File: cbselfabs.py

package info (click to toggle)
sixpack 0.57-4
  • links: PTS
  • area: contrib
  • in suites: etch, etch-m68k
  • size: 1,272 kB
  • ctags: 587
  • sloc: python: 10,074; makefile: 63
file content (372 lines) | stat: -rw-r--r-- 12,929 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
from string import *
from math import *
import atomic_sub
import mucal


##	Correction uses formulae from Booth & Bridges, 
##	http://xxx.lanl.gov/cond-mat/0306252
##	YOU MUST cite this article, or its in-print version from
##	XAFS XII (in press) if you use this correction.


## FUNCTION form2sym
## USAGE:
##  [symbol,num_sym,tot_syms]=form2sym(formula)
##
##  convert formula into a pair of arrays
##  given:
##    formula - a character string such as
##              Ni2O4
##              YBa2Fe0.31Cu2.69O7
##  returns:
##    symbol - sequence with the atoms in the formula
##    num_sym - sequence of reals with number of symbols
##    tot_syms - number of symbols in formula (an integer)
def form2sym(formula):
    #initialize
    form_len=len(formula)
    symbol=[]
    num_sym=[]
    i=0
    isym=0
    numbers='0123456789.'
    #parse formula and build symbol
    for c in formula:
        if c in uppercase:
            isym=isym+1
            elen=1
            if (i+1<form_len) and (formula[i+1] in lowercase):
                symbol.append(c+formula[i+1])
                elen=2
            else:
                symbol.append(c)
            #find subscript
            if (i+elen<form_len) and (formula[i+elen] in numbers):
                num=''
                j=0
                for n in formula[i+elen:]:
                    if (j==0) and (n in numbers):
                        num=num+n
                    else:
                        j=1
                num_sym.append(float(num))
            else:
                num_sym.append(1.0)
        i=i+1
    #print symbol,num_sym
    return [symbol,num_sym,isym]

## FUNCTION atomic_weight
## USAGE:
##  weight=atomic_weight(Z)
##  returns atomic weight of element Z in g/mol
def atomic_weight(Z):
    weight=[1.0079,4.00260,6.941,9.0128,10.81,12.011,14.0067,
            15.9994,18.998403,20.179,22.98977,24.305,26.98154,
            28.0855,30.97376,32.06,35.453,39.948,39.0983,40.08,
            44.9559,47.90,50.9415,51.996,54.9380,55.847,58.9332,
            58.70,63.546,65.38,69.72,72.59,74.9216,78.96,79.904,
            83.80,85.4678,87.62,88.9059,91.22,92.9064,95.94,98,
            101.07,102.9055,106.4,107.868,112.41,114.82,118.69,
            121.75,127.60,126.9045,131.30,132.9054,137.33,0,0,0,
            0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
            0,0,0,0,0,0,0 ]
    return weight[int(Z-1)]


## FUNCTION density
## USAGE:
##  dens=density(formula,formvol)
##  returns the density of atoms per barn-cm
##  which is the same as atoms per cubic angstrom
def density(formula,formvol):
    [symbol,num_sym,tot_syms]=form2sym(formula)
    dens=0.0
    for i in num_sym:
        dens=dens+i/formvol
    return dens


## FUNCTION tot_weight
## USAGE:
##  twt=tot_weight(formula)
##  returns total weight of chemical formula
def tot_weight(formula):
    [symbol,num_sym,tot_syms]=form2sym(formula)
    twt=0.0
    for i in range(tot_syms):
        Z=atomic_sub.sym2Z(symbol[i])
        twt=twt+atomic_weight(Z)*num_sym[i]
    return twt


