1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
|
/*===========================================================================
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===========================================================================
*
*/
#ifndef _DBGAssembler_
#define _DBGAssembler_
#include <random>
#include "DBGraph.hpp"
#include "counter.hpp"
#include "graphdigger.hpp"
namespace DeBruijn {
/******************************
General description
CDBGAssembler implements the SKESA assembling algorithm.
1. It uses the counts for kmers with the minimal kmer length specified (default 21 bp) to estimate the maximal kmer length
(starting from average mate length) that has sufficient coverage requested in maxkmercount. If reads are paired and
insert size isn't specified, it estimates the insert size by assembling between mates for a sample of the reads.
2. It assembles iteratively starting from minimal to maximal kmer length in a specified number of steps. Each step builds a
de Bruijn graph for the kmer size for that iteration and uses it to improve previously assembled contigs. After each
assembly iteration, the reads already used in the contigs are removed from further consideration.
3. If reads are paired, it uses the reads that are not marked as used and the set of de Bruijn graphs built in 2) to connect
the mate pairs.
4. Using the paired reads connected in 3), it performs three additional assembly iterations with the kmer size up
to the insert size.
*******************************/
template<class DBGraph>
class CDBGAssembler {
public:
// fraction - Maximal noise to signal ratio of counts acceptable for extension
// jump - minimal length of accepted dead ends; i.e. dead ends shorter than this length are ignored
// low_count - minimal count for kmers in a contig
// steps - number of assembly iterations from minimal to maximal kmer size in reads
// min_count - minimal kmer count to be included in a de Bruijn graph
// min_kmer - the minimal kmer size for the main steps
// max_kmer_paired - insert size (0 if not known)
// maxkmercount - the minimal average count for estimating the maximal kmer
// memory - the upper bound for memory use (GB)
// ncores - number of threads
// raw_reads - reads (for effective multithreading, number of elements in the list should be >= ncores)
typedef typename DBGraph::Node Node;
using GraphDigger = CDBGraphDigger<DBGraph>;
template<typename... GraphArgs>
CDBGAssembler(double fraction, int jump, int low_count, int steps, int min_count, int min_kmer, int max_kmer, bool forcesinglereads,
int max_kmer_paired, int maxkmercount, int ncores, list<array<CReadHolder,2>>& raw_reads, TStrList seeds,
bool allow_snps, bool estimate_min_count, GraphArgs... gargs) :
m_fraction(fraction), m_jump(jump), m_low_count(low_count), m_steps(steps), m_min_count(min_count), m_min_kmer(min_kmer), m_max_kmer(max_kmer),
m_max_kmer_paired(max_kmer_paired), m_maxkmercount(maxkmercount), m_ncores(ncores), m_average_count(0), m_raw_reads(raw_reads) {
m_insert_size = 0;
for(auto& reads : m_raw_reads) {
m_raw_pairs.push_back({reads[0], CReadHolder(false)});
}
m_connected_reads.resize(m_raw_reads.size(), {CReadHolder(false), CReadHolder(true)});
double total_seq = 0;
size_t total_reads = 0;
size_t paired = 0;
for(auto& reads : m_raw_reads) {
if(forcesinglereads) {
for(CReadHolder::string_iterator is = reads[0].sbegin(); is != reads[0].send(); ++is)
reads[1].PushBack(is);
reads[0].Clear();
}
total_seq += reads[0].TotalSeq()+reads[1].TotalSeq();
total_reads += reads[0].ReadNum()+reads[1].ReadNum();
paired += reads[0].ReadNum();
}
bool usepairedends = paired > 0;
//graph for minimal kmer
double average_count = GetGraph(m_min_kmer, m_raw_reads, true, estimate_min_count ? total_seq : 0, gargs...);
if(average_count == 0)
throw runtime_error("Reads are too short for selected minimal kmer length");
m_average_count = average_count;
// estimate genome
int read_len = total_seq/total_reads+0.5;
cerr << endl << "Average read length: " << read_len << endl;
size_t genome_size = m_graphs[m_min_kmer]->GenomeSize();
cerr << "Genome size estimate: " << genome_size << endl << endl;
{// first iteration
if(!seeds.empty()) {
m_contigs.push_back(TContigSequenceList());
for(string& seed : seeds) {
m_contigs.back().emplace_back(); // empty contig
auto& contig = m_contigs.back().back();
contig.InsertNewChunk();
contig.InsertNewVariant(); // one empty list
for(char c : seed) {
string ambigs = FromAmbiguousIUPAC[c];
if(ambigs.size() == 1) {
contig.ExtendTopVariant(c);
} else {
