1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
|
//# Filename: SpatialIndex.cpp
//#
//# The SpatialIndex class is defined here.
//#
//# Author: Peter Z. Kunszt based on A. Szalay's code
//#
//# Date: October 15, 1998
//#
//# SPDX-FileCopyrightText: 2000 Peter Z. Kunszt Alex S. Szalay, Aniruddha R. Thakar
//# The Johns Hopkins University
//#
//# Modification History:
//#
//# Oct 18, 2001 : Dennis C. Dinge -- Replaced ValVec with std::vector
//# Jul 25, 2002 : Gyorgy Fekete -- Added pointById()
//#
#include "SpatialIndex.h"
#include "SpatialException.h"
#ifdef _WIN32
#include <malloc.h>
#else
#ifdef __APPLE__
#include <sys/malloc.h>
#else
#include <cstdlib>
#endif
#endif
#include <cstdio>
#include <cmath>
// ===========================================================================
//
// Macro definitions for readability
//
// ===========================================================================
#define N(x) nodes_[(x)]
#define V(x) vertices_[nodes_[index].v_[(x)]]
#define IV(x) nodes_[index].v_[(x)]
#define W(x) vertices_[nodes_[index].w_[(x)]]
#define IW(x) nodes_[index].w_[(x)]
#define ICHILD(x) nodes_[index].childID_[(x)]
#define IV_(x) nodes_[index_].v_[(x)]
#define IW_(x) nodes_[index_].w_[(x)]
#define ICHILD_(x) nodes_[index_].childID_[(x)]
#define IOFFSET 9
// ===========================================================================
//
// Member functions for class SpatialIndex
//
// ===========================================================================
/////////////CONSTRUCTOR//////////////////////////////////
//
SpatialIndex::SpatialIndex(size_t maxlevel, size_t buildlevel)
: maxlevel_(maxlevel), buildlevel_((buildlevel == 0 || buildlevel > maxlevel) ? maxlevel : buildlevel)
{
size_t nodes, vertices;
vMax(&nodes, &vertices);
layers_.resize(buildlevel_ + 1); // allocate enough space already
nodes_.resize(nodes + 1); // allocate space for all nodes
vertices_.resize(vertices + 1); // allocate space for all vertices
N(0).index_ = 0; // initialize invalid node
// initialize first layer
layers_[0].level_ = 0;
layers_[0].nVert_ = 6;
layers_[0].nNode_ = 8;
layers_[0].nEdge_ = 12;
layers_[0].firstIndex_ = 1;
layers_[0].firstVertex_ = 0;
// set the first 6 vertices
float64 v[6][3] = {
{ 0.0L, 0.0L, 1.0L }, // 0
{ 1.0L, 0.0L, 0.0L }, // 1
{ 0.0L, 1.0L, 0.0L }, // 2
{ -1.0L, 0.0L, 0.0L }, // 3
{ 0.0L, -1.0L, 0.0L }, // 4
{ 0.0L, 0.0L, -1.0L } // 5
};
for (int i = 0; i < 6; i++)
vertices_[i].set(v[i][0], v[i][1], v[i][2]);
// create the first 8 nodes - index 1 through 8
index_ = 1;
newNode(1, 5, 2, 8, 0); // S0
newNode(2, 5, 3, 9, 0); // S1
newNode(3, 5, 4, 10, 0); // S2
newNode(4, 5, 1, 11, 0); // S3
newNode(1, 0, 4, 12, 0); // N0
newNode(4, 0, 3, 13, 0); // N1
newNode(3, 0, 2, 14, 0); // N2
newNode(2, 0, 1, 15, 0); // N3
// loop through buildlevel steps, and build the nodes for each layer
size_t pl = 0;
size_t level = buildlevel_;
while (level-- > 0)
{
SpatialEdge edge(*this, pl);
edge.makeMidPoints();
makeNewLayer(pl);
++pl;
}
sortIndex();
}
/////////////NODEVERTEX///////////////////////////////////
// nodeVertex: return the vectors of the vertices, based on the ID
//
void SpatialIndex::nodeVertex(const uint64 id, SpatialVector &v0, SpatialVector &v1, SpatialVector &v2) const
{
if (buildlevel_ == maxlevel_)
{
uint32 idx = (uint32)id - leaves_ + IOFFSET; // -jbb: Fix segfault. See "idx =" below.
