1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
/*
* Copyright (C) 1998, 2000-2007, 2010, 2011, 2012, 2013 SINTEF ICT,
* Applied Mathematics, Norway.
*
* Contact information: E-mail: tor.dokken@sintef.no
* SINTEF ICT, Department of Applied Mathematics,
* P.O. Box 124 Blindern,
* 0314 Oslo, Norway.
*
* This file is part of SISL.
*
* SISL is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* SISL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public
* License along with SISL. If not, see
* <http://www.gnu.org/licenses/>.
*
* In accordance with Section 7(b) of the GNU Affero General Public
* License, a covered work must retain the producer line in every data
* file that is created or manipulated using SISL.
*
* Other Usage
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial activities involving the SISL library without
* disclosing the source code of your own applications.
*
* This file may be used in accordance with the terms contained in a
* written agreement between you and SINTEF ICT.
*/
#include <iostream>
#include <fstream>
#include <string>
#include <stdexcept>
#include "sisl.h"
#include "GoReadWrite.h"
using namespace std;
namespace {
string IN_FILE_CURVE_1 = "example1_curve.g2";
string IN_FILE_CURVE_2 = "example2_curve.g2";
string OUT_FILE_CURVE = "example3_curve.g2";
string DESCRIPTION =
"This program will create a 'blend curve' to connect the \n"
"endpoints of the two curves generated in the two previous \n"
"example programs. The routine used is s1606. \n"
"Input: " + IN_FILE_CURVE_1 + " and " + IN_FILE_CURVE_2 + "\n"
"Output: " + OUT_FILE_CURVE + "\n\n";
}; // end anonymous namespace
//===========================================================================
int main(int avnum, char** vararg)
//===========================================================================
{
cout << '\n' << vararg[0] << ":\n" << DESCRIPTION << endl;
cout << "To proceed, press enter, or ^C to quit." << endl;
getchar();
try {
ifstream stream_1(IN_FILE_CURVE_1.c_str());
ifstream stream_2(IN_FILE_CURVE_2.c_str());
if (!stream_1 || !stream_2) {
string error_message =
"Unable to open input files: " + IN_FILE_CURVE_1 +
" and " + IN_FILE_CURVE_2 + ". Are you sure you have run the "
"two previous sample programs?";
throw runtime_error(error_message.c_str());
}
SISLCurve* c1 = readGoCurve(stream_1);
SISLCurve* c2 = readGoCurve(stream_2);
double epsge = 1.0e-5; // geometric precision
int blendtype = 0; // generate polynomial segment
int dim = 3;
int order = 4;
double c1_endpoint[3]; // endpoint of curve 1 (must be calculated)
double c2_endpoint[3]; // endpoint of curve 2 (must be calculated)
// The blend curve will extend from the endpoint of curve 1 to the
// endpoint of curve 2. As input, the SISL routine needs (approximate)
// coordinates for these points on the curve. We therefore preliminarly
// need to evaluate these. For this purpose, we use SISL routine s1227.
// The end parameters of the curves' parametric domains can be found by
// looking at their knotvectors (pointed to by data member 'et').
// If the number of control points is 'n', then the knot numbered 'n'
// would represent the end parameter (when counting from 0). The number
// of control points is indicated by the data member 'in'.
double c1_endpar = c1->et[c1->in]; // end parameter of curve 1
double c2_endpar = c2->et[c2->in]; // end parameter of curve 2
int temp, jstat1, jstat2;
// evaluating endpoint positions of both curves
s1227(c1, // input curve
0, // evaluate position only (no derivatives)
c1_endpar, // end parameter
&temp, // indicates param. interval (not interesting for our purposes)
c1_endpoint, // this is what we want to calculate (3D position)
&jstat1); // status variable (0 if everything all right)
s1227(c2, // input curve
0, // evaluate position only (no derivatives)
c2_endpar, // end parameter
&temp, // indicates param. interval (not interesting for our purposes)
c2_endpoint, // this is what we want to calculate (3D position)
&jstat2); // status variable (0 if everything all right)
if (jstat1 < 0 || jstat2 < 0) {
throw runtime_error("Error occured inside call to SISL routine s1227.");
} else if (jstat1 > 0 || jstat2 > 0) {
cerr << "WARNING: warning occured inside call to SISL routine s1227.";
}
// calculating blend curve
SISLCurve* blend_curve = 0;
int jstat;
s1606(c1, // the first input curve
c2, // the second input curve
epsge, // geometric tolerance
c1_endpoint, // endpoint of curve 1 (geometric)
c2_endpoint, // endpoint of curve 2 (geometric)
blendtype, // type of blend curve (circle, conic, polynomial)
dim, // dimension (3D)
order, // order of generated spline curve
&blend_curve, // the generated curve
&jstat); // status message
if (jstat < 0) {
throw runtime_error("Error occured inside call to SISL routine s1606.");
} else if (jstat > 0) {
cerr << "WARNING: warning occured inside call to SISL routine s1606.\n" << endl;
}
ofstream os(OUT_FILE_CURVE.c_str());
if (!os) {
throw runtime_error("Unable to open output file.");
}
// write result to file
writeGoCurve(blend_curve, os);
// cleaning up
freeCurve(blend_curve);
freeCurve(c1);
freeCurve(c2);
os.close();
stream_1.close();
stream_2.close();
} catch (exception& e) {
cerr << "Exception thrown: " << e.what() << endl;
return 0;
}
return 1;
};
|