## FUNCTION get_tot_abs
## USAGE:
##  abs=get_tot_abs(formula,energy,formvol)
##  returns absorption in inverse cm
def get_tot_abs(formula,energy,formvol):
    #initialize
    temp=0
    lam_e=12389.2/energy
    [symbol,num_sym,tot_syms]=form2sym(formula)
    #have symbol list...
    #need to figure out which edge coefficients we
    #   need to use from the Victoreen formula
    cross_section=0.0
    for i in range(tot_syms):
        Z=atomic_sub.sym2Z(symbol[i])
        #have edge, get coeffs and add up absorption
        #using McMaster tables...
        [err,energyret,xsec,fl_yield,errmsg] = mucal.mucal(Z=Z,ephot=energy/1000.0,unit='B')
        temp=xsec[3]
        conversion=num_sym[i]
        conversion=conversion*density(symbol[i],formvol)
        #put mu-Z into inverse cm
        mu_Z=conversion*temp
        cross_section=cross_section+mu_Z
    return cross_section


## FUNCTION get_noedge_abs
## USAGE:
##  abs=get_noedge_abs(formula,energy,formvol)
##  returns absorption in inverse cm, MINUS the current absorption edge 
def get_noedge_abs(formula,energy,formvol):
    #initialize
    temp=0
    lam_e=12389.2/energy
    [symbol,num_sym,tot_syms]=form2sym(formula)
    #have symbol list...
    #need to figure out which edge coefficients we
    #   need to use from the Victoreen formula
    cross_section=0.0
    for i in range(tot_syms):
        Z=atomic_sub.sym2Z(symbol[i])
        #have edge, get coeffs and add up absorption
        #using McMaster tables...
        [err,energyret,xsec,fl_yield,errmsg] = mucal.mucal(Z=Z,ephot=energy/1000.0,unit='B')
        temp=xsec[11]
        conversion=num_sym[i]
        conversion=conversion*density(symbol[i],formvol)
        #put mu-Z into inverse cm
        mu_Z=conversion*temp
        cross_section=cross_section+mu_Z
    return cross_section


## FUNCTION thick_chi
## USAGE:
##  chi=thick_chi(chi_exp,mu_t,mu_a,mu_f,phi,theta)
##  in the thick approximation ala Troger and Baberschke et al
##  PRB 46, 3283 (1992)
def thick_chi(chi_exp,mu_t,mu_a,mu_f,phi,theta):
    g=sin(phi)/sin(theta)
    alpha=mu_t+mu_f*g
    chi=chi_exp/(1.0-mu_a/alpha)
    return chi


## FUNCTION info_depth
## USAGE:
##  depth=info_depth(tot_abs,fluor_abs,phi,g)
##  from Troger and Baberschke
def info_depth(tot_abs,fluor_abs,phi,g):
    tcrazy=sin(phi)/(tot_abs+fluor_abs*g)
    if tcrazy<0:
        print phi,g,tot_abs,fluor_abs
    return tcrazy


## FUNCTION corr_chi
## USAGE:
##  chi=corr_chi(k,chi_exp,mu_t,mu_a,mu_f,d_given,phi,g,option)
##   k:       k vector
##   chi_exp: experimental measurement of XAFS chi
##   mu_t:    total abs coeff of materia
##   mu_a:    absorbing atoms total absoption contribution to mu_t
##   mu_f:    total absorption at the fluo energy
##   d_given: thickness of material in cm
##   phi:     angle of incident beam wrt sample surface in rads
##   g:       sin(phi)/sin(theta) where theta is the angle of the
##            exit beam wrt the sample surface
##   option:  if 'u', undo correction.  Else make correction.
##            if correction is undone, chi_exp is really chi...
##
##   Correction should work in the thin as well as thick limits
def corr_chi(k,chi_exp,mu_t,mu_a,mu_f,d_given,phi,g,option):
    #set a maximum limit on thickness
    if d_given>0.01:
        d=0.01
    else:
        d=d_given
    alpha=mu_t+mu_f*g
    beta=alpha*mu_a*d*exp(-alpha*d/sin(phi))/sin(phi)
    gamma=1.0-exp(-alpha*d/sin(phi))
    #thick limit is more accurate as it includes the XAFS oscillations
    if lower(option)=='u':
        thick=chi_exp*(alpha-mu_a)/(alpha+chi_exp*mu_a)
    else:
        thick=chi_exp/(1.0-mu_a*(1.0+chi_exp)/alpha)
    #criteria for checking if roundoff error is starting to be a problem
    crit1=(4.0*beta*alpha*gamma*chi_exp)/(gamma*(alpha-mu_a*(chi_exp+1.0))+beta)
    crit2=beta