v0 = vertices_[nodes_[idx].v_[0]];
v1 = vertices_[nodes_[idx].v_[1]];
v2 = vertices_[nodes_[idx].v_[2]];
return;
}
// buildlevel < maxlevel
// get the id of the stored leaf that we are in
// and get the vertices of the node we want
uint64 sid = id >> ((maxlevel_ - buildlevel_) * 2);
uint32 idx = (uint32)(sid - storedleaves_ + IOFFSET);
v0 = vertices_[nodes_[idx].v_[0]];
v1 = vertices_[nodes_[idx].v_[1]];
v2 = vertices_[nodes_[idx].v_[2]];
// loop through additional levels,
// pick the correct triangle accordingly, storing the
// vertices in v1,v2,v3
for (uint32 i = buildlevel_ + 1; i <= maxlevel_; i++)
{
uint64 j = (id >> ((maxlevel_ - i) * 2)) & 3;
SpatialVector w0 = v1 + v2;
w0.normalize();
SpatialVector w1 = v0 + v2;
w1.normalize();
SpatialVector w2 = v1 + v0;
w2.normalize();
switch (j)
{
case 0:
v1 = w2;
v2 = w1;
break;
case 1:
v0 = v1;
v1 = w0;
v2 = w2;
break;
case 2:
v0 = v2;
v1 = w1;
v2 = w0;
break;
case 3:
v0 = w0;
v1 = w1;
v2 = w2;
break;
}
}
}
/////////////MAKENEWLAYER/////////////////////////////////
// makeNewLayer: generate a new layer and the nodes in it
//
void SpatialIndex::makeNewLayer(size_t oldlayer)
{
uint64 index, id;
size_t newlayer = oldlayer + 1;
layers_[newlayer].level_ = layers_[oldlayer].level_ + 1;
layers_[newlayer].nVert_ = layers_[oldlayer].nVert_ + layers_[oldlayer].nEdge_;
layers_[newlayer].nNode_ = 4 * layers_[oldlayer].nNode_;
layers_[newlayer].nEdge_ = layers_[newlayer].nNode_ + layers_[newlayer].nVert_ - 2;
layers_[newlayer].firstIndex_ = index_;
layers_[newlayer].firstVertex_ = layers_[oldlayer].firstVertex_ + layers_[oldlayer].nVert_;
uint64 ioffset = layers_[oldlayer].firstIndex_;
for (index = ioffset; index < ioffset + layers_[oldlayer].nNode_; index++)
{
id = N(index).id_ << 2;
ICHILD(0) = newNode(IV(0), IW(2), IW(1), id++, index);
ICHILD(1) = newNode(IV(1), IW(0), IW(2), id++, index);
ICHILD(2) = newNode(IV(2), IW(1), IW(0), id++, index);
ICHILD(3) = newNode(IW(0), IW(1), IW(2), id, index);
}
}
/////////////NEWNODE//////////////////////////////////////
// newNode: make a new node
//
uint64 SpatialIndex::newNode(size_t v1, size_t v2, size_t v3, uint64 id, uint64 parent)
{
IV_(0) = v1; // vertex indices
IV_(1) = v2;
IV_(2) = v3;
IW_(0) = 0; // middle point indices
IW_(1) = 0;
IW_(2) = 0;
ICHILD_(0) = 0; // child indices
ICHILD_(1) = 0; // index 0 is invalid node.
ICHILD_(2) = 0;
ICHILD_(3) = 0;
N(index_).id_ = id; // set the id
N(index_).index_ = index_; // set the index
N(index_).parent_ = parent; // set the parent
return index_++;
}
/////////////VMAX/////////////////////////////////////////
// vMax: compute the maximum number of vertices for the
// polyhedron after buildlevel of subdivisions and
// the total number of nodes that we store
// also, calculate the number of leaf nodes that we eventually have.
//
void SpatialIndex::vMax(size_t *nodes, size_t *vertices)
{
uint64 nv = 6; // initial values
uint64 ne = 12;
uint64 nf = 8;
int32 i = buildlevel_;
*nodes = (size_t)nf;
while (i-- > 0)
{
nv += ne;
nf *= 4;
ne = nf + nv - 2;
*nodes += (size_t)nf;
}
*vertices = (size_t)nv;
storedleaves_ = nf;
// calculate number of leaves
i = maxlevel_ - buildlevel_;
while (i-- > 0)
nf *= 4;
leaves_ = nf;
}
/////////////SORTINDEX////////////////////////////////////
// sortIndex: sort the index so that the first node is the invalid node
// (index 0), the next 8 nodes are the root nodes
// and then we put all the leaf nodes in the following block
// in ascending id-order.
// All the rest of the nodes is at the end.
void SpatialIndex::sortIndex()
{
std::vector<QuadNode> oldnodes(nodes_); // create a copy of the node list
size_t index;
size_t nonleaf;
size_t leaf;
#define ON(x) oldnodes[(x)]
// now refill the nodes_ list according to our sorting.
for (index = IOFFSET, leaf = IOFFSET, nonleaf = nodes_.size() - 1; index < nodes_.size(); index++)
{
if (ON(index).childID_[0] == 0) // childnode
{
// set leaf into list
N(leaf) = ON(index);
// set parent's pointer to this leaf
for (size_t i = 0; i < 4; i++)
{
if (N(N(leaf).parent_).childID_[i] == index)
{
N(N(leaf).parent_).childID_[i] = leaf;
break;
}
}
leaf++;
}
else
{
// set nonleaf into list from the end
// set parent of the children already to this
// index, they come later in the list.
