (size_t i = constraints_.size() - 1; i > 0; i--)
    {
        if (constraints_[i].s_ < constraints_[i - 1].s_)
        {
            SpatialConstraint tmp(constraints_[i]);
            constraints_[i]     = constraints_[i - 1];
            constraints_[i - 1] = tmp;
        }
    }

    if (constraints_.size() == 1) // first constraint
    {
        sign_ = c.sign_;
        return;
    }

    switch (sign_)
    {
        case nEG:
            if (c.sign_ == pOS)
                sign_ = mIXED;
            break;
        case pOS:
            if (c.sign_ == nEG)
                sign_ = mIXED;
            break;
        case zERO:
            sign_ = c.sign_;
            break;
        case mIXED:
            break;
    }
}

/////////////SIMPLIFY0////////////////////////////////////
// simplify0: simplify zERO convexes. calculate corners of convex
// and the bounding circle.
//
// zERO convexes are made up of constraints which are all great
// circles. It can happen that some of the constraints are redundant.
// For example, if 3 of the great circles define a triangle as the convex
// which lies fully inside the half sphere of the fourth constraint,
// that fourth constraint is redundant and will be removed.
//
// The algorithm is the following:
//
// zero-constraints are half-spheres, defined by a single normalized
// vector v, pointing in the direction of that half-sphere.
//
// Two zero-constraints intersect at
//
//    i    =  +- v  x v
//     1,2        1    2
//
// the vector cross product of their two defining vectors.
//
// The two vectors i1,2 are tested against every other constraint in
// the convex if they lie within their half-spheres. Those
// intersections i which lie within every other constraint, are stored
// into corners_.
//
// Constraints that do not have a single corner on them, are dropped.
//

void RangeConvex::simplify0()
{
    size_t i, j, k;
    SpatialVector vi1, vi2;
    std::vector<size_t> cornerConstr1, cornerConstr2, removeConstr;
    std::vector<SpatialVector> corner;
    if (constraints_.size() == 1) // for one constraint, it is itself the BC
    {
        boundingCircle_ = constraints_[0];
        return;
        // For 2 constraints, take the bounding circle a 0-constraint...
        // this is by no means optimal, but the code is optimized for at least
        // 3 zERO constraints... so this is acceptable.
    }
    else if (constraints_.size() == 2)
    {
        // test for constraints being identical - rule 1 out
        if (constraints_[0].a_ == constraints_[1].a_)
        {
            constraints_.erase(constraints_.end() - 1);
            boundingCircle_ = constraints_[0];
            return;
        }
        // test for constraints being two disjoint half spheres - empty convex!
        if (constraints_[0].a_ == (-1.0) * constraints_[1].a_)
        {
            constraints_.clear();
            return;
        }
        boundingCircle_ = SpatialConstraint(constraints_[0].v() + constraints_[1].v(), 0);
        return;
    }

    // Go over all pairs of constraints
    for (i = 0; i < constraints_.size() - 1; i++)
    {
        bool ruledout = true;
        for (j = i + 1; j < constraints_.size(); j++)
        {
            // test for constraints being identical - rule i out
            if (constraints_[i].a_ == constraints_[j].a_)
                break;
            // test for constraints being two disjoint half spheres - empty convex!
            if (constraints_[i].a_ == (-1.0) * constraints_[j].a_)
            {
                constraints_.clear();
                return;
            }
            // vi1 and vi2 are their intersection points
            vi1 = constraints_[i].a_ ^ constraints_[j].a_;
            vi1.normalize();
            vi2        = (-1.0) * vi1;
            bool vi1ok = true, vi2ok = true;
            // now test whether vi1 or vi2 or both are inside every other constraint.
            // if yes, store them in the corner array.
            for (k = 0; k < constraints_.size(); k++)
            {
                if (k == i || k == j)
                    continue;
                if (vi1ok && vi1 * constraints_[k].a_ <= 0.0)
                    vi1ok = false;
                if (vi2ok && vi2 * constraints_[k].a_ <= 0.0)
                    vi2ok = false;
                if (!vi1ok && !vi2ok)
                    break;
            }
            if (vi1ok)
            {
                corner.push_back(vi1);
                cornerConstr1.push_back(i);
                cornerConstr2.push_back(j);
                ruledout = false;
            }
            if (vi2ok)
            {
                corner.push_back(vi2);
                cornerConstr1.push_back(i);
                cornerConstr2.push_back(j);
                ruledout = false;
            }
        }
        // is this constraint ruled out? i.e. none of its intersections
        // with other constraints are corners... remove it from constraints_ list.
        if (ruledout)
            removeConstr.push_back(i);
    }

