1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
|
/*
* Copyright (C) 1998, 2000-2007, 2010, 2011, 2012, 2013 SINTEF ICT,
* Applied Mathematics, Norway.
*
* Contact information: E-mail: tor.dokken@sintef.no
* SINTEF ICT, Department of Applied Mathematics,
* P.O. Box 124 Blindern,
* 0314 Oslo, Norway.
*
* This file is part of SISL.
*
* SISL is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* SISL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public
* License along with SISL. If not, see
* <http://www.gnu.org/licenses/>.
*
* In accordance with Section 7(b) of the GNU Affero General Public
* License, a covered work must retain the producer line in every data
* file that is created or manipulated using SISL.
*
* Other Usage
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial activities involving the SISL library without
* disclosing the source code of your own applications.
*
* This file may be used in accordance with the terms contained in a
* written agreement between you and SINTEF ICT.
*/
#ifndef JONVEC_H_INCLUDED
#define JONVEC_H_INCLUDED
#include <stdio.h>
#include <math.h>
#include <vector>
#include "aux2.h"
/*!
\page filters_mainpage The filter routines main page
\anchor filters_mainpage
\section filters_intro Introduction
This is a collection of routines for handling various (3x3x3) 3d
filters.<p>
020114: This REALLY REALLY must be cleaned up...
021231: Not yet, but soon, it will only be a question of removing commented
out stuff... Hopefully...
050120: Changed return types for boolean functions from int to bool.
Hope this doesn't break anything.
*/
template<typename T>
class vector3t
{
public:
T coo[3];
vector3t()
{
coo[0]=0.0;
coo[1]=0.0;
coo[2]=0.0;
};
vector3t(const T a, const T b, const T c)
{
coo[0]=a;
coo[1]=b;
coo[2]=c;
}
vector3t(const float *a)
{
coo[0]=a[0];
coo[1]=a[1];
coo[2]=a[2];
}
vector3t(const double *a)
{
coo[0]=a[0];
coo[1]=a[1];
coo[2]=a[2];
}
// 030819: Disse to delegger et eller annet. Fordi de erstatter en default (og bitwise) copy constructor, uten at de samtidig er gode nok til gjre det??? Skjnner ikke helt hva som skjer... M sjekkes opp... @@@
// vector3t(vector3t<float> &v0) // 030819
// {
// coo[0]=v0.x();
// coo[1]=v0.y();
// coo[2]=v0.z();
// }
// vector3t(vector3t<double> &v0) // 030819
// {
// coo[0]=v0.x();
// coo[1]=v0.y();
// coo[2]=v0.z();
// }
~vector3t(void) {}
// vector rotate2d(T,int);
// vector transform(coo_system &);
//
// 010122: For fast access used in OpenGL:
//
inline const T *raw(void) const
{
return coo;
}
//
// 010125
// 021024: Added the reference-versions.
//
inline T x(void) const { return coo[0]; }
inline T y(void) const { return coo[1]; }
inline T z(void) const { return coo[2]; }
inline T &x(void) { return coo[0]; }
inline T &y(void) { return coo[1]; }
inline T &z(void) { return coo[2]; }
//
// 010207
//
inline void setx(const T a) { coo[0]=a; }
inline void sety(const T a) { coo[1]=a; }
inline void setz(const T a) { coo[2]=a; }
//
// Check out this on gcc... Why does only SGI CC complain?
//
inline bool operator==(const vector3t &v) const
{
return ((coo[0]==v.coo[0]) && (coo[1]==v.coo[1]) && (coo[2]==v.coo[2]));
}
//
// 050120: Adding this... Would also be nice with one "and"'ing the
// results on each component... No, not necessary...
// Remember that deMorgan gives that a<&b <=> !(a>|b).
//
inline bool operator<(const vector3t &v) const
{
return ((coo[0]<v.coo[0]) || (coo[1]<v.coo[1]) || (coo[2]<v.coo[2]));
}
inline bool operator>(const vector3t &v) const
{
return ((coo[0]>v.coo[0]) || (coo[1]>v.coo[1]) || (coo[2]>v.coo[2]));
}
//
// Note: Prefer a!=b to !(a==b) since the former is probably faster!
//
inline bool operator!=(const vector3t &v) const
{
return ((coo[0]!=v.coo[0]) || (coo[1]!=v.coo[1]) || (coo[2]!=v.coo[2]));
}
//
// Ok, the strange warning produced when actually using this operator,
// stemmed from a missing 'const' at the end of the declaration of
// this operator. (Then the function could have altered *this, and
// that would have discarded any const'ness...)