N(nonleaf) = ON(index);
ON(N(nonleaf).childID_[0]).parent_ = nonleaf;
ON(N(nonleaf).childID_[1]).parent_ = nonleaf;
ON(N(nonleaf).childID_[2]).parent_ = nonleaf;
ON(N(nonleaf).childID_[3]).parent_ = nonleaf;
// set parent's pointer to this leaf
for (size_t i = 0; i < 4; i++)
{
if (N(N(nonleaf).parent_).childID_[i] == index)
{
N(N(nonleaf).parent_).childID_[i] = nonleaf;
break;
}
}
nonleaf--;
}
}
}
//////////////////IDBYNAME/////////////////////////////////////////////////
// Translate ascii leaf name to a uint32
//
// The following encoding is used:
//
// The string leaf name has the always the same structure, it begins with
// an N or S, indicating north or south cap and then numbers 0-3 follow
// indicating which child to descend into. So for a depth-5-index we have
// strings like
// N012023 S000222 N102302 etc
//
// Each of the numbers correspond to 2 bits of code (00 01 10 11) in the
// uint32. The first two bits are 10 for S and 11 for N. For example
//
// N 0 1 2 0 2 3
// 11000110001011 = 12683 (dec)
//
// The leading bits are always 0.
//
// --- WARNING: This works only up to 15 levels.
// (we probably never need more than 7)
//
uint64 SpatialIndex::idByName(const char *name)
{
uint64 out = 0, i;
uint32 size = 0;
if (name == nullptr) // null pointer-name
throw SpatialFailure("SpatialIndex:idByName:no name given");
if (name[0] != 'N' && name[0] != 'S') // invalid name
throw SpatialFailure("SpatialIndex:idByName:invalid name", name);
size = strlen(name); // determine string length
// at least size-2 required, don't exceed max
if (size < 2)
throw SpatialFailure("SpatialIndex:idByName:invalid name - too short ", name);
if (size > HTMNAMEMAX)
throw SpatialFailure("SpatialIndex:idByName:invalid name - too long ", name);
for (i = size - 1; i > 0; i--) // set bits starting from the end
{
if (name[i] > '3' || name[i] < '0') // invalid name
throw SpatialFailure("SpatialIndex:idByName:invalid name digit ", name);
out += (uint64(name[i] - '0') << 2 * (size - i - 1));
}
i = 2; // set first pair of bits, first bit always set
if (name[0] == 'N')
i++; // for north set second bit too
out += (i << (2 * size - 2));
/************************
// This code may be used later for hashing !
if(size==2)out -= 8;
else {
size -= 2;
uint32 offset = 0, level4 = 8;
for(i = size; i > 0; i--) { // calculate 4 ^ (level-1), level = size-2
offset += level4;
level4 *= 4;
}
out -= level4 - offset;
}
**************************/
return out;
}
//////////////////NAMEBYID/////////////////////////////////////////////////
// Translate uint32 to an ascii leaf name
//
// The encoding described above may be decoded again using the following
// procedure:
//
// * Traverse the uint32 from left to right.
// * Find the first 'true' bit.
// * The first pair gives N (11) or S (10).
// * The subsequent bit-pairs give the numbers 0-3.
//
char *SpatialIndex::nameById(uint64 id, char *name)
{
uint32 size = 0, i;
#ifdef _WIN32
uint64 IDHIGHBIT = 1;
uint64 IDHIGHBIT2 = 1;
IDHIGHBIT = IDHIGHBIT << 63;
IDHIGHBIT2 = IDHIGHBIT2 << 62;
#endif
/*************
// This code might be useful for hashing later !!
// calculate the level (i.e. 8*4^level) and add it to the id:
uint32 level=0, level4=8, offset=8;
while(id >= offset) {
if(++level > 13) { ok = false; offset = 0; break; }// level too deep
level4 *= 4;
offset += level4;
}
id += 2 * level4 - offset;
**************/
// determine index of first set bit
for (i = 0; i < IDSIZE; i += 2)
{
if ((id << i) & IDHIGHBIT)
break;
if ((id << i) & IDHIGHBIT2) // invalid id
throw SpatialFailure("SpatialIndex:nameById: invalid ID");
}
if (id == 0)
throw SpatialFailure("SpatialIndex:nameById: invalid ID");
size = (IDSIZE - i) >> 1;
// allocate characters
if (!name)
name = new char[size + 1];
// fill characters starting with the last one
for (i = 0; i < size - 1; i++)
name[size - i - 1] = '0' + char((id >> i * 2) & 3);
// put in first character
if ((id >> (size * 2 - 2)) & 1)
{
name[0] = 'N';
}
else
{
name[0] = 'S';
}
name[size] = 0; // end string
return name;
}
//////////////////POINTBYID////////////////////////////////////////////////
// Find a vector for the leaf node given by its ID
//
void SpatialIndex::pointById(SpatialVector &vec, uint64 ID) const
{
// uint64 index;
float64 center_x, center_y, center_z, sum;
char name[HTMNAMEMAX];
SpatialVector v0, v1, v2; //
this->nodeVertex(ID, v0, v1, v2);
nameById(ID, name);
/*
I started to go this way until I discovered nameByID...