    // Now set the corners into their correct order, which is an
    // anti-clockwise walk around the polygon.
    //
    // start at any corner. so take the first.

    corners_.clear();
    corners_.push_back(corner[0]);

    // The trick is now to start off into the correct direction.
    // this corner has two edges it can walk. we have to take the
    // one where the convex lies on its left side.
    i = cornerConstr1[0]; // the i'th constraint and j'th constraint
    j = cornerConstr2[0]; // intersect at 0'th corner
    size_t c1(0), c2(0), k1(0), k2(0);
    // Now find the other corner where the i'th and j'th constraints intersect.
    // Store the corner in vi1 and vi2, and the other constraint indices
    // in c1,c2.
    for (k = 1; k < cornerConstr1.size(); k++)
    {
        if (cornerConstr1[k] == i)
        {
            vi1 = corner[k];
            c1  = cornerConstr2[k];
            k1  = k;
        }
        if (cornerConstr2[k] == i)
        {
            vi1 = corner[k];
            c1  = cornerConstr1[k];
            k1  = k;
        }
        if (cornerConstr1[k] == j)
        {
            vi2 = corner[k];
            c2  = cornerConstr2[k];
            k2  = k;
        }
        if (cornerConstr2[k] == j)
        {
            vi2 = corner[k];
            c2  = cornerConstr1[k];
            k2  = k;
        }
    }
    // Now test i'th constraint-edge ( corner 0 and corner k ) whether
    // it is on the correct side (left)
    //
    //  ( (corner(k) - corner(0)) x constraint(i) ) * corner(0)
    //
    // is >0 if yes, <0 if no...
    //
    size_t c, currentCorner;
    if (((vi1 - corner[0]) ^ constraints_[i].a_) * corner[0] > 0)
    {
        corners_.push_back(vi1);
        c             = c1;
        currentCorner = k1;
    }
    else
    {
        corners_.push_back(vi2);
        c             = c2;
        currentCorner = k2;
    }
    // now append the corners that match the index c until we got corner 0 again
    // currentCorner holds the current corners index
    // c holds the index of the constraint that has just been intersected with
    // So:
    // x We are on a constraint now (i or j from before), the second corner
    //   is the one intersecting with constraint c.
    // x Find other corner for constraint c.
    // x Save that corner, and set c to the constraint that intersects with c
    //   at that corner. Set currentcorner to that corners index.
    // x Loop until 0th corner reached.
    while (currentCorner)
    {
        for (k = 0; k < cornerConstr1.size(); k++)
        {
            if (k == currentCorner)
                continue;
            if (cornerConstr1[k] == c)
            {
                if ((currentCorner = k) == 0)
                    break;
                corners_.push_back(corner[k]);
                c = cornerConstr2[k];
                break;
            }
            if (cornerConstr2[k] == c)
            {
                if ((currentCorner = k) == 0)
                    break;
                corners_.push_back(corner[k]);
                c = cornerConstr1[k];
                break;
            }
        }
    }
    // Remove all redundant constraints
    for (i = 0; i < removeConstr.size(); i++)
        constraints_.erase(constraints_.end() - removeConstr[i] - 1);

    // Now calculate the bounding circle for the convex.
    // We take it as the bounding circle of the triangle with
    // the widest opening angle. All triangles made out of 3 corners
    // are considered.
    boundingCircle_.d_ = 1.0;
    if (constraints_.size() >= 3)
    {
        for (i = 0; i < corners_.size(); i++)
            for (j = i + 1; j < corners_.size(); j++)
                for (k = j + 1; k < corners_.size(); k++)
                {
                    SpatialVector v = (corners_[j] - corners_[i]) ^ (corners_[k] - corners_[j]);
                    v.normalize();
                    // Set the correct opening angle: Since the plane cutting
                    // out the triangle also correctly cuts out the bounding cap
                    // of the triangle on the sphere, we can take any corner to
                    // calculate the opening angle
                    float64 d = v * corners_[i];
                    if (boundingCircle_.d_ > d)
                        boundingCircle_ = SpatialConstraint(v, d);
                }
    }
}

/////////////SIMPLIFY/////////////////////////////////////
// simplify: We have the following decision tree for the
//           simplification of convexes:
//
//  Always test two constraints against each other. We have
//
//  * If both constraints are pOS
//     # If they intersect: keep both
//     # If one lies in the other: drop the larger one
//     # Else: disjunct. Empty convex, stop.
//
//  * If both constraints are nEG
//     # If they intersect or are disjunct: ok
//     # Else: one lies in the other, drop smaller 'hole'
//
//  * Mixed: one pOS, one nEG
//     # No intersection, disjunct: pOS is redundant
//     # Intersection: keep both
//     # pOS within nEG: empty convex, stop.
//     # nEG within pOS: keep both.
//

void RangeConvex::simplify()
{
    if (sign_ == zERO)
    {
        simplify0(); // treat zERO convexes separately
        return;
    }

    size_t i, j;
    size_t clen;
    bool redundancy = true;

    while (redundancy)
    {
        redundancy = false;
        clen       = constraints_.size();

        for (i = 0; i < clen; i++)
        {
            for (j = 0; j < i; j++)
            {
                int test;