//
inline const vector3t operator+(const vector3t &v) const
{
return vector3t(coo[0]+v.coo[0], coo[1]+v.coo[1], coo[2]+v.coo[2]);
}
inline vector3t &operator+=(const vector3t &v)
{
coo[0]+=v.coo[0]; coo[1]+=v.coo[1]; coo[2]+=v.coo[2];
return *this;
}
// 030819
// inline vector3t<float> &operator+=(const vector3t<double> &v)
// {
// coo[0]+=v.coo[0]; coo[1]+=v.coo[1]; coo[2]+=v.coo[2];
// return *this;
// }
inline vector3t &operator-=(const vector3t &v)
{
coo[0]-=v.coo[0]; coo[1]-=v.coo[1]; coo[2]-=v.coo[2];
return *this;
}
// 030513
inline vector3t &operator-=(const T &d)
{
coo[0]-=d; coo[1]-=d; coo[2]-=d;
return *this;
}
// 030626
inline vector3t &operator+=(const T &d)
{
coo[0]+=d; coo[1]+=d; coo[2]+=d;
return *this;
}
// 030709
inline vector3t &operator*=(const double x)
{
coo[0]*=x; coo[1]*=x; coo[2]*=x;
return *this;
}
// 030709
inline vector3t &operator/=(const double x)
{
coo[0]/=x; coo[1]/=x; coo[2]/=x;
return *this;
}
inline const vector3t operator-(const vector3t &v) const
{
return vector3t(coo[0]-v.coo[0], coo[1]-v.coo[1], coo[2]-v.coo[2]);
}
// 000310
inline const vector3t operator-(const T &d) const
{
return vector3t(coo[0]-d, coo[1]-d, coo[2]-d);
}
inline const vector3t operator-(void) const
{
return vector3t(-coo[0], -coo[1], -coo[2]);
}
//
// Why can't a non-member operator like this be 'const'?
//
inline const friend vector3t operator*(const T &a, const vector3t &v)
{
return vector3t(a*v.coo[0], a*v.coo[1], a*v.coo[2]);
}
// 030120:
inline const friend vector3t operator+(const double &a, const vector3t &v)
{
return vector3t(a+v.coo[0], a+v.coo[1], a+v.coo[2]);
}
inline const friend vector3t operator+(const float &a, const vector3t &v)
{
return vector3t(a+v.coo[0], a+v.coo[1], a+v.coo[2]);
}
inline T operator*(const vector3t &v) const
{
return (coo[0]*v.coo[0] + coo[1]*v.coo[1] + coo[2]*v.coo[2]);
}
inline vector3t operator/(const vector3t &v) const
{
return (vector3t(coo[1]*v.coo[2]-coo[2]*v.coo[1],
coo[2]*v.coo[0]-coo[0]*v.coo[2],
coo[0]*v.coo[1]-coo[1]*v.coo[0]));
}
//
// Why can't I make this a const function?
//
inline friend T cosangle(const vector3t &v0, const vector3t &v1)
{
return ((v0*v1)/sqrt((v0*v0)*(v1*v1)));
}
inline const vector3t &clamp(const vector3t &v0, const vector3t &v1)
{
coo[0]=std::max(v0.coo[0], std::min(v1.coo[0], coo[0]));
coo[1]=std::max(v0.coo[1], std::min(v1.coo[1], coo[1]));
coo[2]=std::max(v0.coo[2], std::min(v1.coo[2], coo[2]));
return *this;
}
//
// Added 021010:
// (Hmm... What is the sensible thing to do in such a case,
// return a new object, like for 'clamp' above, or to just modify
// *this, like in this definition??)
//
#ifdef MICROSOFT
//
// 030208: I simply don't know where these get defined as macros...
// (But I suspect some Microsoft .h-file does it...)
//
# undef min
# undef max
#endif
inline void min(const vector3t &v)
{
coo[0]=std::min(v.x(), x());
coo[1]=std::min(v.y(), y());
coo[2]=std::min(v.z(), z());
}
inline void max(const vector3t &v)
{
coo[0]=std::max(v.x(), x());
coo[1]=std::max(v.y(), y());
coo[2]=std::max(v.z(), z());
}
//
// When I do this, how come that I'm allowed to do something like this:
//
// vector3t x, y, z, w;
// z=x.conv(y);
// z+=w;
//
// Aha. Because it's the z I modify, not the return value of conv.