contig.InsertNewChunk();
for(char c : ambigs)
contig.InsertNewVariant(c);
contig.InsertNewChunk();
contig.InsertNewVariant(); // one empty list
}
}
}
CombineSimilarContigs(m_contigs.back());
m_seeds = m_contigs.back();
cerr << "Seeds: " << m_contigs.back().size() << endl;
int num = 0;
for(auto& contig : m_contigs.back()) {
string first_variant;
for(auto& lst : contig)
first_variant.insert(first_variant.end(), lst.front().begin(), lst.front().end());
cerr << ">Seed_" << ++num << endl << first_variant << endl;
int pos = 0;
for(unsigned chunk = 0; chunk < contig.size(); ++chunk) { //output variants
int chunk_len = contig[chunk].front().size();
if(contig.VariableChunk(chunk)) {
int left = 0;
if(chunk > 0)
left = min(100,(int)contig[chunk-1].front().size());
int right = 0;
if(chunk < contig.size()-1)
right = min(100,(int)contig[chunk+1].front().size());
int var = 0;
auto it = contig[chunk].begin();
for(++it; it != contig[chunk].end(); ++it) {
auto& variant = *it;
cerr << ">Variant_" << ++var << "_for_Seed_" << num << ":" << pos-left+1 << "_" << pos+chunk_len+right << "\n";
if(chunk > 0) {
for(int l = left ; l > 0; --l)
cerr << *(contig[chunk-1].front().end()-l);
}
for(char c : variant)
cerr << c;
if(chunk < contig.size()-1) {
for(int r = 0; r < right; ++r)
cerr << contig[chunk+1].front()[r];
}
cerr << endl;
}
}
pos += chunk_len;
}
}
}
ImproveContigs(m_min_kmer, false);
if(m_contigs.back().empty())
throw runtime_error("Was not able to assemble anything");
}
//estimate max_kmer
if(m_max_kmer == 0) {
if(m_steps > 1 && average_count > m_maxkmercount) {
m_max_kmer = read_len+1-double(m_maxkmercount)/average_count*(read_len-min_kmer+1);
m_max_kmer = min(TKmer::MaxKmer(), m_max_kmer);
EstimateMaxKmer(read_len, gargs...);
} else {
m_max_kmer = m_min_kmer;
}
}
cerr << endl << "Average count: " << average_count << " Max kmer: " << m_max_kmer << endl;
//estimate insert size
if(steps > 1 || usepairedends) {
if(m_max_kmer_paired == 0 && usepairedends) {
size_t mates = 0;
for(auto& rh : m_raw_reads)
mates += rh[0].ReadNum();
unsigned sample_size = 10000; // use 10000 reads for connecting to estimate insert size
unordered_set<size_t> selection;
if(mates/2 > 2*sample_size) { // make random choice for reads
default_random_engine generator;
uniform_int_distribution<size_t> distribution(0,mates/2-1);
for(unsigned s = 0; s < sample_size; ) {
if(selection.insert(distribution(generator)).second)
++s;
}
} else if(mates/2 > 0) { // too few paired reads so using all : may be > sample_size but <= twice that size
for(size_t i = 0; i <= mates/2-1; ++i)
selection.insert(i);
}
if(!selection.empty()) {
CStopWatch timer;
timer.Restart();
list<array<CReadHolder,2>> mate_pairs;
size_t mp = 0;
int sub_sample = sample_size/m_ncores;
size_t num = 0;
for(auto& reads : m_raw_reads) {
for(CReadHolder::string_iterator is = reads[0].sbegin(); is != reads[0].send(); ++is, ++mp) {
if(selection.count(mp)) {
if((num++)%sub_sample == 0)
mate_pairs.push_back({CReadHolder(true), CReadHolder(false)});
mate_pairs.back()[0].PushBack(is);
mate_pairs.back()[0].PushBack(++is);
} else {
++is;
}
}
}
int long_insert_size = 2000; // we don't expect inserts to be longer than 2000 bp for this program
GraphDigger graph_digger(*m_graphs[min_kmer], m_fraction, m_jump, m_low_count);
list<array<CReadHolder,2>> connected_mate_pairs = graph_digger.ConnectPairs(mate_pairs, long_insert_size, m_ncores, false);
CReadHolder connected_mates(false);
for(auto& mp : connected_mate_pairs) {
for(CReadHolder::string_iterator is = mp[0].sbegin(); is != mp[0].send(); ++is)
connected_mates.PushBack(is);
}
m_max_kmer_paired = connected_mates.N50();
cerr << endl << "N50 for inserts: " << m_max_kmer_paired << endl << endl;
}
}
m_max_kmer_paired = min(m_max_kmer_paired,TKmer::MaxKmer());
m_insert_size = 3*m_max_kmer_paired; // we don't expect spread of histogram to go beyond three times expected insert
CleanReads();
}
//main iterations
if(m_steps > 1) {
if(m_max_kmer > 1.5*m_min_kmer) {
double alpha = double(m_max_kmer-m_min_kmer)/(steps-1); // find desired distance between consecutive kmers
for(int step = 1; step < m_steps; ++step) {
int kmer_len = min_kmer+step*alpha+0.5; // round to integer
kmer_len -= 1-kmer_len%2; // get odd kmer
if(kmer_len <= m_graphs.rbegin()->first)
continue;
if(GetGraph(kmer_len, m_raw_reads, true, 0, gargs...) == 0) {
cerr << "Empty graph for kmer length: " << kmer_len << " skipping this and longer kmers" << endl;
break;
}
ImproveContigs(kmer_len, false);
CleanReads();
}
} else {
cerr << "WARNING: iterations are disabled" << endl;
}
}