Some docs would be nice for this
switch(name[1]){
case '0':
index = name[0] == 'S' ? 1 : 5;
break;
case '1':
index = name[0] == 'S' ? 2 : 6;
break;
case '2':
index = name[0] == 'S' ? 3 : 7;
break;
case '3':
index = name[0] == 'S' ? 4 : 8;
break;
}
*/
// cerr << "---------- Point by id: " << name << Qt::endl;
// v0.show(); v1.show(); v2.show();
center_x = v0.x_ + v1.x_ + v2.x_;
center_y = v0.y_ + v1.y_ + v2.y_;
center_z = v0.z_ + v1.z_ + v2.z_;
sum = center_x * center_x + center_y * center_y + center_z * center_z;
sum = sqrt(sum);
center_x /= sum;
center_y /= sum;
center_z /= sum;
vec.x_ = center_x;
vec.y_ = center_y;
vec.z_ = center_z; // I don't want it normalized or radec to be set,
// cerr << " - - - - " << Qt::endl;
// vec.show();
// cerr << "---------- Point by id Retuning" << Qt::endl;
}
//////////////////IDBYPOINT////////////////////////////////////////////////
// Find a leaf node where a vector points to
//
uint64 SpatialIndex::idByPoint(const SpatialVector &v) const
{
uint64 index;
// start with the 8 root triangles, find the one which v points to
for (index = 1; index <= 8; index++)
{
if ((V(0) ^ V(1)) * v < -gEpsilon)
continue;
if ((V(1) ^ V(2)) * v < -gEpsilon)
continue;
if ((V(2) ^ V(0)) * v < -gEpsilon)
continue;
break;
}
// loop through matching child until leaves are reached
while (ICHILD(0) != 0)
{
uint64 oldindex = index;
for (size_t i = 0; i < 4; i++)
{
index = nodes_[oldindex].childID_[i];
if ((V(0) ^ V(1)) * v < -gEpsilon)
continue;
if ((V(1) ^ V(2)) * v < -gEpsilon)
continue;
if ((V(2) ^ V(0)) * v < -gEpsilon)
continue;
break;
}
}
// return if we have reached maxlevel
if (maxlevel_ == buildlevel_)
return N(index).id_;
// from now on, continue to build name dynamically.
// until maxlevel_ levels depth, continue to append the
// correct index, build the index on the fly.
char name[HTMNAMEMAX];
nameById(N(index).id_, name);
size_t len = strlen(name);
SpatialVector v0 = V(0);
SpatialVector v1 = V(1);
SpatialVector v2 = V(2);
size_t level = maxlevel_ - buildlevel_;
while (level--)
{
SpatialVector w0 = v1 + v2;
w0.normalize();
SpatialVector w1 = v0 + v2;
w1.normalize();
SpatialVector w2 = v1 + v0;
w2.normalize();
if (isInside(v, v0, w2, w1))
{
name[len++] = '0';
v1 = w2;
v2 = w1;
continue;
}
else if (isInside(v, v1, w0, w2))
{
name[len++] = '1';
v0 = v1;
v1 = w0;
v2 = w2;
continue;
}
else if (isInside(v, v2, w1, w0))
{
name[len++] = '2';
v0 = v2;
v1 = w1;
v2 = w0;
continue;
}
else if (isInside(v, w0, w1, w2))
{
name[len++] = '3';
v0 = w0;
v1 = w1;
v2 = w2;
continue;
}
}
name[len] = '\0';
return idByName(name);
}
//////////////////ISINSIDE/////////////////////////////////////////////////
// Test whether a vector is inside a triangle. Input triangle has
// to be sorted in a counter-clockwise direction.
//
bool SpatialIndex::isInside(const SpatialVector &v, const SpatialVector &v0, const SpatialVector &v1,
const SpatialVector &v2) const
{
if ((v0 ^ v1) * v < -gEpsilon)
return false;
if ((v1 ^ v2) * v < -gEpsilon)
return false;
if ((v2 ^ v0) * v < -gEpsilon)
return false;
return true;
}
|