// This shouldn't work:
//
// (x.conv(y)).conv(w)
//
// And it does not. Therefore, 'inline vec...' instead of
// 'inline const vec...'.
//
inline vector3t &conv(const vector3t &v)
{
coo[0]*=v.coo[0];
coo[1]*=v.coo[1];
coo[2]*=v.coo[2];
return *this;
}
// 050122: Added this variation.
inline friend vector3t conv2(const vector3t &v1, const vector3t &v2)
{
return vector3t(v1.x()*v2.x(), v1.y()*v2.y(), v1.z()*v2.z());
}
// 050122: Added this... Note, no checking on components being zero!
// So, to scale V to the box with corners A and B:
// conv2((B-A).reciprocal(), V-A);
inline vector3t reciprocal(void) const
{
return vector3t(1.0/coo[0], 1.0/coo[1], 1.0/coo[2]);
}
// 050122: Might as well add this, then, for better clarity in calling code.
// Hmm... 'transform' or something would have been a better name.
inline vector3t &rescale(const vector3t &mi, const vector3t &ma,
const vector3t &new_mi, const vector3t &new_ma)
{
*this=conv2(conv2((ma-mi).reciprocal(), *this-mi), new_ma-new_mi)+new_mi;
return *this;
}
inline T length_squared(void) const
{
return (coo[0]*coo[0]+coo[1]*coo[1]+coo[2]*coo[2]);
}
inline T length(void) const
{
return (sqrt(length_squared()));
//return (sqrt(coo[0]*coo[0]+coo[1]*coo[1]+coo[2]*coo[2]));
}
inline void normalize(void)
{
const T tmp=1.0/length();
coo[0]*=tmp;
coo[1]*=tmp;
coo[2]*=tmp;
}
inline vector3t normalized(void) const
{
return (1.0/length())*(*this);
}
void print(void) const
{
printf("vector3t(%f %f %f)\n",
(double)coo[0], (double)coo[1], (double)coo[2]);
}
// 041212: Added version which does not print a newline.
void print2(void) const
{
printf("vector3t(%f %f %f)",
(double)coo[0], (double)coo[1], (double)coo[2]);
}
// 050214: Added version which does not print a newline, fixed size.
void print3(void) const
{
printf("(%7.3f %7.3f %7.3f)",
(double)coo[0], (double)coo[1], (double)coo[2]);
}
inline T min_coo(void) const
{
return std::min(coo[0], std::min(coo[1], coo[2]));
}
inline T max_coo(void) const
{
return std::max(coo[0], std::max(coo[1], coo[2]));
}
inline bool dequal(const vector3t<T> &v) const
{
return (DEQUAL(x(), v.x()) && DEQUAL(y(), v.y()) && DEQUAL(z(), v.z()));
}
inline bool dequal2(const vector3t<T> &v) const
{
return (DEQUAL2(x(), v.x()) &&
DEQUAL2(y(), v.y()) &&
DEQUAL2(z(), v.z()));
}
// 030711: For floats
inline bool dequal3(const vector3t<T> &v) const
{
return (DEQUAL3(x(), v.x()) &&
DEQUAL3(y(), v.y()) &&
DEQUAL3(z(), v.z()));
}
// 030209: Useful because we avoid casting to a vector2t.
inline bool dequal_2d(const vector3t<T> &v) const
{
return (DEQUAL(x(), v.x()) && DEQUAL(y(), v.y()));
}
// 030709: Rotation in the xy-plane, i.e., around the z-axis.
inline void rotate_xy(const double cosa, const double sina)
{
double oldx=coo[0], oldy=coo[1];
coo[0] = cosa*oldx + sina*oldy;
coo[1] = -sina*oldx + cosa*oldy;
}
// 030709: Rotation in the xz-plane, i.e., around the y-axis, but note the
// "opposite" orientation...
inline void rotate_xz(const double cosa, const double sina)
{
double oldx=coo[0], oldz=coo[2];
coo[0] = cosa*oldx + sina*oldz;
coo[2] = -sina*oldx + cosa*oldz;
}
// 030819: Rotation in the yz-plane, i.e., around the x-axis.
inline void rotate_yz(const double cosa, const double sina)
{
double oldy=coo[1], oldz=coo[2];
coo[1] = cosa*oldy + sina*oldz;
coo[2] = -sina*oldy + cosa*oldz;
}
};
#endif
|