1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1">
<title>SISCone: Usage</title>
<link href="doxygen.css" rel="stylesheet" type="text/css">
<link href="style.css" rel="stylesheet" type="text/css">
</head>
<body>
<!------------>
<!-- Header -->
<!------------>
<h1 align="center">SISCone Documentation</h1>
<p>
<a name="top"></a>
<h3 align="center">Version 2.0.5</h3>
</p>
<hr size="1">
<!---------->
<!-- Menu -->
<!---------->
<p>
<a href="index.html"><img src="home.png" align="right"></a>
SISCone is written in C++ and is provided as a library. We describe below 3 ways of using it:
<ul>
<li> Using the <a href="#appli">sample application</a> </li>
<li> Using the <a href="#lib">library</a> (from source code)</li>
<li> Using the <a href="#fjp">FastJet plugin</a> </li>
</ul>
</p>
<p>
For the <i>e<sup>+</sup>e<sup>-</sup></i> events, we provide an
implementation of SISCone in spherical
coordinates. See <a href="#sph">here</a> for details on how to use it.
</p>
<hr size="1">
<!----------------------------->
<!-- Application description -->
<!----------------------------->
<p>
<a href="index.html"><img src="home.png" align="right"></a>
<h2><a name="appli">Using the sample application</a></h2>
</p>
<p>
For simple applications, SISCone comes with a command-line application
<table class="code">
<tr><td><pre class="fragmant">
Usage: ./siscone <args>
Here is an exhaustive list of the arguments:
Parameters control (with default values):
-n <val>, --number=<val> : set the maximum number of particles allowed (all)
-R <val>, --radius=<val> : set the radius (0.7)
-f <val>, --fraction=<val>: set the overlap parameter (0.5)
-p <val>, --ptmin=<val> : set the minimal pT for protojets (0)
-e <val>, --event=<val> : set the event filename (events/single-event.dat)
-n <val>, --npass=<val> : set the number of passes (0 for infinity) (0)
-s <val>, --sm=<val> : set the variable for split-merge (pttilde)
Output flags:
--version : show version information
-h, --help : show this message
-v, --verbose: be verbose (on by default)
-q, --quiet : be quiet
</pre>
</td></tr>
</table>
</p>
<p>
The program outputs two files:
<ul>
<li> <tt>particles.dat</tt>: the list of particles as a two-column file giving the rapidity <em>y</em> and azimuthal angle φ for each particle</li>
<li> <tt>jets.dat</tt>: the first line gives the number of jets. Then comes the list of jets within 4 columns giving, for each jet, the (<em>y</em>, φ) coordinates of its centre, its <em>p<sub>T</sub></em> and the number of particles it contains. The remaining part of the file lists the jet content. This is again given in 4 columns: the (<em>y</em>, φ) coordinates of the particle, its index in the initial list and the index of the jet to which it belongs.</li>
</ul>
</p>
<p><a href="#top">Back to top</a></p>
<hr size="1">
<!------------------------->
<!-- Library description -->
<!------------------------->
<p>
<a href="index.html"><img src="home.png" align="right"></a>
<h2><a name="lib">Using the library</a></h2>
</p>
<p>
SISCone can be more conveniently used directly in C++ program linked against the SISCone library.