// three additional iterations with kmers (usually) longer than read length and upto insert size
if(usepairedends && m_insert_size > 0 && m_max_kmer_paired > 1.5*m_max_kmer) {
ConnectPairsIteratively();
array<int,3> long_kmers;
long_kmers[0] = 1.25*m_max_kmer;
long_kmers[2] = m_max_kmer_paired;
long_kmers[1] = (long_kmers[0]+long_kmers[2])/2;
for(int kmer_len : long_kmers) {
kmer_len -= 1-kmer_len%2;
if(GetGraph(kmer_len, m_connected_reads, false, 0, gargs...) == 0) {
cerr << "Empty graph for kmer length: " << kmer_len << " skipping this and longer kmers" << endl;
break;
}
ImproveContigs(kmer_len, false);
}
}
if(allow_snps) { // snp discovery
for(auto it = m_graphs.rbegin(); it != m_graphs.rend(); ++it) {
int kmer_len = it->first;
ImproveContigs (kmer_len, true);
}
}
}
map<int,DBGraph*>& Graphs() { return m_graphs; }
TContigSequenceList& Contigs() { return m_contigs.back(); }
vector<TContigSequenceList>& AllIterations() { return m_contigs; }
CReadHolder ConnectedReads() const {
CReadHolder connected_reads(false);
for(const auto& cr : m_connected_reads) {
for(CReadHolder::string_iterator is = cr[0].sbegin(); is != cr[0].send(); ++is)
connected_reads.PushBack(is);
}
return connected_reads;
}
virtual ~CDBGAssembler() {
for(auto& graph : m_graphs)
delete graph.second;
}
private:
// connects paired reads using all constructed de Bruijn graphs
void ConnectPairsIteratively() {
for(auto& gr : m_graphs) {
int kmer_len = gr.first;
cerr << endl << "Connecting mate pairs using kmer length: " << kmer_len << endl;
GraphDigger graph_digger(*gr.second, m_fraction, m_jump, m_low_count);
list<array<CReadHolder,2>> connected_reads_temp = graph_digger.ConnectPairs(m_raw_pairs, m_insert_size, m_ncores, true);
list<array<CReadHolder,2>>::iterator pairedi = m_connected_reads.begin();
list<array<CReadHolder,2>>::iterator rawi = m_raw_pairs.begin();
for(auto& pr : connected_reads_temp) {
swap((*rawi)[0], pr[1]); // keep still not connected
for(CReadHolder::string_iterator is = pr[0].sbegin(); is != pr[0].send(); ++is) // add new connected reads
(*pairedi)[0].PushBack(*is);
++rawi;
++pairedi;
}
}
size_t connected = 0;
for(auto& rh : m_connected_reads)
connected += rh[0].ReadNum();
cerr << "Totally connected: " << connected << endl;
size_t added = 0;
list<array<CReadHolder,2>>::iterator pairedi = m_connected_reads.begin();
for(auto& reads : m_raw_pairs) {
for(CReadHolder::string_iterator is = reads[0].sbegin(); is != reads[0].send(); ++is) {
if((int)is.ReadLen() > m_max_kmer) {
(*pairedi)[0].PushBack(*is);
++added;
}
}
++pairedi;
}
cerr << "Added notconnected: " << added << endl;
}
// scans kmers for all assembled contigs and creates a map
// the key is the smaller of two possible kmer directions
// the value is a tupe:
// int - position on contig
// bool - the same as the key or reverse complemented
// CContigSequence* - pointer to the contig
typedef CKmerHashMap<tuple<int, bool, const CContigSequence*>, 8> TKmerToContig;
// typedef CKmerMap<tuple<int, bool, const CContigSequence*>> TKmerToContig;
TKmerToContig GetAssembledKmers() {
int kmer_len = m_graphs.rbegin()->first;
CKmerMap<int> seed_kmers(kmer_len);
for(auto& seed : m_seeds) {
if((int)seed.LenMin() < kmer_len)
continue;
seed.RemoveShortUniqIntervals(kmer_len);
for(int i = seed.size()-1; i >= 0; i -= 2) {
if(i == (int)seed.size()-1) {
if((int)seed.ChunkLenMax(i) >= kmer_len) { // last chunk could be short
CReadHolder rh(false);
rh.PushBack(seed.back().front());
for(CReadHolder::kmer_iterator ik = rh.kbegin(kmer_len) ; ik != rh.kend(); ++ik) {
TKmer kmer = *ik;
TKmer rkmer = revcomp(kmer, kmer_len);
++seed_kmers[kmer < rkmer ? kmer : rkmer];
}
}
} else { // all uniq chunks in the middle >= kmer_len; first/last could be short
if((int)seed.ChunkLenMax(i) >= kmer_len) {
TVariation seq(seed[i].front().begin(), seed[i].front().end());
CReadHolder rh(false);
rh.PushBack(seq);
for(CReadHolder::kmer_iterator ik = rh.kbegin(kmer_len) ; ik != rh.kend(); ++ik) {
TKmer kmer = *ik;
TKmer rkmer = revcomp(kmer, kmer_len);
++seed_kmers[kmer < rkmer ? kmer : rkmer];
}
}
for(auto& variant : seed[i+1]) {
TVariation seq;
if((int)seed.ChunkLenMax(i) >= kmer_len-1)
seq.insert(seq.end(), seed[i].front().end()-kmer_len+1, seed[i].front().end());
else
seq.insert(seq.end(), seed[i].front().begin(), seed[i].front().end());
seq.insert(seq.end(), variant.begin(), variant.end());
if((int)seed.ChunkLenMax(i+2) >= kmer_len-1)
seq.insert(seq.end(), seed[i+2].front().begin(), seed[i+2].front().begin()+kmer_len-1);
else
seq.insert(seq.end(), seed[i+2].front().begin(), seed[i+2].front().end());
