1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
|
/* geometry.c
Copyright (C) 2005,2006,2007,2008 Eugene K. Ressler, Jr.
This file is part of Sketch, a small, simple system for making
3d drawings with LaTeX and the PSTricks or TikZ package.
Sketch is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
Sketch is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Sketch; see the file COPYING.txt. If not, see
http://www.gnu.org/copyleft */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "geometry.h"
#include "error.h"
#include "memutil.h"
// global constants
POINT_2D origin_2d = { 0, 0 };
POINT_3D origin_3d = { 0, 0, 0 };
VECTOR_2D I_2d = { 1, 0 };
VECTOR_2D J_2d = { 0, 1 };
VECTOR_3D I_3d = { 1, 0, 0 };
VECTOR_3D J_3d = { 0, 1, 0 };
VECTOR_3D K_3d = { 0, 0, 1 };
TRANSFORM identity = {
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
};
// numerics
FLOAT max_float(FLOAT x, FLOAT y)
{
return x > y ? x : y;
}
FLOAT min_float(FLOAT x, FLOAT y)
{
return x < y ? x : y;
}
// points
void copy_pt_2d(POINT_2D r, POINT_2D s)
{
r[X] = s[X];
r[Y] = s[Y];
}
void copy_pt_3d(POINT_3D r, POINT_3D s)
{
r[X] = s[X];
r[Y] = s[Y];
r[Z] = s[Z];
}
void find_pt_3d_from_2d(POINT_3D r, POINT_2D pt)
{
r[X] = pt[X];
r[Y] = pt[Y];
r[Z] = 0;
}
// polyline initialization and cleanup
#define SET_NEXT_NULL a->next = NULL;
DECLARE_DYNAMIC_2D_ARRAY_FUNCS(POLYLINE_2D, POINT_2D, FLOAT, polyline_2d,
v, n_vertices, SET_NEXT_NULL);
DECLARE_DYNAMIC_2D_ARRAY_FUNCS(POLYLINE_3D, POINT_3D, FLOAT, polyline_3d,
v, n_vertices, SET_NEXT_NULL);
// polygon initialization and cleanup
DECLARE_DYNAMIC_2D_ARRAY_FUNCS(POLYGON_2D, POINT_2D, FLOAT, polygon_2d, v,
n_sides, SET_NEXT_NULL);
DECLARE_DYNAMIC_2D_ARRAY_FUNCS(POLYGON_3D, POINT_3D, FLOAT, polygon_3d, v,
n_sides, SET_NEXT_NULL);
// rudimentary vectors of variable size
void init_vec(VECTOR * v)
{
*v = 0;
}
void clear_vec(VECTOR * v)
{
safe_free(*v);
init_vec(v);
}
void setup_vec(VECTOR * v, SIZE n)
{
clear_vec(v);
*v = safe_malloc(n * sizeof(FLOAT));
}
void init_and_setup_vec(VECTOR * v, SIZE n)
{
*v = safe_malloc(n * sizeof(FLOAT));
}
void zero_vec(VECTOR r, SIZE n)
{
INDEX i;
for (i = 0; i < n; i++)
r[i] = 0;
}
void copy_vec(VECTOR r, VECTOR v, SIZE n)
{
INDEX i;
for (i = 0; i < n; i++)
r[i] = v[i];
}
FLOAT length_vec_2d(VECTOR_2D v)
{
return sqrt(dot_2d(v, v));
}
FLOAT length_vec_3d(VECTOR_3D v)
{
return sqrt(dot_3d(v, v));
}
FLOAT dist_2d(POINT_2D p1, POINT_2D p2)
{
VECTOR_2D dif;
sub_pts_2d(dif, p1, p2);
return length_vec_2d(dif);
}
FLOAT dist_3d(POINT_3D p1, POINT_3D p2)
{
VECTOR_3D dif;
sub_pts_3d(dif, p1, p2);
return length_vec_3d(dif);
}