    if (abs(crit1)>1e-7 and abs(crit2)>1e-7 and d<=0.01):
        #otherwise use the "nearly exact" expression
        if lower(option)=='u':
            #this is exact...
            #chi=(1.0-dexp(-(alpha+chi_exp*mu_a)*d/sin(phi)))
            #chi=chi*(chi_exp+1)*alpha/(gamma*(alpha+chi_exp*mu_a))
            #chi=chi-1.0
            #this is from the same approx used in the else
            F=gamma*mu_a/(2*beta)
            E=-(gamma*(alpha-mu_a)+beta)/(2*beta)
            H=alpha*gamma/beta
            chi=(chi_exp*(chi_exp-2*E))/(2*F*chi_exp+H)
        else:
            chi=-(gamma*(alpha-mu_a*(chi_exp+1))+beta)
            chi=chi+sqrt(chi*chi+4*beta*alpha*gamma*chi_exp)
            chi=chi/(2*beta)
    else:
        #if roundoff potentially bad, do the thick limit
        chi=thick
        print """WARNING: Using 'thick limit' equation at k="""+str(k)
    #check main approximation
    reality=1.0-exp(-(alpha+chi*mu_a)*d/sin(phi))
    approx=1.0-exp(-alpha*d/sin(phi))*(1.0-chi*mu_a*d/sin(phi))
    error=abs((approx-reality)/reality)
    if (error>0.02 and k>1.5):
        if error>1.0: error=1.0
        print 'WARNING: integrand approx. only good to '+str(error*100)+' percent at k='+str(k)
    return chi

## GET MUS HERE
## USAGE:
##  [tot_abs,fluor_abs,atomic_abs]=get_mus(formula,edge,energy,
##                           fluor_energy,concentration,formvol)
## Returns mus for corrections
def get_mus(formula,edge,energy,fluor_energy,concentration,formvol):
    numbers='0123456789.'
    #ignoring CB "first" structure...
    k=0
    if concentration<0:
        atomic_sym='   '
        #isolate the atom from the kind of edge
        i=find(edge,' ')
        #find position of edge in formula
        j=find(formula,edge[0:i])
        #make sure number of atoms stay in atomic_sym
        x=0
        for m in formula[j+i:]:
            if m in numbers and x==0:
                k=k+1
            else:
                x=1
        atomic_sym=formula[j:j+i+k]
    else:
        atomic_sym=edge[0:2]
    #clean up end of atomic_sym with blanks... not needed?
    #atomic_sym=rstrip(atomic_sym)
    #atomic_sym=ljust(atomic_sym,2)
    fluor_abs=get_tot_abs(formula,fluor_energy,formvol)
    #correction needs the total absorption
    tot_abs=get_tot_abs(formula,energy,formvol)
    r1=get_tot_abs(atomic_sym,energy,formvol)
    r2=get_noedge_abs(atomic_sym,energy,formvol)
    if concentration<0:
        atomic_abs=r1-r2
    else:
        atomic_abs=concentration*(r1-r2)
    #diagnostic check
    r3=get_tot_abs(atomic_sym,fluor_energy,formvol)
    if ((r3-r1)/r1>0.03):
        print 'BIG TROUBLE'
        print 'DIAG: energy='+str(energy)
        print 'DIAG: r1='+str(r1)
        print 'DIAG: r2='+str(r2)
        print 'DIAG: r3='+str(r3)
    return [tot_abs,fluor_abs,atomic_abs]


