1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
from string import *
from math import *
import atomic_sub
import mucal
## Correction uses formulae from Booth & Bridges,
## http://xxx.lanl.gov/cond-mat/0306252
## YOU MUST cite this article, or its in-print version from
## XAFS XII (in press) if you use this correction.
## FUNCTION form2sym
## USAGE:
## [symbol,num_sym,tot_syms]=form2sym(formula)
##
## convert formula into a pair of arrays
## given:
## formula - a character string such as
## Ni2O4
## YBa2Fe0.31Cu2.69O7
## returns:
## symbol - sequence with the atoms in the formula
## num_sym - sequence of reals with number of symbols
## tot_syms - number of symbols in formula (an integer)
def form2sym(formula):
#initialize
form_len=len(formula)
symbol=[]
num_sym=[]
i=0
isym=0
numbers='0123456789.'
#parse formula and build symbol
for c in formula:
if c in uppercase:
isym=isym+1
elen=1
if (i+1<form_len) and (formula[i+1] in lowercase):
symbol.append(c+formula[i+1])
elen=2
else:
symbol.append(c)
#find subscript
if (i+elen<form_len) and (formula[i+elen] in numbers):
num=''
j=0
for n in formula[i+elen:]:
if (j==0) and (n in numbers):
num=num+n
else:
j=1
num_sym.append(float(num))
else:
num_sym.append(1.0)
i=i+1
#print symbol,num_sym
return [symbol,num_sym,isym]
## FUNCTION atomic_weight
## USAGE:
## weight=atomic_weight(Z)
## returns atomic weight of element Z in g/mol
def atomic_weight(Z):
weight=[1.0079,4.00260,6.941,9.0128,10.81,12.011,14.0067,
15.9994,18.998403,20.179,22.98977,24.305,26.98154,
28.0855,30.97376,32.06,35.453,39.948,39.0983,40.08,
44.9559,47.90,50.9415,51.996,54.9380,55.847,58.9332,
58.70,63.546,65.38,69.72,72.59,74.9216,78.96,79.904,
83.80,85.4678,87.62,88.9059,91.22,92.9064,95.94,98,
101.07,102.9055,106.4,107.868,112.41,114.82,118.69,
121.75,127.60,126.9045,131.30,132.9054,137.33,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0 ]
return weight[int(Z-1)]
## FUNCTION density
## USAGE:
## dens=density(formula,formvol)
## returns the density of atoms per barn-cm
## which is the same as atoms per cubic angstrom
def density(formula,formvol):
[symbol,num_sym,tot_syms]=form2sym(formula)
dens=0.0
for i in num_sym:
dens=dens+i/formvol
return dens
## FUNCTION tot_weight
## USAGE:
## twt=tot_weight(formula)
## returns total weight of chemical formula
def tot_weight(formula):
[symbol,num_sym,tot_syms]=form2sym(formula)
twt=0.0
for i in range(tot_syms):
Z=atomic_sub.sym2Z(symbol[i])
twt=twt+atomic_weight(Z)*num_sym[i]
return twt
## FUNCTION get_tot_abs
## USAGE:
## abs=get_tot_abs(formula,energy,formvol)
## returns absorption in inverse cm
def get_tot_abs(formula,energy,formvol):
#initialize
temp=0
lam_e=12389.2/energy
[symbol,num_sym,tot_syms]=form2sym(formula)
#have symbol list...
#need to figure out which edge coefficients we
# need to use from the Victoreen formula
cross_section=0.0
for i in range(tot_syms):
Z=atomic_sub.sym2Z(symbol[i])
#have edge, get coeffs and add up absorption
#using McMaster tables...
[err,energyret,xsec,fl_yield,errmsg] = mucal.mucal(Z=Z,ephot=energy/1000.0,unit='B')
temp=xsec[3]
conversion=num_sym[i]
conversion=conversion*density(symbol[i],formvol)
#put mu-Z into inverse cm
mu_Z=conversion*temp
cross_section=cross_section+mu_Z
return cross_section
## FUNCTION get_noedge_abs
## USAGE:
## abs=get_noedge_abs(formula,energy,formvol)
## returns absorption in inverse cm, MINUS the current absorption edge
def get_noedge_abs(formula,energy,formvol):
#initialize
temp=0
lam_e=12389.2/energy
[symbol,num_sym,tot_syms]=form2sym(formula)
#have symbol list...
#need to figure out which edge coefficients we
# need to use from the Victoreen formula
cross_section=0.0
for i in range(tot_syms):
Z=atomic_sub.sym2Z(symbol[i])
#have edge, get coeffs and add up absorption
#using McMaster tables...