FLOAT length_vec_2d_sqr(VECTOR_2D v)
{
return dot_2d(v, v);
}
FLOAT length_vec_3d_sqr(VECTOR_3D v)
{
return dot_3d(v, v);
}
FLOAT dist_2d_sqr(POINT_2D p1, POINT_2D p2)
{
VECTOR_2D dif;
sub_pts_2d(dif, p1, p2);
return length_vec_2d_sqr(dif);
}
FLOAT dist_3d_sqr(POINT_3D p1, POINT_3D p2)
{
VECTOR_3D dif;
sub_pts_3d(dif, p1, p2);
return length_vec_3d_sqr(dif);
}
void zero_vec_2d(VECTOR_2D v)
{
v[X] = v[Y] = 0;
}
void zero_vec_3d(VECTOR_3D v)
{
v[X] = v[Y] = v[Z] = 0;
}
void negate_vec_2d(VECTOR_2D r, VECTOR_2D v)
{
r[X] = -v[X];
r[Y] = -v[Y];
}
void negate_vec_3d(VECTOR_3D r, VECTOR_3D v)
{
r[X] = -v[X];
r[Y] = -v[Y];
r[Z] = -v[Z];
}
void copy_vec_2d(VECTOR_2D r, VECTOR_2D s)
{
r[X] = s[X];
r[Y] = s[Y];
}
void copy_vec_3d(VECTOR_3D r, VECTOR_3D s)
{
r[X] = s[X];
r[Y] = s[Y];
r[Z] = s[Z];
}
void scale_vec_2d(VECTOR_2D r, VECTOR_2D v, FLOAT s)
{
r[X] = v[X] * s;
r[Y] = v[Y] * s;
}
void scale_vec_3d(VECTOR_3D r, VECTOR_3D v, FLOAT s)
{
r[X] = v[X] * s;
r[Y] = v[Y] * s;
r[Z] = v[Z] * s;
}
int find_unit_vec_2d(VECTOR_2D r, VECTOR_2D v)
{
FLOAT len = length_vec_2d(v);
if (len <= FLT_EPSILON) {
r[X] = 1;
r[Y] = 0;
return 0;
} else {
scale_vec_2d(r, v, 1 / len);
return 1;
}
}
int find_unit_vec_3d(VECTOR_3D r, VECTOR_3D v)
{
FLOAT len = length_vec_3d(v);
if (len == FLT_EPSILON) {
r[X] = 1;
r[Y] = r[Z] = 0;
return 0;
} else {
scale_vec_3d(r, v, 1 / len);
return 1;
}
}
void add_vecs_2d(VECTOR_2D r, VECTOR_2D a, VECTOR_2D b)
{
r[X] = a[X] + b[X];
r[Y] = a[Y] + b[Y];
}
void add_vecs_3d(VECTOR_3D r, VECTOR_3D a, VECTOR_3D b)
{
r[X] = a[X] + b[X];
r[Y] = a[Y] + b[Y];
r[Z] = a[Z] + b[Z];
}
void sub_vecs_2d(VECTOR_2D r, VECTOR_2D a, VECTOR_2D b)
{
r[X] = a[X] - b[X];
r[Y] = a[Y] - b[Y];
}
void sub_vecs_3d(VECTOR_3D r, VECTOR_3D a, VECTOR_3D b)
{
r[X] = a[X] - b[X];
r[Y] = a[Y] - b[Y];
r[Z] = a[Z] - b[Z];
}
void add_vec_to_pt_2d(POINT_2D r, POINT_2D pt, VECTOR_2D v)
{
r[X] = pt[X] + v[X];
r[Y] = pt[Y] + v[Y];
}
void add_vec_to_pt_3d(POINT_3D r, POINT_3D pt, VECTOR_3D v)
{
r[X] = pt[X] + v[X];
r[Y] = pt[Y] + v[Y];
r[Z] = pt[Z] + v[Z];
}
void add_scaled_vec_to_pt_2d(POINT_2D r, POINT_2D pt, VECTOR_2D v, FLOAT s)
{
r[X] = pt[X] + v[X] * s;
r[Y] = pt[Y] + v[Y] * s;
}
void add_scaled_vec_to_pt_3d(POINT_3D r, POINT_3D pt, VECTOR_3D v, FLOAT s)
{
r[X] = pt[X] + v[X] * s;
r[Y] = pt[Y] + v[Y] * s;
r[Z] = pt[Z] + v[Z] * s;
}
void sub_pts_2d(VECTOR_2D r, POINT_2D a, POINT_2D b)
{
r[X] = a[X] - b[X];
r[Y] = a[Y] - b[Y];
}
void sub_pts_3d(VECTOR_3D r, POINT_3D a, POINT_3D b)
{
r[X] = a[X] - b[X];
r[Y] = a[Y] - b[Y];
r[Z] = a[Z] - b[Z];
}
void fold_min_pt_2d(POINT_2D min, POINT_2D new_pt)
{
int i;