                // don't bother with two zero constraints
                if (constraints_[i].sign_ == zERO && constraints_[j].sign_ == zERO)
                    continue;

                // both pos or zero
                if ((constraints_[i].sign_ == pOS || constraints_[i].sign_ == zERO) &&
                    (constraints_[j].sign_ == pOS || constraints_[j].sign_ == zERO))
                {
                    if ((test = testConstraints(i, j)) == 0)
                        continue; // intersection
                    if (test < 0) // disjoint ! convex is empty
                    {
                        constraints_.clear();
                        return;
                    }
                    // one is redundant
                    if (test == 1)
                        constraints_.erase(constraints_.end() - i - 1);
                    else if (test == 2)
                        constraints_.erase(constraints_.end() - j - 1);
                    else
                        continue;      // intersection
                    redundancy = true; // we did cut out a constraint -> do the loop again
                    break;
                }

                // both neg or zero
                if ((constraints_[i].sign_ == nEG) && (constraints_[j].sign_ == nEG))
                {
                    if ((test = testConstraints(i, j)) <= 0)
                        continue; // ok
                    // one is redundant
                    if (test == 1)
                        constraints_.erase(constraints_.end() - 1 - j);
                    else if (test == 2)
                        constraints_.erase(constraints_.end() - 1 - i);
                    else
                        continue;      // intersection
                    redundancy = true; // we did cut out a constraint -> do the loop again
                    break;
                }

                // one neg, one pos/zero
                if ((test = testConstraints(i, j)) == 0)
                    continue; // ok: intersect
                if (test < 0) // neg is redundant
                {
                    if (constraints_[i].sign_ == nEG)
                        constraints_.erase(constraints_.end() - 1 - i);
                    else
                        constraints_.erase(constraints_.end() - 1 - j);
                    redundancy = true; // we did cut out a constraint -> do the loop again
                    break;
                }
                // if the negative constraint is inside the positive: continue
                if ((constraints_[i].sign_ == nEG && test == 2) || (constraints_[j].sign_ == nEG && test == 1))
                    continue;
                // positive constraint in negative: convex is empty!
                constraints_.clear();
                return;
            }
            if (redundancy)
                break;
        }
    }

    // reset the sign of the convex
    sign_ = constraints_[0].sign_;
    for (i = 1; i < constraints_.size(); i++)
    {
        switch (sign_)
        {
            case nEG:
                if (constraints_[i].sign_ == pOS)
                    sign_ = mIXED;
                break;
            case pOS:
                if (constraints_[i].sign_ == nEG)
                    sign_ = mIXED;
                break;
            case zERO:
                sign_ = constraints_[i].sign_;
                break;
            case mIXED:
                break;
        }
    }

    if (constraints_.size() == 1) // for one constraint, it is itself the BC
        boundingCircle_ = constraints_[0];
    else if (sign_ == pOS)
        boundingCircle_ = constraints_[0];
}

/////////////TESTCONSTRAINTS//////////////////////////////
// testConstraints: Test for the relative position of two constraints.
//                  Returns 0  if they intersect
//                  Returns -1 if they are disjoint
//                  Returns 1  if j is in i
//                  Returns 2  if i is in j
//
int RangeConvex::testConstraints(size_t i, size_t j)
{
    float64 phi = ((constraints_[i].sign_ == nEG ? (-1 * constraints_[i].a_) : constraints_[i].a_) *
                   (constraints_[j].sign_ == nEG ? (-1 * constraints_[j].a_) : constraints_[j].a_));
    phi         = (phi <= -1.0L + gEpsilon ? gPi : acos(phi)); // correct for math lib -1.0
    float64 a1  = (constraints_[i].sign_ == pOS ? constraints_[i].s_ : gPi - constraints_[i].s_);
    float64 a2  = (constraints_[j].sign_ == pOS ? constraints_[j].s_ : gPi - constraints_[j].s_);

    if (phi > a1 + a2)
        return -1;
    if (a1 > phi + a2)
        return 1;
    if (a2 > phi + a1)
        return 2;
    return 0;
}

/////////////INTERSECT////////////////////////////////////
// used by intersect.cpp application
//
void RangeConvex::intersect(const SpatialIndex *idx, HtmRange *htmrange)
{
    hr        = htmrange;
    index_    = idx;
    addlevel_ = idx->maxlevel_ - idx->buildlevel_;

    simplify(); // don't work too hard...

    if (constraints_.empty())
        return; // nothing to intersect!!