There are basically two objects that are important for users:
</p>
<h3><code>Cmomentum</code>: the 4-momentum class</h3> (see <tt><a class="code" href="../devel/html/momentum_8h_source.html">momentum.h</a></tt> for details)<br>
<p>
This class is used to store the property of one particle. It is defined through the 4-momentum coordinates of the particle e.g., to create a particle of momentum <tt>px</tt> <tt>py</tt> <tt>pz</tt> and energy <tt>E</tt><br>
<table class="code">
<tr><td>
<pre class="fragment">
<a class="code" href="../devel/html/classsiscone_1_1Cmomentum.html">Cmomentum</a> particle=<a class="code" href="../devel/html/classsiscone_1_1Cmomentum.html">Cmomentum</a>(px, py, pz, E);
</pre>
</td></tr>
</table>
</p>
<h3><code>Csiscone</code>: the SISCone jet finder</h3> (see <tt><a class="code" href="../devel/html/siscone_8h_source.html">siscone.h</a></tt> for details)<br>
<p>
The <a class="code" href="../devel/html/classsiscone_1_1Csiscone.html">Csiscone</a> class is the main class of interest of the algorithm. It is the one that you want to use to calculate the jets from a given set of particles. The algorithm is called through the following members:
<table class="code">
<tr><td><pre class="fragment">
int Csisscone::compute_jets(vector<Cmomentum> &particles,
double R, double f, int n_pass_max=0, double ptmin=0.0,
Esplit_merge_scale _split_merge_scale=SM_pttilde);
int Csisscone::recompute_jets(double f, double ptmin=0.0,
Esplit_merge_scale _split_merge_scale=SM_pttilde);
</pre></td></tr>
</table>
</p>
The first of those methods takes the following information as argument:
<ul>
<li> <tt>particles</tt>: the list of particles to deal with under the form of a <a href="http://www.sgi.com/tech/stl/">STL</a> vector of particles.</li>
<li> <tt>R</tt>: the radius of the cone used to scan for stable cones (protocones)</li>
<li> <tt>f</tt>: the overlap parameter. When splitting and merging protocones, two overlapping cones are split (resp. merged) when their overlapping <em>p<sub>T</sub></em> is smaller (resp. larger) than a fraction <tt>f</tt> of the smallest <em>p<sub>T</sub></em> of the parents. </li>
<li> <tt>n_pass_max</tt>: maximum number of passes. When computing protocones, it happens that some particles do not enter into jet. We can therefore re-run the algorithm with those particles only. This parameter controls the number of such passes. It has been set to 1 by default. If you want to run the algorithm until all particles are associated with a jet or no new stable cone are found, set it to 0.</li>
<li> <tt>ptmin</tt>: minimal <i>p<sub>T</sub></i> for the protojets included in the split-merge process. At each step of the split-merge process, we remove jet candidates which have a <i>p<sub>T</sub></i> less than <tt>ptmin</tt>.
<li> <tt>split_merge_scale</tt>: variable to use for split-merge (ordering and overlap fraction computation). This can be <tt>SM_pttilde</tt>, <tt>SM_Et</tt>, <tt>SM_mt</tt> or <tt>SM_pt</tt>, respectively corresponding to a p-scheme <i>p<sub>T</sub></i>, the transverse energy <i>E<sub>T</sub></i>, the transverse mass <i>m<sub>T</sub></i> or the transverse momentum <i>p<sub>T</sub></i>. We highly recommand to keep the default value <tt>SM_pttilde</tt> (see <a href="sm_issue.html">this note</a> for details)
</ul>
The second member (<tt>recompute_jets</tt>) allows you to rerun the split/merge algorithm with a different overlap parameter.
<p>
<b>Remark:</b> The algorithm has been placed inside the <tt>namespace siscone</tt>. Hence, you should either add the line <tt>using namespace siscone;</tt> on top of your applications, or prefix any call to the siscone library by <tt>siscone::</tt>.
</p>
<h3>Output</h3>
<p>
The result of calling <tt>compute_jets(...)</tt> or <tt>recompute_jets(...)</tt> is stored in the vector
<table class="code">
<tr><td><pre class="fragment">
vector<Cjet> Csiscone::jets;
</pre></td></tr>
</table>
The elements of that vector contain all necessary information concerning the jets:
<ul>
<li> <tt>Cjet::v</tt>: 4-momentum of the jet.</li>
<li> <tt>Cjet::n</tt>: number of particles in the jet.</li>
<li> <tt>Cjet::contents</tt>: jet contents. It is stored as a <tt>vector<int></tt> listing the indices of the particles contained in the jet.</li>
<li> <tt>Cjet::pass</tt> : pass at which the jet has been found (0 is the first, -1 means that the particle has not been included in the analysis <em>i.e.</em> it has infinite rapidity).