CReadHolder rh(false);
rh.PushBack(seq);
for(CReadHolder::kmer_iterator ik = rh.kbegin(kmer_len) ; ik != rh.kend(); ++ik) {
TKmer kmer = *ik;
TKmer rkmer = revcomp(kmer, kmer_len);
++seed_kmers[kmer < rkmer ? kmer : rkmer];
}
}
}
}
}
cerr << "Seed kmers: " << seed_kmers.Size() << endl;
int min_len = max(m_max_kmer_paired, m_max_kmer);
size_t knum = 0;
list<pair<CContigSequence*, SAtomic<int8_t>>> contigs;
for(auto& contig : m_contigs.back()) {
if((int)contig.LenMin() >= min_len && contig.size() == 1) {
contigs.emplace_back(&contig, 0);
knum += contig.LenMin()+2*(kmer_len-1); // overestimation for reserve
}
}
TKmerToContig assembled_kmers(kmer_len, knum);
list<function<void()>> jobs;
for(int thr = 0; thr < m_ncores; ++thr)
jobs.push_back(bind(&CDBGAssembler::AssembledKmersJob, this, ref(contigs), ref(assembled_kmers), ref(seed_kmers)));
RunThreads(m_ncores, jobs);
return assembled_kmers;
}
void AssembledKmersJob(list<pair<CContigSequence*, SAtomic<int8_t>>>& contigs, TKmerToContig& assembled_kmers, CKmerMap<int>& seed_kmers) const {
for(auto& pr : contigs) {
if(!pr.second.Set(1))
continue;
auto& contig = *pr.first;
int kmer_len = m_graphs.rbegin()->first;
auto& graphp = m_graphs.rbegin()->second;
int pos = contig.ChunkLenMax(0)-kmer_len;
CReadHolder rh(false);
if(contig.m_circular) {
auto cc = contig[0].front();
cc.insert(cc.end(), contig[0].front().begin(), contig[0].front().begin()+kmer_len-1); // add kmer-1 bases to get all kmers
rh.PushBack(cc);
pos = contig.ChunkLenMax(0)-1;
} else {
rh.PushBack(contig[0].front());
}
bool found_repeat = false;
list<pair<TKmer, tuple<int, bool, const CContigSequence*>>> contig_kmers;
for(CReadHolder::kmer_iterator ik = rh.kbegin(kmer_len) ; ik != rh.kend(); ++ik, --pos) { // iteration from last kmer to first
TKmer kmer = *ik;
auto node = graphp->GetNode(kmer);
if(graphp->Abundance(node)*m_fraction > m_average_count)
continue;
if(node.isValid() && graphp->IsMultContig(node)) {
found_repeat = true;
break;
}
TKmer rkmer = revcomp(kmer, kmer_len);
TKmer* kmerp = &kmer;
bool direct = true;
if(rkmer < kmer) {
kmerp = &rkmer;
direct = false;
}
contig_kmers.emplace_back(*kmerp, make_tuple(pos, direct, &contig));
}
if(!found_repeat) {
for(auto& kmer : contig_kmers) {
if(seed_kmers.Find(kmer.first) == nullptr)
*assembled_kmers.FindOrInsert(kmer.first) = kmer.second;
}
}
}
}
// finds if a read belongs to any of the contigs
// return tuple:
// int - position on the contig (-1 if not found)
// int - +1 if in positive strand; -1 if in negative strand
// CContigSequence* - pointer to the contig
static tuple<int, int, const CContigSequence*> FindMatchForRead(const CReadHolder::string_iterator& is, TKmerToContig& assembled_kmers) {
int rlen = is.ReadLen();
int kmer_len = assembled_kmers.KmerLen();
int plus = 1;
tuple<int, bool, const CContigSequence*>* rsltp = nullptr;
int knum = rlen-kmer_len+1;
for(CReadHolder::kmer_iterator ik = is.KmersForRead(kmer_len); rsltp == nullptr && knum > 0; --knum, ++ik) {
TKmer kmer = *ik;
TKmer rkmer = revcomp(kmer, kmer_len);
TKmer* kmerp = &kmer;
plus = 1;
if(rkmer < kmer) {
kmerp = &rkmer;
plus = -plus;
}
rsltp = assembled_kmers.Find(*kmerp);
if(rsltp != nullptr && get<0>(*rsltp) < 0)
rsltp = nullptr;
}
int pos = -1; // position on contig of the 'outer' read end (aka insert end)
const CContigSequence* sp = nullptr;
if(rsltp != nullptr) {
sp = get<2>(*rsltp); // pointer to the contig
if(!get<1>(*rsltp))
plus = -plus;
if(plus > 0) {
pos = get<0>(*rsltp)-knum;
if(pos < 0 && sp->m_circular)
pos += sp->LenMax();
} else {
pos = get<0>(*rsltp)+kmer_len-1+knum;
if(pos >= (int)sp->LenMax() && sp->m_circular)
pos -= sp->LenMax();
}
}
return make_tuple(pos, plus, sp);
}
// removes reads if they belong to already assembled contigs
// using contig sequence creates artificial connected pairs when both mates are placed
//
// assembled_kmers - a map of all kmers in already assembled contigs
// margin - the minimal distance from an edge of a contig for a read to be removed
// insert_size - the upper limit for insert size
// raw_reads - reads
// connected_reads - pointer to connected reads (nullp if not used)
static void RemoveUsedReadsJob(TKmerToContig& assembled_kmers, int margin, int insert_size, array<CReadHolder,2>& raw_reads, CReadHolder* connected_reads) {
int kmer_len = assembled_kmers.KmerLen();
{
CReadHolder cleaned_reads(true);
if(raw_reads[0].ReadNum() > 0)
cleaned_reads.Reserve(raw_reads[0].TotalSeq(), raw_reads[0].ReadNum());
CReadHolder::string_iterator is1 = raw_reads[0].sbegin();
CReadHolder::string_iterator is2 = raw_reads[0].sbegin();