    // Start with root nodes (index = 1-8) and intersect triangles
    for (uint32 i = 1; i <= 8; i++)
    {
        testTrixel(i);
    }
}

////////////SAVETRIXEL
//
inline void RangeConvex::saveTrixel(uint64 htmid)
{
    // Some application want a complete htmid20 range
    //
    int level, i, shifts;
    uint64 lo, hi;
#ifdef _WIN32
    uint64 IDHIGHBIT  = 1;
    uint64 IDHIGHBIT2 = 1;
    IDHIGHBIT         = IDHIGHBIT << 63;
    IDHIGHBIT2        = IDHIGHBIT2 << 62;
#endif

    for (i = 0; i < IDSIZE; i += 2)
    {
        if ((htmid << i) & IDHIGHBIT)
            break;
    }

    level = (IDSIZE - i) >> 1;
    level -= 2;
    if (level < olevel)
    {
        /* Size is the length of the string representing the name of the
           trixel, the level is size - 2
        */
        shifts = (olevel - level) << 1;
        lo     = htmid << shifts;
        hi     = lo + ((uint64)1 << shifts) - 1;
    }
    else
    {
        lo = hi = htmid;
    }
    hr->mergeRange(lo, hi);

    return;
}

/////////////TRIANGLETEST/////////////////////////////////
// testTrixel: this is the main test of a triangle vs a Convex.  It
// will properly mark up the flags for the triangular node[index], and
// all its children
SpatialMarkup RangeConvex::testTrixel(uint64 id)
{
    SpatialMarkup mark;
    uint64 childID;
    uint64 tid;

    // const struct SpatialIndex::QuadNode &indexNode = index_->nodes_[id];
    const struct SpatialIndex::QuadNode *indexNode = &index_->nodes_[id];

    //
    // do the face test on the triangle

    // was: mark =  testNode(V(NV(0)),V(NV(1)),V(NV(2)));
    // changed to by Gyorgy Fekete. Overall Speedup approx. 2%

    mark = testNode(id); // was:(indexNode or  id);

    switch (mark)
    {
        case fULL:
            tid = N(id).id_;

            saveTrixel(tid); //was:  plist_->push_back(tid);

            return mark;
        case rEJECT:
            tid = N(id).id_;
            return mark;
        default:
            // if pARTIAL or dONTKNOW, then continue, test children,
            //    but do not reach beyond the leaf nodes.
            //    If Convex is fully contained within one (sWALLOWED),
            //    we can stop looking further in another child

            // #define NC(n,m)	index_->nodes_[(n)].childID_[(m)]	// the children n->m
            // childID = index_->nodes_[id].childID_[0];

            // Test how many of the four children are rejected?
            //
            // [ed:algo]
            //
            break;
    }

    // NEW NEW algorithm  Disabled when enablenew is 0
    //
    {
        childID = indexNode->childID_[0];
        if (childID != 0)
        {
            ////////////// [ed:split]
            tid     = N(id).id_;
            childID = indexNode->childID_[0];
            testTrixel(childID);
            childID = indexNode->childID_[1];
            testTrixel(childID);
            childID = indexNode->childID_[2];
            testTrixel(childID);
            childID = indexNode->childID_[3];
            testTrixel(childID);
        }
        else /// No children...
        {
            if (addlevel_)
            {
                testPartial(addlevel_, N(id).id_, V(NV(0)), V(NV(1)), V(NV(2)), 0);
            }
            else
            {
                saveTrixel(N(id).id_); // was: plist_->push_back(N(id).id_);
            }
        }
    } ///////////////////////////// END OF NEW ALGORITHM returns mark below;

    /* NEW NEW NEW
       If rejected, then we return [done]
       If full, then we list the id (propagate to children) [done]

       If partial, then we look ahead to see how many children are rejected.
       But ah, next iteration could benefit from having computed this already.