</ul>
</p>
<h3>an illustrative example</h3>
<p>
Here follows an example which illustrates the usage of those objects (see also <tt>main.cpp</tt> in the scones tree)
<table class="code">
<tr><td>
<pre class="fragment">
01 <span class="preprocessor">#include <stdio.h></span>
02 <span class="preprocessor">#include <iostream></span>
03 <span class="preprocessor">#include "siscone/momentum.h"</span>
04 <span class="preprocessor">#include "siscone/siscone.h"</span>
05
06 <span class="preprocessor">#define R 0.7</span>
07 <span class="preprocessor"></span><span class="preprocessor">#define f 0.5</span>
08 <span class="preprocessor"></span><span class="preprocessor">#define f_alt 0.75</span>
09 <span class="preprocessor"></span>
10 <span class="keyword">using namespace </span>std;
11 <span class="keyword">using namespace </span>siscone;
12
13 <span class="keywordtype">int</span> main(<span class="keywordtype">int</span> argc, <span class="keywordtype">char</span> *argv[]){
14 vector<Cmomentum> particles; <span class="comment">// list of particles</span>
15 <a class="code" href="../devel/html/classsiscone_1_1Csiscone.html">Csiscone</a> siscone; <span class="comment">// main object for the cone algorithm</span>
16 <span class="keywordtype">int</span> i; <span class="comment">// loop index</span>
17 <span class="keywordtype">int</span> N; <span class="comment">// number of particles</span>
18 <span class="keywordtype">double</span> px,py,pz,E; <span class="comment">// particles 4-momentum</span>
19 <span class="keywordtype">char</span> fline[512]; <span class="comment">// line to read from a file</span>
20
21 <span class="comment">// read particles</span>
22 FILE *flux;
23 flux = fopen(<span class="stringliteral">"events/single-event.dat"</span>, <span class="stringliteral">"r"</span>);
24 <span class="keywordflow">if</span> (flux==NULL){
25 cerr << <span class="stringliteral">"cannot read event"</span> << endl;
26 <span class="keywordflow">return</span> 1;
27 }
28
29 N=0;
30 <span class="keywordflow">while</span> (fgets(fline, 512, flux)!=NULL){
31 <span class="keywordflow">if</span> (fline[0]!=<span class="charliteral">'#'</span>){ <span class="comment">// skip lines beginning with '#'</span>
32 <span class="keywordflow">if</span> (sscanf(fline, <span class="stringliteral">"%le%le%le%le"</span>, &px, &py, &pz, &E)==4){
33 particles.push_back(<a class="code" href="../devel/html/classsiscone_1_1Cmomentum.html">Cmomentum</a>(px, py, pz, E));
34 N++;
35 } <span class="keywordflow">else</span> {
36 cout << <span class="stringliteral">"error in reading event file Giving up."</span> << endl;
37 fclose(flux);
38 <span class="keywordflow">return</span> 2;
39 }
40 }
41 }
42 fclose(flux);
43
44 <span class="comment">// compute jets</span>
45 <span class="comment">// first compute with multiple passes (default)</span>
46 i=siscone.<a class="code" href="../devel/html/classsiscone_1_1Csiscone.html#2d496c269c4af2b370b8c82bd7e96bec">compute_jets</a>(particles, R, f);
47 cout << <span class="stringliteral">" "</span> << i << <span class="stringliteral">" jets found in multi-pass run"</span> << endl;
48
49 <span class="comment">// then, recompute it with a different f</span>
50 i=siscone.<a class="code" href="../devel/html/classsiscone_1_1Csiscone.html#975312b3015c559e2e15cf1b9f2257f5">recompute_jets</a>(f_alt);
51 cout << <span class="stringliteral">" "</span> << i << <span class="stringliteral">" jets found with alterntive f"</span> << endl;
52
53 <span class="comment">// compute jets with a single pass</span>
54 i=siscone.<a class="code" href="../devel/html/classsiscone_1_1Csiscone.html#2d496c269c4af2b370b8c82bd7e96bec">compute_jets</a>(particles, R, f, 1);
55 cout << <span class="stringliteral">" "</span> << i << <span class="stringliteral">" jets found in single-pass run"</span> << endl;
56
57 <span class="comment">// show jets</span>
58 vector<Cjet>::iterator it_j;
59 <span class="keywordtype">int</span> i1;
60 fprintf(stdout, <span class="stringliteral">"# pT eta"</span>);
61 fprintf(stdout, <span class="stringliteral">" phi px py pz E \n"</span>);
62 <span class="keywordflow">for</span> (it_j = siscone.<a class="code" href="../devel/html/classsiscone_1_1Csplit__merge.html#80e77bb54f77db82eba461d64408694e">jets</a>.begin(), i1=0 ;
63 it_j != siscone.<a class="code" href="../devel/html/classsiscone_1_1Csplit__merge.html#80e77bb54f77db82eba461d64408694e">jets</a>.end() ; it_j++, i1++){
64 fprintf(stdout, <span class="stringliteral">"Jet %3d: %10.3f %8.3f %8.3f"</span>,
65 i1, it_j->v.perp(), it_j->v.eta, it_j->v.phi);
66 fprintf(stdout, <span class="stringliteral">" %10.3f %10.3f %10.3f %10.3f\n"</span>,
67 it_j->v.px, it_j->v.py, it_j->v.pz, it_j->v.E);
68 }
69
70 <span class="keywordflow">return</span> 0;
71 }</pre>
</tr></td>
</table>
</p>
<p><a href="#top">Back to top</a></p>
<hr size="1">
<!--------------------------------------->
<!-- description of the FastJet plugin -->
<!--------------------------------------->
<p>
<a href="index.html"><img src="home.png" align="right"></a>
<h2><a name="fjp">Using the FastJet plugin</a></h2>
</p>
<p>
SISCone is available as a plugin of the FastJet project. The plugin is
named <a class="code" href="http://fastjet.fr/repo/doxygen-3.0.0/classfastjet_1_1SISConePlugin.html"><code>SISConePlugin</code></a>. Note that it requires at least
version 2.1 of FastJet. See
the <a href="http://fastjet.fr">FastJet website</a> for details.