## FLUOR CORRECTION
## USAGE:
##  corr_chi=fluor_corr(k,chi,d,phi,formvol,formula,edge,concentration,io,option)
##  returns fluo corrected chi array given k,chi and other params
##   k:             Sequence of k wavevectors
##   chi:           Sequence of fluo impacted chi meaurements
##   d:             Thickness of sample, in ANGSTROMS
##   phi:           Angle of incident beam wrt sample in degrees
##   formvol:       Volume of formula cell
##   formula:       Formula of compound of interest
##   edge:          Element and edge, eg. 'Mn K' or 'U LIII'
##   fluor_energy:  energy of fluo line -- taken from edge!
##   concentration: concentration (-1 by default)
##   io:            output option-
##                    'p' or 'P' for printout to stdoutput
##                    other for maximum verbosity
##   option:        if 'U' or 'u', will undo a correction, otherwise it'll do it
def fluor_corr(k,chi,d,phi,formvol,formula,edge,concentration,io,option):
    #initialize new array
    sabcor_chi=[]
    EV2INVANG=0.512393
    #need E0 for calculating edge energy
    [Z,edge_code,e_not]=atomic_sub.get_atomic(edge)
    fluor_energy=atomic_sub.get_fluo_energy(edge)    
    #convert angles to radians
    phi_rad=2*pi*phi/360
    theta_rad=pi/2-phi_rad
    g=sin(phi_rad)/sin(theta_rad)
    #begin correction loop
    for idat in range(len(chi)):
        #k is the wavevector
        #need it in terms of eV, since that is what the Vict. Coeffs are in terms of...
        if k[idat]>=0.0:
            energy=e_not+(k[idat]/EV2INVANG)**2
        else:
            print 'Trouble in fluo corr, k='+str(k[idat])
        #correction needs the total absorption
        [tot_abs,fluor_abs,atomic_abs]=get_mus(formula,edge,energy,fluor_energy,concentration,formvol)
        #separate out chi
        #  difference from CB version -- input is chi, NOT k-weighted chi
        new_chi=corr_chi(k[idat],chi[idat],tot_abs,atomic_abs,fluor_abs,d*1e-8,phi_rad,g,option)
        try:
            correction=new_chi/chi[idat]
        except:
            correction=1
        sabcor_chi.append(new_chi)
        temp=1e8*info_depth(tot_abs,fluor_abs,phi_rad,g)
        if k[idat]<=5.0:
            corr_at_5=correction
            info_at_5=temp
    #make sure new corr_chi is same length as old one        
    if len(sabcor_chi)!=len(chi):
        print 'SERIOUS ERROR -- CORRECTED CHI NOT SAME LENGTH'
    #stat report?
    if lower(io)=='p':
        print
        print 'Self-Absorption correction statistics:'
        print
        print 'info depth at 5 inv ang: '+str(info_at_5)
        print 'correction chi_true/chi_exp at 5 inv ang: '+str(corr_at_5)
        print        
    #return final corrected chi
    return sabcor_chi

#tests

#get_mus('ZnS','Zn K',10000,8500,-1,10)
#get_mus('ZnS','Zn K',10000,8500,1,10)
#get_mus('ZnS','S K',2500,2308,-1,10)
#get_mus('YBa2Fe0.31Cu2.69O7','Fe K',7800,6500,-1,10)

#print get_tot_abs('ZnS',10000,1)
#print tot_weight('NaCl')
#print atomic_sub.get_atomic('Mn K')
#form2sym('ZnS')
#form2sym('Ni2O4')
#print form2sym('YBa2Fe0.31Cu2.69O7')
#print atomic_weight(1)
#print atomic_sub.sym2Z('U')
#print atomic_weight(atomic_sub.sym2Z('U '))
#print fluor_corr([1,2,3,4,5],[1,1,1,1,1],45000,45,50,'MnO2','Mn K',-1,'v','x')