       If two children are rejected, then we stop
       If one or 0 nodes are rejected, then we
    */
    return mark;
}

/////////////TESTPARTIAL//////////////////////////////////
// testPartial: test a triangle's subtriangle whether they are partial.
// if level is nonzero, recurse.
//
void RangeConvex::testPartial(size_t level, uint64 id, const SpatialVector &v0, const SpatialVector &v1,
                              const SpatialVector &v2, int PPrev)
{
    uint64 ids[4], id0;
    SpatialMarkup m[4];
    int P, F; // count number of partials and fulls

    SpatialVector w0 = v1 + v2;
    w0.normalize();
    SpatialVector w1 = v0 + v2;
    w1.normalize();
    SpatialVector w2 = v1 + v0;
    w2.normalize();

    ids[0] = id0 = id << 2;
    ids[1]       = id0 + 1;
    ids[2]       = id0 + 2;
    ids[3]       = id0 + 3;

    m[0] = testNode(v0, w2, w1);
    m[1] = testNode(v1, w0, w2);
    m[2] = testNode(v2, w1, w0);
    m[3] = testNode(w0, w1, w2);

    F = (m[0] == fULL) + (m[1] == fULL) + (m[2] == fULL) + (m[3] == fULL);
    P = (m[0] == pARTIAL) + (m[1] == pARTIAL) + (m[2] == pARTIAL) + (m[3] == pARTIAL);

    //
    // Several interesting cases for saving this (the parent) trixel.
    // Case P==4, all four children are partials, so pretend parent is full, we save and return
    // Case P==3, and F==1, most of the parent is in, so pretend that parent is full again
    // Case P==2 or 3, but the previous testPartial had three partials, so parent was in an arc
    // as opposed to previous partials being fewer, so parent was in a tiny corner...

    if ((level-- <= 0) || ((P == 4) || (F >= 2) || (P == 3 && F == 1) || (P > 1 && PPrev == 3)))
    {
        saveTrixel(id);
        return;
    }
    else
    {
        // look at each child, see if some need saving;
        for (int i = 0; i < 4; i++)
        {
            if (m[i] == fULL)
            {
                saveTrixel(ids[i]);
            }
        }
        // look at the four kids again, for partials

        if (m[0] == pARTIAL)
            testPartial(level, ids[0], v0, w2, w1, P);
        if (m[1] == pARTIAL)
            testPartial(level, ids[1], v1, w0, w2, P);
        if (m[2] == pARTIAL)
            testPartial(level, ids[2], v2, w1, w0, P);
        if (m[3] == pARTIAL)
            testPartial(level, ids[3], w0, w1, w2, P);
    }
}

/////////////TESTNODE/////////////////////////////////////
// testNode: tests the QuadNodes for intersections.
//
SpatialMarkup RangeConvex::testNode(uint64 id)
//uint64 id)
// const struct SpatialIndex::QuadNode *indexNode)
{
    const SpatialVector *v0, *v1, *v2;
    // const struct SpatialIndex::QuadNode &indexNode = index_->nodes_[id];
    const struct SpatialIndex::QuadNode *indexNode = &index_->nodes_[id];
    int m;
    m  = indexNode->v_[0];
    v0 = &index_->vertices_[m]; // the vertex vector m

    m  = indexNode->v_[1];
    v1 = &index_->vertices_[m];

    m  = indexNode->v_[2];
    v2 = &index_->vertices_[m];

    // Start with testing the vertices for the QuadNode with this convex.
    int vsum = testVertex(v0) + testVertex(v1) + testVertex(v2);

    SpatialMarkup mark = testTriangle(*v0, *v1, *v2, vsum);

    // since we cannot play games using the on-the-fly triangles,
    // substitute dontknow with partial.
    if (mark == dONTKNOW)
        mark = pARTIAL;

    return mark;
}
SpatialMarkup RangeConvex::testNode(const SpatialVector &v0, const SpatialVector &v1, const SpatialVector &v2)
{
    // Start with testing the vertices for the QuadNode with this convex.

    int vsum = testVertex(v0) + testVertex(v1) + testVertex(v2);

    SpatialMarkup mark = testTriangle(v0, v1, v2, vsum);

    // since we cannot play games using the on-the-fly triangles,
    // substitute dontknow with partial.
    if (mark == dONTKNOW)
        mark = pARTIAL;

    return mark;
}

/////////////TESTTRIANGLE//////////////////////////////////
// testTriangle: tests a triangle given by 3 vertices if
// it intersects the convex.
//
SpatialMarkup RangeConvex::testTriangle(const SpatialVector &v0, const SpatialVector &v1, const SpatialVector &v2,
                                        int vsum)
{
    if (vsum == 1 || vsum == 2)
        return pARTIAL;

    // If vsum = 3 then we have all vertices inside the convex.
    // Now use the following decision tree:
    //
    // * If the sign of the convex is pOS or zERO : mark as fULL intersection.
    //
    // * Else, test for holes inside the triangle. A 'hole' is a nEG constraint
    //   that has its center inside the triangle. If there is such a hole,
    //   return pARTIAL intersection.
    //
    // * Else (no holes, sign nEG or mIXED) test for intersection of nEG
    //   constraints with the edges of the triangle. If there are such,
    //   return pARTIAL intersection.
    //
    // * Else return fULL intersection.