for (i = 0; i < 2; i++)
if (new_pt[i] < min[i])
min[i] = new_pt[i];
}
void fold_min_pt_3d(POINT_3D min, POINT_3D new_pt)
{
int i;
for (i = 0; i < 3; i++)
if (new_pt[i] < min[i])
min[i] = new_pt[i];
}
void fold_max_pt_2d(POINT_2D max, POINT_3D new_pt)
{
int i;
for (i = 0; i < 2; i++)
if (new_pt[i] > max[i])
max[i] = new_pt[i];
}
void fold_max_pt_3d(POINT_3D max, POINT_3D new_pt)
{
int i;
for (i = 0; i < 3; i++)
if (new_pt[i] > max[i])
max[i] = new_pt[i];
}
FLOAT dot_2d(VECTOR_2D a, VECTOR_2D b)
{
return a[X] * b[X] + a[Y] * b[Y];
}
FLOAT dot_3d(VECTOR_3D a, VECTOR_3D b)
{
return a[X] * b[X] + a[Y] * b[Y] + a[Z] * b[Z];
}
void cross(VECTOR_3D r, VECTOR_3D a, VECTOR_3D b)
{
r[X] = a[Y] * b[Z] - a[Z] * b[Y];
r[Y] = a[Z] * b[X] - a[X] * b[Z];
r[Z] = a[X] * b[Y] - a[Y] * b[X];
}
void lerp_2d(POINT_2D r, FLOAT t, POINT_2D p1, POINT_2D p2)
{
r[0] = p1[0] + t * (p2[0] - p1[0]);
r[1] = p1[1] + t * (p2[1] - p1[1]);
}
void lerp_3d(POINT_3D r, FLOAT t, POINT_3D p1, POINT_3D p2)
{
r[0] = p1[0] + t * (p2[0] - p1[0]);
r[1] = p1[1] + t * (p2[1] - p1[1]);
r[2] = p1[2] + t * (p2[2] - p1[2]);
}
int
line_intersect_2d(POINT_2D a, POINT_2D b, POINT_2D c, POINT_2D d,
FLOAT eps, FLOAT * t_ab, FLOAT * t_cd)
{
FLOAT dx_ab, dy_ab, dx_dc, dy_dc, det, dx_ac, dy_ac;
dx_ab = b[X] - a[X];
dy_ab = b[Y] - a[Y];
dx_dc = c[X] - d[X];
dy_dc = c[Y] - d[Y];
det = dx_ab * dy_dc - dx_dc * dy_ab;
if (-eps < det && det < eps)
return 1;
dx_ac = c[X] - a[X];
dy_ac = c[Y] - a[Y];
*t_ab = (dx_ac * dy_dc - dx_dc * dy_ac) / det;
*t_cd = (dx_ab * dy_ac - dx_ac * dy_ab) / det;
return 0;
}
void find_polygon_plane(PLANE * plane, POLYGON_3D * polygon)
{
int i, j;
VECTOR_3D sum, dif;
zero_vec_3d(plane->p);
zero_vec_3d(plane->n);
for (i = 0, j = polygon->n_sides - 1; i < polygon->n_sides; j = i++) {
add_vecs_3d(plane->p, plane->p, polygon->v[i]);
add_vecs_3d(sum, polygon->v[j], polygon->v[i]);
sub_vecs_3d(dif, polygon->v[j], polygon->v[i]);
plane->n[X] += dif[Y] * sum[Z];
plane->n[Y] += dif[Z] * sum[X];
plane->n[Z] += dif[X] * sum[Y];
}
scale_vec_3d(plane->p, plane->p, 1.0 / polygon->n_sides);
find_unit_vec_3d(plane->n, plane->n);
plane->c = -dot_3d(plane->p, plane->n);
}
int pt_side_of_plane(PLANE * plane, POINT_3D p)
{
FLOAT d = dot_3d(p, plane->n) + plane->c;
return d < -PLANE_HALF_THICKNESS ? S_IN :
d > PLANE_HALF_THICKNESS ? S_OUT :
d < 0 ? S_IN_ON : d > 0 ? S_OUT_ON : S_ON;
}
int polygon_side_of_plane(POLYGON_3D * polygon, PLANE * plane)
{
int i, j, i_side, j_side, n_in, n_out;
// initialize with last point in polygon
// scan for OUT-IN or IN-OUT pair
j = polygon->n_sides - 1;
j_side = pt_side_of_plane(plane, polygon->v[j]);