[err,energyret,xsec,fl_yield,errmsg] = mucal.mucal(Z=Z,ephot=energy/1000.0,unit='B')
temp=xsec[11]
conversion=num_sym[i]
conversion=conversion*density(symbol[i],formvol)
#put mu-Z into inverse cm
mu_Z=conversion*temp
cross_section=cross_section+mu_Z
return cross_section
## FUNCTION thick_chi
## USAGE:
## chi=thick_chi(chi_exp,mu_t,mu_a,mu_f,phi,theta)
## in the thick approximation ala Troger and Baberschke et al
## PRB 46, 3283 (1992)
def thick_chi(chi_exp,mu_t,mu_a,mu_f,phi,theta):
g=sin(phi)/sin(theta)
alpha=mu_t+mu_f*g
chi=chi_exp/(1.0-mu_a/alpha)
return chi
## FUNCTION info_depth
## USAGE:
## depth=info_depth(tot_abs,fluor_abs,phi,g)
## from Troger and Baberschke
def info_depth(tot_abs,fluor_abs,phi,g):
tcrazy=sin(phi)/(tot_abs+fluor_abs*g)
if tcrazy<0:
print phi,g,tot_abs,fluor_abs
return tcrazy
## FUNCTION corr_chi
## USAGE:
## chi=corr_chi(k,chi_exp,mu_t,mu_a,mu_f,d_given,phi,g,option)
## k: k vector
## chi_exp: experimental measurement of XAFS chi
## mu_t: total abs coeff of materia
## mu_a: absorbing atoms total absoption contribution to mu_t
## mu_f: total absorption at the fluo energy
## d_given: thickness of material in cm
## phi: angle of incident beam wrt sample surface in rads
## g: sin(phi)/sin(theta) where theta is the angle of the
## exit beam wrt the sample surface
## option: if 'u', undo correction. Else make correction.
## if correction is undone, chi_exp is really chi...
##
## Correction should work in the thin as well as thick limits
def corr_chi(k,chi_exp,mu_t,mu_a,mu_f,d_given,phi,g,option):
#set a maximum limit on thickness
if d_given>0.01:
d=0.01
else:
d=d_given
alpha=mu_t+mu_f*g
beta=alpha*mu_a*d*exp(-alpha*d/sin(phi))/sin(phi)
gamma=1.0-exp(-alpha*d/sin(phi))
#thick limit is more accurate as it includes the XAFS oscillations
if lower(option)=='u':
thick=chi_exp*(alpha-mu_a)/(alpha+chi_exp*mu_a)
else:
thick=chi_exp/(1.0-mu_a*(1.0+chi_exp)/alpha)
#criteria for checking if roundoff error is starting to be a problem
crit1=(4.0*beta*alpha*gamma*chi_exp)/(gamma*(alpha-mu_a*(chi_exp+1.0))+beta)
crit2=beta
if (abs(crit1)>1e-7 and abs(crit2)>1e-7 and d<=0.01):
#otherwise use the "nearly exact" expression
if lower(option)=='u':
#this is exact...
#chi=(1.0-dexp(-(alpha+chi_exp*mu_a)*d/sin(phi)))
#chi=chi*(chi_exp+1)*alpha/(gamma*(alpha+chi_exp*mu_a))
#chi=chi-1.0
#this is from the same approx used in the else
F=gamma*mu_a/(2*beta)
E=-(gamma*(alpha-mu_a)+beta)/(2*beta)
H=alpha*gamma/beta
chi=(chi_exp*(chi_exp-2*E))/(2*F*chi_exp+H)
else:
chi=-(gamma*(alpha-mu_a*(chi_exp+1))+beta)
chi=chi+sqrt(chi*chi+4*beta*alpha*gamma*chi_exp)
chi=chi/(2*beta)
else:
#if roundoff potentially bad, do the thick limit
chi=thick
print """WARNING: Using 'thick limit' equation at k="""+str(k)
#check main approximation
reality=1.0-exp(-(alpha+chi*mu_a)*d/sin(phi))
approx=1.0-exp(-alpha*d/sin(phi))*(1.0-chi*mu_a*d/sin(phi))
error=abs((approx-reality)/reality)
if (error>0.02 and k>1.5):
if error>1.0: error=1.0
print 'WARNING: integrand approx. only good to '+str(error*100)+' percent at k='+str(k)
return chi
## GET MUS HERE
## USAGE:
## [tot_abs,fluor_abs,atomic_abs]=get_mus(formula,edge,energy,
## fluor_energy,concentration,formvol)
## Returns mus for corrections
def get_mus(formula,edge,energy,fluor_energy,concentration,formvol):
numbers='0123456789.'
#ignoring CB "first" structure...
k=0
if concentration<0:
atomic_sym=' '
#isolate the atom from the kind of edge
i=find(edge,' ')
#find position of edge in formula
j=find(formula,edge[0:i])
#make sure number of atoms stay in atomic_sym
x=0
for m in formula[j+i:]:
if m in numbers and x==0:
k=k+1
else:
x=1
atomic_sym=formula[j:j+i+k]
else:
atomic_sym=edge[0:2]
#clean up end of atomic_sym with blanks... not needed?