    if (vsum == 3)
    {
        if (sign_ == pOS || sign_ == zERO)
            return fULL;
        if (testHole(v0, v1, v2))
            return pARTIAL;
        if (testEdge(v0, v1, v2))
            return pARTIAL;
        return fULL;
    }

    // If we have reached that far, we have vsum=0. There is no definite
    // decision making possible here with our methods, the markup may result
    // in dONTKNOW. The decision tree is the following:
    //
    // * Test with bounding circle of the triangle.
    //
    //   # If the sign of the convex zERO test with the precalculated
    //     bounding circle of the convex. If it does not intersect with the
    //     triangle's bounding circle, rEJECT.
    //
    //   # If the sign of the convex is nonZERO: if the bounding circle
    //     lies outside of one of the constraints, rEJECT.
    //
    // * Else: there was an intersection with the bounding circle.
    //
    //   # For zERO convexes, test whether the convex intersects the edges.
    //     If none of the edges of the convex intersects with the edges of
    //     the triangle, we have a rEJECT. Else, pARTIAL.
    //
    //   # If sign of convex is pOS, or miXED and the smallest constraint does
    //     not intersect the edges and has its center inside the triangle,
    //     return sWALLOW. If no intersection of edges and center outside
    //     triangle, return rEJECT.
    //
    //   # So the smallest constraint DOES intersect with the edges. If
    //     there is another pOS constraint which does not intersect with
    //     the edges, and has its center outside the triangle, return
    //     rEJECT. If its center is inside the triangle return sWALLOW.
    //     Else, return pARTIAL for pOS and dONTKNOW for mIXED signs.
    //
    // * If we are here, return dONTKNOW. There is an intersection with
    //   the bounding circle, none of the vertices is inside the convex and
    //   we have very strange possibilities left for pOS and mIXED signs. For
    //   nEG, i.e. all constraints negative, we also have some complicated
    //   things left for which we cannot test further.

    if (!testBoundingCircle(v0, v1, v2))
        return rEJECT;

    if (sign_ == pOS || sign_ == mIXED || (sign_ == zERO && constraints_.size() <= 2))
    {
        // Does the smallest constraint intersect with the edges?
        if (testEdgeConstraint(v0, v1, v2, 0))
        {
            // Is there another positive constraint that does NOT intersect with
            // the edges?
            size_t cIndex;
            if ((cIndex = testOtherPosNone(v0, v1, v2)))
            {
                // Does that constraint lie inside or outside of the triangle?
                if (testConstraintInside(v0, v1, v2, cIndex))
                    return pARTIAL;
                // Does the triangle lie completely within that constr?
                else if (constraints_[cIndex].contains(v0))
                    return pARTIAL;
                else
                    return rEJECT;
            }
            else
            {
                if (sign_ == pOS || sign_ == zERO)
                    return pARTIAL;
                else
                    return dONTKNOW;
            }
        }
        else
        {
            if (sign_ == pOS || sign_ == zERO)
            {
                // Does the smallest lie inside or outside the triangle?
                if (testConstraintInside(v0, v1, v2, 0))
                    return pARTIAL;
                else
                    return rEJECT;
            }
            else
                return dONTKNOW;
        }
    }
    else if (sign_ == zERO)
    {
        if (corners_.size() > 0 && testEdge0(v0, v1, v2))
            return pARTIAL;
        else
            return rEJECT;
    }
    return pARTIAL;
}

/////////////TESTVERTEX/////////////////////////////////////
// testVertex: same as above, but for any spatialvector, no markup speedup
//
int RangeConvex::testVertex(const SpatialVector &v)
{
    for (size_t i = 0; i < constraints_.size(); i++)
        if ((constraints_[i].a_ * v) < constraints_[i].d_)
            return 0;

    return 1;
}
int RangeConvex::testVertex(const SpatialVector *v)
{
    for (size_t i = 0; i < constraints_.size(); i++)
        if ((constraints_[i].a_ * *v) < constraints_[i].d_)
            return 0;

    return 1;
}

/////////////TESTHOLE/////////////////////////////////////
// testHole: test for holes. If there is a negative constraint whose center
//           is inside the triangle, we speak of a hole. Returns true if
//	     found one.
//
bool RangeConvex::testHole(const SpatialVector &v0, const SpatialVector &v1, const SpatialVector &v2)
{
    bool test = false;

    for (size_t i = 0; i < constraints_.size(); i++)
    {
        if (constraints_[i].sign_ == nEG) // test only 'holes'
        {
            // If (a ^ b * c) < 0, vectors abc point clockwise.
            // -> center c not inside triangle, since vertices a,b are ordered
            // counter-clockwise. The comparison here is the other way
            // round because c points into the opposite direction as the hole

            if (((v0 ^ v1) * constraints_[i].a_) > 0.0L)
                continue;
            if (((v1 ^ v2) * constraints_[i].a_) > 0.0L)
                continue;
            if (((v2 ^ v0) * constraints_[i].a_) > 0.0L)
                continue;
            test = true;
            break;
        }
    }
    return test;
}