++is2;
for( ; is2 != raw_reads[0].send(); ++is1, ++is1, ++is2, ++is2) {
if((int)min(is1.ReadLen(), is2.ReadLen()) < kmer_len) {
if(connected_reads) { // keep short pairs for connection
cleaned_reads.PushBack(is1);
cleaned_reads.PushBack(is2);
} else { // give chance to be used as unpaired
raw_reads[1].PushBack(is1);
raw_reads[1].PushBack(is2);
}
continue;
}
tuple<int, int, const CContigSequence*> rslt1 = FindMatchForRead(is1, assembled_kmers);
int pos1 = get<0>(rslt1);
int plus1 = get<1>(rslt1);
const CContigSequence* sp1 = get<2>(rslt1);
int clen1 = 0;
int left_flank1 = 0;
int right_flank1 = 0;
if(pos1 >= 0) {
left_flank1 = sp1->m_left_repeat;
right_flank1 = sp1->m_right_repeat;
clen1 = sp1->LenMax();
if(sp1->m_circular || (plus1 > 0 && pos1 >= margin+left_flank1 && pos1+insert_size-1 < clen1-margin-right_flank1) ||
(plus1 < 0 && pos1-insert_size+1 >= margin+left_flank1 && pos1 < clen1-margin-right_flank1))
continue;
}
// check for second mate in case first mate was of bad quality and not found in contigs
tuple<int, int, const CContigSequence*> rslt2 = FindMatchForRead(is2, assembled_kmers);
int pos2 = get<0>(rslt2);
int plus2 = get<1>(rslt2);
const CContigSequence* sp2 = get<2>(rslt2);
if(pos2 >= 0) {
int left_flank2 = sp2->m_left_repeat;
int right_flank2 = sp2->m_right_repeat;
int clen2 = sp2->LenMax();
if(sp2->m_circular || (plus2 > 0 && pos2 >= margin+left_flank2 && pos2+insert_size-1 < clen2-margin-right_flank2) ||
(plus2 < 0 && pos2-insert_size+1 >= margin+left_flank2 && pos2 < clen2-margin-right_flank2))
continue;
}
if(pos1 >= 0 && pos2 >= 0 && sp1 == sp2 && plus1 != plus2) { // same contig, different strands
if((plus1 > 0 && pos1 >= margin+left_flank1 && pos2 < clen1-margin-right_flank1) ||
(plus1 < 0 && pos2 >= margin+left_flank1 && pos1 < clen1-margin-right_flank1)) { // deep inside
continue;
} else if(connected_reads) {
if((plus1 > 0 && pos1 >= 0 && pos2 < clen1) || (plus1 < 0 && pos2 >= 0 && pos1 < clen1)) { // inside but not deep
int a = min(pos1,pos2);
int b = max(pos1,pos2);
if(b < (int)sp1->ChunkLenMax(0)) { // in first uniq chunk
TVariation seq(sp1->front().front().begin()+a, sp1->front().front().begin()+b+1);
connected_reads->PushBack(seq);
continue;
} else if(clen1-a <= (int)sp1->ChunkLenMax(sp1->size()-1)) { // in last uniq chunk
TVariation seq(sp1->back().front().end()-clen1+a, sp1->back().front().end()-clen1+b+1);
connected_reads->PushBack(seq);
continue;
}
}
}
}
cleaned_reads.PushBack(is1);
cleaned_reads.PushBack(is2);
}
cleaned_reads.Swap(raw_reads[0]);
}
if(!connected_reads) {
CReadHolder cleaned_reads(false);
if(raw_reads[1].ReadNum() > 0)
cleaned_reads.Reserve(raw_reads[1].TotalSeq(), raw_reads[1].ReadNum());
for(CReadHolder::string_iterator is = raw_reads[1].sbegin() ;is != raw_reads[1].send(); ++is) {
int rlen = is.ReadLen();
if(rlen < kmer_len)
continue;
tuple<int, int, const CContigSequence*> rslt = FindMatchForRead(is, assembled_kmers);
int pos = get<0>(rslt);
int plus = get<1>(rslt);
const CContigSequence* sp = get<2>(rslt);
if(pos >= 0) {
int left_flank = sp->m_left_repeat;
int right_flank = sp->m_right_repeat;
int clen = sp->LenMax();
if(sp->m_circular || (plus > 0 && pos >= margin+left_flank && pos+rlen-1 < clen-margin-right_flank) ||
(plus < 0 && pos-rlen+1 >= margin+left_flank && pos < clen-margin-right_flank))
continue;
}
cleaned_reads.PushBack(is);
}
cleaned_reads.Swap(raw_reads[1]);
}
}
// removes used reads from the read set used for de Bruijn graphs
// assembled_kmers - a map of all kmers in already assembled contigs
// margin - the minimal distance from an edge of a contig for a read to be removed
// insert_size - the upper limit for insert size
// ncores - number of threads
// raw_reads - reads
static void RemoveUsedReads(TKmerToContig& assembled_kmers, int margin, int insert_size, int ncores, list<array<CReadHolder,2>>& raw_reads) {
list<function<void()>> jobs;
for(auto& job_input : raw_reads) {
jobs.push_back(bind(RemoveUsedReadsJob, ref(assembled_kmers), margin, insert_size, ref(job_input), (CReadHolder*)0));
}
RunThreads(ncores, jobs);
}
// removes used reads from the read set used for pair connection and from already connected (by contig sequence) reads
// assembled_kmers - a map of all kmers in already assembled contigs
// margin - the minimal distance from an edge of a contig for a read to be removed
// insert_size - the upper limit for insert size
// ncores - number of threads
// raw_reads - reads
// connected_reads - already connected by contig sequence reads