n_in = n_out = 0;
for (i = 0; i < polygon->n_sides; i++) {
// advance to next vertex
i_side = pt_side_of_plane(plane, polygon->v[i]);
if ((i_side | j_side) == (S_IN | S_OUT))
// found a straddling pair
return S_SPLIT;
if (i_side & (S_IN | S_OUT))
// found an IN or an OUT; remember it
j_side = i_side;
// keep counts for polygons entirely inside the thick plane
if (i_side == S_OUT_ON)
n_out++;
if (i_side == S_IN_ON)
n_in++;
}
return
j_side & (S_IN | S_OUT) ? j_side :
(n_out > n_in) ? S_OUT : (n_in > n_out) ? S_IN : S_ON;
}
#if TREAT_POLYLINE_POINTS_ON_PLANE_AS_IN_OR_OUT
// this will work only with BSPs, not with depth sort
// it causes polylines that end on a plane to be split into a line and a point
int polyline_side_of_plane(POLYLINE_3D * polyline, PLANE * plane)
{
int i, j, i_side, j_side, n_in, n_out;
// predicate for "if more than one bit set..."
// 0 1 2 3 4 5 6 7
static int is_split_p[] = { 0, 0, 0, 1, 0, 1, 1, 1 };
// initialize with first point in polyline
// scan for OUT-IN or IN-OUT pair
j = 0;
i_side = pt_side_of_plane(plane, polyline->v[j]);
n_in = n_out = 0;
for (i = 1; i < polyline->n_vertices; i++) {
// advance to next vertex, remembering side of last
j_side = i_side;
i_side = pt_side_of_plane(plane, polyline->v[i]);
if (is_split_p[(i_side | j_side) & 7])
return S_SPLIT;
// keep counts for polylines entirely inside the thick plane
if (i_side == S_OUT_ON)
n_out++;
if (i_side == S_IN_ON)
n_in++;
}
return
i_side & (S_IN | S_OUT) ? i_side :
(n_out > n_in) ? S_OUT : (n_in > n_out) ? S_IN : S_ON;
}
#else
int polyline_side_of_plane(POLYLINE_3D * polyline, PLANE * plane)
{
int i, j, i_side, j_side, n_in, n_out;
// initialize with last point in polygon
// scan for OUT-IN or IN-OUT pair
j = polyline->n_vertices - 1;
j_side = pt_side_of_plane(plane, polyline->v[j]);
n_in = n_out = 0;
for (i = 0; i < polyline->n_vertices; i++) {
// advance to next vertex
i_side = pt_side_of_plane(plane, polyline->v[i]);
if ((i_side | j_side) == (S_IN | S_OUT))
// found a straddling pair
return S_SPLIT;
if (i_side & (S_IN | S_OUT))
// found an IN or an OUT; remember it
j_side = i_side;
// keep counts for polylines entirely inside the thick plane
if (i_side == S_OUT_ON)
n_out++;
if (i_side == S_IN_ON)
n_in++;
}
return
j_side & (S_IN | S_OUT) ? j_side :
(n_out > n_in) ? S_OUT : (n_in > n_out) ? S_IN : S_ON;
}
#endif
void init_box_2d(BOX_2D * b)
{
b->min[X] = b->min[Y] = FLOAT_MAX;
b->max[X] = b->max[Y] = -FLOAT_MAX;
}
void init_box_3d(BOX_3D * b)
{
b->min[X] = b->min[Y] = b->min[Z] = FLOAT_MAX;
b->max[X] = b->max[Y] = b->max[Z] = -FLOAT_MAX;
}
void fold_min_max_pt_2d(BOX_2D * b, POINT_2D p)