</p>
<p><a href="#top">Back to top</a></p>
<!--------------------------------------->
<!-- The spherical implementation -->
<!--------------------------------------->
<hr size="1">
<p>
<a href="index.html"><img src="home.png" align="right"></a>
<h2><a name="sph">The spherical version of SISCone</a></h2>
</p>
<p>
To allow clustering of <i>e<sup>+</sup>e<sup>–</sup></i> events, an
implementation of SISCone in spherical coordinates is available (as of
version 2.0 of SISCone).
</p>
<p>
Its usage is very similar to that of the basic implementation of SISCone,
so we just highlight the few differences here:
<ul>
<li>The spherical version, uses energy <i>E</i> and normal angles,
rather than the longitudinally boost-invariant <i>p<sub>t</sub></i>,
rapidity and azimuth. Specifically:
<ul>
<li>The distance between a pair of particle is the angle between
the pair particles (equivalently the the distance on the
surface of a unit sphere). Similarily, the cone
radius <i>R</i> is also defined as the cone half-opening
angle.</li>
<li>During the split--merge step, we use the energy of the
particles rather than their transverse momentum. However, as
in the standard situation where ordering the protojets
in <i>p<sub>t</sub></i> led to infrared-unsafeties, ordering
the protojets in energy in the spherical case also leads to
infrared unsafeties. To solve that problem, we introduce the
new variable<br>
<img align="center" src="etilde.jpg"><br>
and use it to order the protojets. Note that to compute the
overlap fraction, we keep using the plain energy (which is
perfectly safe in this case). In practice, when invoking the
clustering, this corresponds to the default choice
of <code>SM_Etilde</code> for the split--merge scale. If one
rather wants to use <i>E</i> despite its infrared-unsafety
problems, one can specify <code>SM_E</code> instead.</li>
</ul>
<li>The structure remains the same as for the basic implementation but
the class names have been prefixed by <code>CSph</code> instead of
just <code>C</code>. For example, the list of 4-momenta should be
of the <a class="code" href="../devel/html/classsiscone__spherical_1_1CSphmomentum.html"><code>CSphmomentum</code></a>
type <sup><font size="-2">(<a href="#type_explain">1</a>)</font></sup>,
the clustering is done using <a class="code" href="../devel/html/classsiscone__spherical_1_1CSphsiscone.html"><code>CSphsiscone</code></a> and the jets
are stored in <a class="code" href="../devel/html/classsiscone__spherical_1_1CSphjet.html"><code>CSphjet</code></a> objects.</li>
<li>The classes for the spherical implementation are placed under
the <code>siscone_spherical</code> namespace.</li>
<li>The library is called <code>libsiscone_spherical.{a,so}</code>
rather than <code>libsiscone.{a,so}</code>.</li>
<li>The spherical version of SISCone is available as a FastJet plugin
named <a class="code" href="http://fastjet.fr/repo/doxygen-3.0.0/classfastjet_1_1SISConeSphericalPlugin.html"><code>SISConeSphericalPlugin</code></a>.</li>
</ul>
<font size="-2"><sup>(<a name="type_explain">1</a>)</sup>The main reason for having
two classes for the 4-momenta is that SISCone is internally optimised
to avoid repeated computation of expensive quantities like the
rapidity. Since the spherical version makes use of the polar angle
θ instead of the rapidity <i>y</i>, having 2 separate classes
allows to optimise both situations.</font>
</p>
<p><a href="#top">Back to top</a></p>
<!------------>
<!-- footer -->
<!------------>
<hr size="1">
<a href="index.html">Home</a><br>
Contacts: <a href="mailto:gsoyez@quark.phy.bnl.gov">Gregory Soyez</a>
<a href="mailto:salam@lpthe.jussieu.fr">Gavin Salam</a>
</body>
</html>
|