static void RemoveUsedPairs(TKmerToContig& assembled_kmers, int margin, int insert_size, int ncores, list<array<CReadHolder,2>>& raw_reads, list<array<CReadHolder,2>>& connected_reads) {
list<function<void()>> jobs;
auto icr = connected_reads.begin();
for(auto& job_input : raw_reads) {
jobs.push_back(bind(RemoveUsedReadsJob, ref(assembled_kmers), margin, insert_size, ref(job_input), &(*icr++)[1]));
}
RunThreads(ncores, jobs);
}
// removes used reads from the read set used for de Bruijn graphs and from the read set used for pair connection
// removes paired reads not needed as they are already connected by contig sequence reads
// creates new set of reads to use
void CleanReads() {
CStopWatch timer;
timer.Restart();
TKmerToContig assembled_kmers = GetAssembledKmers();
if(assembled_kmers.TableSize() > 0) {
int jump = 50; //TODO reconsile with what used in filterneighbors
RemoveUsedReads(assembled_kmers, m_max_kmer+jump, m_insert_size, m_ncores, m_raw_reads);
RemoveUsedReads(assembled_kmers, jump, m_insert_size, m_ncores, m_connected_reads);
RemoveUsedPairs(assembled_kmers, jump, m_insert_size, m_ncores, m_raw_pairs, m_connected_reads);
}
size_t reads = 0;
for(auto& rh : m_raw_reads)
reads += rh[0].ReadNum()+rh[1].ReadNum();
cerr << "Cleaned reads: " << reads << endl;
reads = 0;
for(auto& rh : m_raw_pairs)
reads += rh[0].ReadNum()+rh[1].ReadNum();
cerr << "Reads for connection: " << reads << endl;
reads = 0;
for(auto& rh : m_connected_reads)
reads += rh[0].ReadNum()+rh[1].ReadNum();
cerr << "Internal reads: " << reads << endl;
cerr << "Reads cleaned in " << timer.Elapsed();
}
// improves previously assembled contigs using a longer kmer
void ImproveContigs (int kmer_len, bool allow_snps) {
DBGraph& graph = *m_graphs[kmer_len];
int jump = m_jump;
if(allow_snps)
jump += kmer_len;
GraphDigger graph_digger(graph, m_fraction, jump, m_low_count, allow_snps);
cerr << "Kmer: " << kmer_len << " Graph size: " << graph.GraphSize() << " Contigs in: " << (m_contigs.empty() ? 0 : m_contigs.back().size()) << endl;
cerr << "Valley: " << graph_digger.HistMin() << endl;
CStopWatch total;
total.Restart();
CStopWatch timer;
timer.Restart();
//convert strings to SContig and mark visited kmers
if(allow_snps)
graph.ClearAllVisited();
TContigList<DBGraph> scontigs = ConverToSContigAndMarkVisited(graph_digger);
cerr << endl << "Mark used kmers in " << timer.Elapsed();
if(allow_snps)
graph_digger.CheckRepeats(scontigs);
size_t singl = 0;
size_t multipl = 0;
for(auto it = graph.Begin(); it != graph.End(); ++it) {
if(graph.IsMultContig(it))
++multipl;
else if(graph.IsVisited(it))
++singl;
}
cerr << "Kmers in multiple/single contigs: " << multipl << " " << singl << endl;
// connect overlapping contigs if we had seeds
if(!m_seeds.empty() && !allow_snps) {
timer.Restart();
graph_digger.CheckRepeats(scontigs);
cerr << "Check repeats in " << timer.Elapsed();
timer.Restart();
graph_digger.ConnectOverlappingContigs(scontigs);
cerr << "Connect overlapping contigs in " << timer.Elapsed();
}
timer.Restart();
//create new contigs using not yet included kmers
GraphDigger graph_digger_no_jump(graph, m_fraction, 0, m_low_count);
unsigned min_len_for_new_seeds = 3*kmer_len; // short ones are likely to be noise
GraphDigger test_graphdigger(*m_graphs[m_min_kmer], m_fraction, 0, m_low_count);
GraphDigger* test_graphdiggerp = nullptr;
if(kmer_len != m_min_kmer)
test_graphdiggerp = &test_graphdigger;
TContigList<DBGraph> new_seeds = graph_digger_no_jump.GenerateNewSeeds(min_len_for_new_seeds, m_ncores, test_graphdiggerp);
cerr << "New seeds: " << new_seeds.size() << endl;
//add new seeds
scontigs.splice(scontigs.end(), new_seeds);
cerr << "New seeds in " << timer.Elapsed();
timer.Restart();
graph_digger.ConnectAndExtendContigs(scontigs, m_ncores);
// convert back to CContigSequence
m_contigs.push_back(TContigSequenceList());
for(auto& contig : scontigs) {
m_contigs.back().push_back(contig.m_seq);
}
m_contigs.back().sort();
vector<size_t> contigs_len;
size_t genome_len = 0;
for(auto& contig : m_contigs.back()) {
contigs_len.push_back(contig.LenMax());
genome_len += contigs_len.back();
}
sort(contigs_len.begin(), contigs_len.end());
size_t n50 = 0;
int l50 = 0;
size_t len = 0;
for(int j = (int)contigs_len.size()-1; j >= 0 && len < 0.5*genome_len; --j) {
++l50;
n50 = contigs_len[j];
len += contigs_len[j];
}
cerr << "Connections and extensions in " << timer.Elapsed();
cerr << "Contigs out: " << contigs_len.size() << " Genome: " << genome_len << " N50: " << n50 << " L50: " << l50 << endl;
cerr << "Assembled in " << total.Elapsed() << endl;
}