#atomic_sym=rstrip(atomic_sym)
#atomic_sym=ljust(atomic_sym,2)
fluor_abs=get_tot_abs(formula,fluor_energy,formvol)
#correction needs the total absorption
tot_abs=get_tot_abs(formula,energy,formvol)
r1=get_tot_abs(atomic_sym,energy,formvol)
r2=get_noedge_abs(atomic_sym,energy,formvol)
if concentration<0:
atomic_abs=r1-r2
else:
atomic_abs=concentration*(r1-r2)
#diagnostic check
r3=get_tot_abs(atomic_sym,fluor_energy,formvol)
if ((r3-r1)/r1>0.03):
print 'BIG TROUBLE'
print 'DIAG: energy='+str(energy)
print 'DIAG: r1='+str(r1)
print 'DIAG: r2='+str(r2)
print 'DIAG: r3='+str(r3)
return [tot_abs,fluor_abs,atomic_abs]
## FLUOR CORRECTION
## USAGE:
## corr_chi=fluor_corr(k,chi,d,phi,formvol,formula,edge,concentration,io,option)
## returns fluo corrected chi array given k,chi and other params
## k: Sequence of k wavevectors
## chi: Sequence of fluo impacted chi meaurements
## d: Thickness of sample, in ANGSTROMS
## phi: Angle of incident beam wrt sample in degrees
## formvol: Volume of formula cell
## formula: Formula of compound of interest
## edge: Element and edge, eg. 'Mn K' or 'U LIII'
## fluor_energy: energy of fluo line -- taken from edge!
## concentration: concentration (-1 by default)
## io: output option-
## 'p' or 'P' for printout to stdoutput
## other for maximum verbosity
## option: if 'U' or 'u', will undo a correction, otherwise it'll do it
def fluor_corr(k,chi,d,phi,formvol,formula,edge,concentration,io,option):
#initialize new array
sabcor_chi=[]
EV2INVANG=0.512393
#need E0 for calculating edge energy
[Z,edge_code,e_not]=atomic_sub.get_atomic(edge)
fluor_energy=atomic_sub.get_fluo_energy(edge)
#convert angles to radians
phi_rad=2*pi*phi/360
theta_rad=pi/2-phi_rad
g=sin(phi_rad)/sin(theta_rad)
#begin correction loop
for idat in range(len(chi)):
#k is the wavevector
#need it in terms of eV, since that is what the Vict. Coeffs are in terms of...
if k[idat]>=0.0:
energy=e_not+(k[idat]/EV2INVANG)**2
else:
print 'Trouble in fluo corr, k='+str(k[idat])
#correction needs the total absorption
[tot_abs,fluor_abs,atomic_abs]=get_mus(formula,edge,energy,fluor_energy,concentration,formvol)
#separate out chi
# difference from CB version -- input is chi, NOT k-weighted chi
new_chi=corr_chi(k[idat],chi[idat],tot_abs,atomic_abs,fluor_abs,d*1e-8,phi_rad,g,option)
try:
correction=new_chi/chi[idat]
except:
correction=1
sabcor_chi.append(new_chi)
temp=1e8*info_depth(tot_abs,fluor_abs,phi_rad,g)
if k[idat]<=5.0:
corr_at_5=correction
info_at_5=temp
#make sure new corr_chi is same length as old one
if len(sabcor_chi)!=len(chi):
print 'SERIOUS ERROR -- CORRECTED CHI NOT SAME LENGTH'
#stat report?
if lower(io)=='p':
print
print 'Self-Absorption correction statistics:'
print
print 'info depth at 5 inv ang: '+str(info_at_5)
print 'correction chi_true/chi_exp at 5 inv ang: '+str(corr_at_5)
print
#return final corrected chi
return sabcor_chi
#tests
#get_mus('ZnS','Zn K',10000,8500,-1,10)
#get_mus('ZnS','Zn K',10000,8500,1,10)
#get_mus('ZnS','S K',2500,2308,-1,10)
#get_mus('YBa2Fe0.31Cu2.69O7','Fe K',7800,6500,-1,10)
#print get_tot_abs('ZnS',10000,1)
#print tot_weight('NaCl')
#print atomic_sub.get_atomic('Mn K')
#form2sym('ZnS')
#form2sym('Ni2O4')
#print form2sym('YBa2Fe0.31Cu2.69O7')
#print atomic_weight(1)
#print atomic_sub.sym2Z('U')
#print atomic_weight(atomic_sub.sym2Z('U '))
#print fluor_corr([1,2,3,4,5],[1,1,1,1,1],45000,45,50,'MnO2','Mn K',-1,'v','x')
|