/////////////TESTEDGE0////////////////////////////////////
// testEdge0: test if the edges intersect with the zERO convex.
//            The edges are given by the vertex vectors e[0-2]
//	      All constraints are great circles, so test if their intersect
//            with the edges is inside or outside the convex.
//            If any edge intersection is inside the convex, return true.
//            If all edge intersections are outside, check whether one of
//            the corners is inside the triangle. If yes, all of them must be
//            inside -> return true.
//
bool RangeConvex::testEdge0(const SpatialVector &v0, const SpatialVector &v1, const SpatialVector &v2)
{
    // We have constructed the corners_ array in a certain direction.
    // now we can run around the convex, check each side against the 3
    // triangle edges. If any of the sides has its intersection INSIDE
    // the side, return true. At the end test if a corner lies inside
    // (because if we get there, none of the edges intersect, but it
    // can be that the convex is fully inside the triangle. so to test
    // one single edge is enough)

    struct edgeStruct
    {
        SpatialVector e;         // The half-sphere this edge delimits
        float64 l;               // length of edge
        const SpatialVector *e1; // first end
        const SpatialVector *e2; // second end
    } edge[3];

    // fill the edge structure for each side of this triangle
    edge[0].e  = v0 ^ v1;
    edge[0].e1 = &v0;
    edge[0].e2 = &v1;
    edge[1].e  = v1 ^ v2;
    edge[1].e1 = &v1;
    edge[1].e2 = &v2;
    edge[2].e  = v2 ^ v0;
    edge[2].e1 = &v2;
    edge[2].e2 = &v0;
    edge[0].l  = acos(v0 * v1);
    edge[1].l  = acos(v1 * v2);
    edge[2].l  = acos(v2 * v0);

    for (size_t i = 0; i < corners_.size(); i++)
    {
        size_t j = 0;
        if (i < corners_.size() - 1)
            j = i + 1;
        SpatialVector a1;
        float64 l1, l2;                                     // lengths of the arcs from intersection to edge corners
        float64 cedgelen = acos(corners_[i] * corners_[j]); // length of edge of convex

        // calculate the intersection - all 3 edges
        for (size_t iedge = 0; iedge < 3; iedge++)
        {
            a1 = (edge[iedge].e) ^ (corners_[i] ^ corners_[j]);
            a1.normalize();
            // if the intersection a1 is inside the edge of the convex,
            // its distance to the corners is smaller than the edgelength.
            // this test has to be done for both the edge of the convex and
            // the edge of the triangle.
            for (size_t k = 0; k < 2; k++)
            {
                l1 = acos(corners_[i] * a1);
                l2 = acos(corners_[j] * a1);
                if (l1 - cedgelen <= gEpsilon && l2 - cedgelen <= gEpsilon)
                {
                    l1 = acos(*(edge[iedge].e1) * a1);
                    l2 = acos(*(edge[iedge].e2) * a1);
                    if (l1 - edge[iedge].l <= gEpsilon && l2 - edge[iedge].l <= gEpsilon)
                        return true;
                }
                a1 *= -1.0; // do the same for the other intersection
            }
        }
    }
    return testVectorInside(v0, v1, v2, corners_[0]);
}

/////////////TESTEDGE/////////////////////////////////////
// testEdge: test if edges intersect with constraint. This problem
//           is solved by a quadratic equation. Return true if there is
//	     an intersection.
//
bool RangeConvex::testEdge(const SpatialVector &v0, const SpatialVector &v1, const SpatialVector &v2)
{
    for (size_t i = 0; i < constraints_.size(); i++)
    {
        if (constraints_[i].sign_ == nEG) // test only 'holes'
        {
            if (eSolve(v0, v1, i))
                return true;
            if (eSolve(v1, v2, i))
                return true;
            if (eSolve(v2, v0, i))
                return true;
        }
    }
    return false;
}