// converts contigs from the previous iteration into SContig and marks visited the nodes in the graph
TContigList<DBGraph> ConverToSContigAndMarkVisited(GraphDigger& graph_digger) {
if(m_contigs.empty())
return TContigList<DBGraph>();
int kmer_len = graph_digger.Graph().KmerLen();
for(auto& contig : m_contigs.back()) {
//remove short snps
if(!contig.m_circular) {
if(contig.size() > 1 && (int)contig.ChunkLenMax(0) < kmer_len) {
contig.m_left_repeat = 0;
contig.erase(contig.begin(), contig.begin()+2);
}
if(contig.size() > 1 && (int)contig.ChunkLenMax(contig.size()-1) < kmer_len) {
contig.m_right_repeat = 0;
contig.pop_back();
contig.pop_back();
}
}
}
TContigList<DBGraph> scontigs;
vector<pair<const CContigSequence*, SAtomic<uint8_t>>> contig_is_taken;
for(const auto& contig : m_contigs.back())
contig_is_taken.push_back(make_pair(&contig,SAtomic<uint8_t>(0)));
vector<TContigList<DBGraph>> scontigs_for_threads(m_ncores);
list<function<void()>> jobs;
for(auto& sc : scontigs_for_threads)
jobs.push_back(bind(&CDBGAssembler::ConverToSContigAndMarkVisitedJob, this, ref(contig_is_taken), ref(sc), ref(graph_digger)));
RunThreads(m_ncores, jobs);
for(auto& sc : scontigs_for_threads)
scontigs.splice(scontigs.end(), sc);
return scontigs;
}
// one-thread worker for ConverToSContigAndMarkVisited()
void ConverToSContigAndMarkVisitedJob(vector<pair<const CContigSequence*, SAtomic<uint8_t>>>& contig_is_taken, TContigList<DBGraph>& scontigs, GraphDigger& graph_digger) {
DBGraph& graph = graph_digger.Graph();
int kmer_len = graph.KmerLen();
for(auto& cnt : contig_is_taken) {
if(!cnt.second.Set(1))
continue;
const CContigSequence& contig = *cnt.first;
int contig_len = contig.LenMin();
if(contig_len >= kmer_len)
scontigs.push_back(SContig<DBGraph>(contig, graph)); // constructor sets visited in graph
}
}
// estimates available memory
int64_t AvailableMemory(int memory) const {
int64_t GB = 1000000000;
int64_t mem_available = GB*memory;
int64_t mem_used = 0;
for(const auto& reads : m_raw_reads)
mem_used += reads[0].MemoryFootprint()+reads[1].MemoryFootprint();
for(const auto& reads : m_raw_pairs)
mem_used += reads[0].MemoryFootprint()+reads[1].MemoryFootprint();
for(const auto& reads : m_connected_reads)
mem_used += reads[0].MemoryFootprint()+reads[1].MemoryFootprint();
for(auto& graph : m_graphs)
mem_used += graph.second->MemoryFootprint();
for(auto& lst : m_contigs) {
for(auto& contig : lst)
mem_used += contig.MemoryFootprint()+2*sizeof(CContigSequence*); // contig and 2 list pointers
}
return mem_available-mem_used;
}
template<typename... GraphArgs>
void EstimateMaxKmer(int read_len, GraphArgs... gargs) {
static_assert(sizeof(DBGraph) != sizeof(DBGraph), "Unknown specialization of CDBGAssembler");
}
// counts kmers and build a de Bruijn graph; returns average count of kmers in the graph
// kmer_len - the size of the kmer
// reads - reads from input or connected internally
// is_stranded - whether or not stranded information is meaningful
template<typename... GraphArgs>
double GetGraph(int kmer_len, const list<array<CReadHolder,2>>& reads, bool is_stranded, double total_seq, GraphArgs... gargs) {
static_assert(sizeof(DBGraph) != sizeof(DBGraph), "Unknown specialization of CDBGAssembler");
return 0;
}
double m_fraction; // Maximal noise to signal ratio of counts acceptable for extension
int m_jump; // minimal length of accepted dead ends
int m_low_count; // minimal kmer count to be included in a contig
int m_steps; // number of main steps
int m_min_count; // minimal kmer count to be included in a de Bruijn graph
int m_min_kmer; // the minimal kmer size for the main steps
int m_max_kmer; // maximal kmer size for the main steps
int m_max_kmer_paired; // insert size
int m_insert_size; // upper bound for the insert size
int m_maxkmercount; // the minimal average count for estimating the maximal kmer
int m_ncores; // number of threads
double m_average_count; // average count for minimal kmers
list<array<CReadHolder,2>>& m_raw_reads; // original reads - will be reduced gradually
list<array<CReadHolder,2>> m_raw_pairs; // paired original reads for connection - will be reduced gradually
list<array<CReadHolder,2>> m_connected_reads; // connected pairs (long reads)
map<int, DBGraph*> m_graphs; // De Bruijn graphs for mutiple kmers
vector<TContigSequenceList> m_contigs; // assembled contigs for each iteration
TContigSequenceList m_seeds;
};
template<> template<> // one for graph, the other for args
void CDBGAssembler<CDBGraph>::EstimateMaxKmer(int read_len, int memory) {
while(m_max_kmer > m_min_kmer) {
m_max_kmer -= 1-m_max_kmer%2; // odd kmers desired
CKmerCounter kmer_counter(m_raw_reads, m_max_kmer, m_min_count, true, AvailableMemory(memory), m_ncores);
if(kmer_counter.Kmers().Size() < 100) { // find a kmer length with at least 100 distinct kmers at that length
m_max_kmer -= read_len/25; // reduce maximal kmer length by a small amount based on read length
continue;
}
double average_count_for_max_kmer = kmer_counter.AverageCount();
if(average_count_for_max_kmer >= m_maxkmercount)
break;
else
m_max_kmer -= read_len/25;
}
m_max_kmer = max(m_max_kmer, m_min_kmer);
}
template<> template<> // one for graph, the other for args
void CDBGAssembler<CDBHashGraph>::EstimateMaxKmer(int read_len, int estimated_kmer_num, bool skip_bloom_filter) {
int64_t M = 1000000;
while(m_max_kmer > m_min_kmer) {
m_max_kmer -= 1-m_max_kmer%2; // odd kmers desired
CKmerHashCounter kmer_counter(m_raw_reads, m_max_kmer, m_min_count, M*estimated_kmer_num, true, m_ncores, skip_bloom_filter);
if(kmer_counter.KmerNum() < 100) { // find a kmer length with at least 100 distinct kmers at that length
m_max_kmer -= read_len/25; // reduce maximal kmer length by a small amount based on read length
continue;
}
double average_count_for_max_kmer = GetAverageCount(kmer_counter.Kmers().GetBins());
if(average_count_for_max_kmer >= m_maxkmercount)
break;
else
m_max_kmer -= read_len/25;
}
m_max_kmer = max(m_max_kmer, m_min_kmer);
}
template<> template<> // one for graph, the other for args
double CDBGAssembler<CDBGraph>::GetGraph(int kmer_len, const list<array<CReadHolder,2>>& reads, bool is_stranded, double total_seq, int memory) {
CKmerCounter kmer_counter(reads, kmer_len, m_min_count, is_stranded, AvailableMemory(memory), m_ncores);
if(kmer_counter.Kmers().Size() == 0)
return 0;
TKmerCount& sorted_kmers = kmer_counter.Kmers();
if(total_seq > 0) {
map<int,size_t> hist;
for(size_t index = 0; index < sorted_kmers.Size(); ++index) {
++hist[sorted_kmers.GetCount(index)]; // count clipped to integer automatically
}
TBins bins(hist.begin(), hist.end());
int genome_size = CalculateGenomeSize(bins);
if(genome_size > 0) {
int new_min_count = total_seq/genome_size/50+0.5;
if(new_min_count > m_min_count) {
int new_maxkmercount = max(10, int(total_seq/genome_size/10+0.5));
cerr << "WARNING: --min_count changed from " << m_min_count << " to " << new_min_count << " because of high coverage for genome size " << genome_size << endl;
cerr << "WARNING: --max_kmer_count " << m_maxkmercount << " to " << new_maxkmercount << " because of high coverage for genome size " << genome_size << endl;
m_min_count = new_min_count;
m_low_count = m_min_count;
m_maxkmercount = new_maxkmercount;
sorted_kmers.RemoveLowCountKmers(m_min_count);
}
}
}
if(kmer_counter.Kmers().Size() == 0)
return 0;
double average_count = kmer_counter.AverageCount();
kmer_counter.GetBranches();
map<int,size_t> hist;
for(size_t index = 0; index < sorted_kmers.Size(); ++index) {
++hist[sorted_kmers.GetCount(index)]; // count clipped to integer automatically
}
TBins bins(hist.begin(), hist.end());
m_graphs[kmer_len] = new CDBGraph(move(sorted_kmers), move(bins), is_stranded);
return average_count;
}
template<> template<> // one for graph, the other for args
double CDBGAssembler<CDBHashGraph>::GetGraph(int kmer_len, const list<array<CReadHolder,2>>& reads, bool is_stranded, double total_seq, int estimated_kmer_num, bool skip_bloom_filter) {
int64_t M = 1000000;
CKmerHashCounter kmer_counter(reads, kmer_len, m_min_count, M*estimated_kmer_num, is_stranded, m_ncores, skip_bloom_filter);
if(kmer_counter.KmerNum() == 0)
return 0;
if(total_seq > 0) {
TBins bins = kmer_counter.Kmers().GetBins();
int genome_size = CalculateGenomeSize(bins);
if(genome_size > 0) {
int new_min_count = min(255.,total_seq/genome_size/50+0.5);
if(new_min_count > m_min_count) {
int new_maxkmercount = max(10, int(total_seq/genome_size/10+0.5));
cerr << "WARNING: --min_count changed from " << m_min_count << " to " << new_min_count << " because of high coverage for genome size " << genome_size << endl;
cerr << "WARNING: --max_kmer_count changed from " << m_maxkmercount << " to " << new_maxkmercount << " because of high coverage for genome size " << genome_size << endl;
m_min_count = new_min_count;
m_low_count = m_min_count;
m_maxkmercount = new_maxkmercount;
kmer_counter.RemoveLowCountKmers(m_min_count);
}
}
}
if(kmer_counter.KmerNum() == 0)
return 0;
kmer_counter.GetBranches();
m_graphs[kmer_len] = new CDBHashGraph(move(kmer_counter.Kmers()), is_stranded);
return m_graphs[kmer_len]->AverageCount();
}
}; // namespace
#endif /* _DBGAssembler_ */
|