/////////////ESOLVE///////////////////////////////////////
// eSolve: solve the quadratic eq. for intersection of an edge with a circle
//         constraint. Edge given by grand circle running through v1, v2
//         Constraint given by cIndex.
bool RangeConvex::eSolve(const SpatialVector &v1, const SpatialVector &v2, size_t cIndex)
{
    float64 gamma1 = v1 * constraints_[cIndex].a_;
    float64 gamma2 = v2 * constraints_[cIndex].a_;
    float64 mu     = v1 * v2;
    float64 u2     = (1 - mu) / (1 + mu);

    float64 a = -u2 * (gamma1 + constraints_[cIndex].d_);
    float64 b = gamma1 * (u2 - 1) + gamma2 * (u2 + 1);
    float64 c = gamma1 - constraints_[cIndex].d_;

    float64 D = b * b - 4 * a * c;

    if (D < 0.0L)
        return false; // no intersection

    // calculate roots a'la Numerical Recipes

    float64 q = -0.5L * (b + (SGN(b) * sqrt(D)));

    float64 root1(0), root2(0);
    int i = 0;

    if (a > gEpsilon || a < -gEpsilon)
    {
        root1 = q / a;
        i++;
    }
    if (q > gEpsilon || q < -gEpsilon)
    {
        root2 = c / q;
        i++;
    }

    // Check whether the roots lie within [0,1]. If not, the intersection
    // is outside the edge.

    if (i == 0)
        return false; // no solution
    if (root1 >= 0.0L && root1 <= 1.0L)
        return true;
    if (i == 2 && ((root1 >= 0.0L && root1 <= 1.0L) || (root2 >= 0.0L && root2 <= 1.0L)))
        return true;

    return false;
}

/////////////TESTBOUNDINGCIRCLE///////////////////////////
// testBoundingCircle: test for boundingCircles intersecting with constraint
//
bool RangeConvex::testBoundingCircle(const SpatialVector &v0, const SpatialVector &v1, const SpatialVector &v2)
{
    // Set the correct direction: The normal vector to the triangle plane
    SpatialVector c = (v1 - v0) ^ (v2 - v1);
    c.normalize();

    // Set the correct opening angle: Since the plane cutting out the triangle
    // also correctly cuts out the bounding cap of the triangle on the sphere,
    // we can take any corner to calculate the opening angle
    float64 d = acos(c * v0);

    // for zero convexes, we have calculated a bounding circle for the convex.
    // only test with this single bounding circle.

    if (sign_ == zERO)
    {
        float64 tst;
        if (((tst = c * boundingCircle_.a_) < -1.0L + gEpsilon ? gPi : acos(tst)) > (d + boundingCircle_.s_))
            return false;
        return true;
    }

    // for all other convexes, test every constraint. If the bounding
    // circle lies completely outside of one of the constraints, reject.
    // else, accept.

    size_t i;
    for (i = 0; i < constraints_.size(); i++)
    {
        if (((c * constraints_[i].a_) < -1.0L + gEpsilon ? gPi : acos(c * constraints_[i].a_)) >
            (d + constraints_[i].s_))
            return false;
    }
    return true;
}

/////////////TESTEDGECONSTRAINT///////////////////////////
// testEdgeConstraint: test if edges intersect with a given constraint.
//
bool RangeConvex::testEdgeConstraint(const SpatialVector &v0, const SpatialVector &v1, const SpatialVector &v2,
                                     size_t cIndex)
{
    if (eSolve(v0, v1, cIndex))
        return true;
    if (eSolve(v1, v2, cIndex))
        return true;
    if (eSolve(v2, v0, cIndex))
        return true;
    return false;
}

/////////////TESTOTHERPOSNONE/////////////////////////////
// testOtherPosNone: test for other positive constraints that do
//                   not intersect with an edge. Return its index
//
size_t RangeConvex::testOtherPosNone(const SpatialVector &v0, const SpatialVector &v1, const SpatialVector &v2)
{
    size_t i = 1;
    while (i < constraints_.size() && constraints_[i].sign_ == pOS)
    {
        if (!testEdgeConstraint(v0, v1, v2, i))
            return i;
        i++;
    }
    return 0;
}

/////////////TESTCONSTRAINTINSIDE/////////////////////////
// testConstraintInside: look if a constraint is inside the triangle
//
bool RangeConvex::testConstraintInside(const SpatialVector &v0, const SpatialVector &v1, const SpatialVector &v2,
                                       size_t i)
{
    return testVectorInside(v0, v1, v2, constraints_[i].a_);
}

/////////////TESTVECTORINSIDE////////////////////////////
// testVectorInside: look if a vector is inside the triangle
//
bool RangeConvex::testVectorInside(const SpatialVector &v0, const SpatialVector &v1, const SpatialVector &v2,
                                   SpatialVector &v)
{
    // If (a ^ b * c) < 0, vectors abc point clockwise.
    // -> center c not inside triangle, since vertices are ordered
    // counter-clockwise.

    if ((((v0 ^ v1) * v) < 0) || (((v1 ^ v2) * v) < 0) || (((v2 ^ v0) * v) < 0))
        return false;
    return true;
}