{
fold_min_pt_2d(b->min, p);
fold_max_pt_2d(b->max, p);
}
void fold_min_max_pt_3d(BOX_3D * b, POINT_3D p)
{
fold_min_pt_3d(b->min, p);
fold_max_pt_3d(b->max, p);
}
void fold_min_max_polygon_2d(BOX_2D * b, POLYGON_2D * polygon)
{
int i;
for (i = 0; i < polygon->n_sides; i++)
fold_min_max_pt_2d(b, polygon->v[i]);
}
void fold_min_max_polygon_3d(BOX_3D * b, POLYGON_3D * polygon)
{
int i;
for (i = 0; i < polygon->n_sides; i++)
fold_min_max_pt_3d(b, polygon->v[i]);
}
void fold_min_max_polyline_2d(BOX_2D * b, POLYLINE_2D * polyline)
{
int i;
for (i = 0; i < polyline->n_vertices; i++)
fold_min_max_pt_2d(b, polyline->v[i]);
}
void fold_min_max_polyline_3d(BOX_3D * b, POLYLINE_3D * polyline)
{
int i;
for (i = 0; i < polyline->n_vertices; i++)
fold_min_max_pt_3d(b, polyline->v[i]);
}
void copy_box_2d(BOX_2D * r, BOX_2D * s)
{
*r = *s;
}
void copy_box_3d(BOX_3D * r, BOX_3D * s)
{
*r = *s;
}
int boxes_2d_intersect_p(BOX_2D * a, BOX_2D * b)
{
if (a->max[X] < b->min[X]) // a left of b
return 0;
if (a->min[X] > b->max[X]) // a right of b
return 0;
if (a->max[Y] < b->min[Y]) // a below b
return 0;
if (a->min[Y] > b->max[Y]) // a above b
return 0;
return 1;
}
int boxes_3d_intersect_p(BOX_2D * a, BOX_2D * b)
{
if (a->max[X] < b->min[X]) // a left of b
return 0;
if (a->min[X] > b->max[X]) // a right of b
return 0;
if (a->max[Y] < b->min[Y]) // a below b
return 0;
if (a->min[Y] > b->max[Y]) // a above b
return 0;
if (a->max[Z] < b->min[Z]) // a behind b
return 0;
if (a->min[Z] > b->max[Z]) // a in front of b
return 0;
return 1;
}
void copy_transform(TRANSFORM r, TRANSFORM s)
{
int i;
for (i = 0; i < 16; i++)
r[i] = s[i];
}
#define R(I,J) r[IT(I,J)]
void set_ident(TRANSFORM r)
{
R(1, 1) = 1; // hard code for speed
R(2, 1) = 0;
R(3, 1) = 0;
R(4, 1) = 0;
R(1, 2) = 0;
R(2, 2) = 1;
R(3, 2) = 0;
R(4, 2) = 0;
R(1, 3) = 0;
R(2, 3) = 0;
R(3, 3) = 1;
R(4, 3) = 0;
R(1, 4) = 0;
R(2, 4) = 0;
R(3, 4) = 0;
R(4, 4) = 1;
}
void set_scale(TRANSFORM r, FLOAT sx, FLOAT sy, FLOAT sz)
{
set_ident(r);
R(1, 1) = sx;
R(2, 2) = sy;
R(3, 3) = sz;
}
void set_translation(TRANSFORM r, FLOAT dx, FLOAT dy, FLOAT dz)
{
set_ident(r);
R(1, 4) = dx;
R(2, 4) = dy;
R(3, 4) = dz;
}
#define SQR(A) ((A) * (A))
void set_angle_axis_rot(TRANSFORM r, FLOAT theta, VECTOR_3D u)
{
FLOAT c = cos(theta);
FLOAT s = sin(theta);
FLOAT d = 1 - c;
R(1, 1) = d * (SQR(u[X]) - 1) + 1;
R(1, 2) = d * u[X] * u[Y] - u[Z] * s;
R(1, 3) = d * u[X] * u[Z] + u[Y] * s;
R(2, 1) = d * u[X] * u[Y] + u[Z] * s;
R(2, 2) = d * (SQR(u[Y]) - 1) + 1;
R(2, 3) = d * u[Y] * u[Z] - u[X] * s;
R(3, 1) = d * u[X] * u[Z] - u[Y] * s;
R(3, 2) = d * u[Y] * u[Z] + u[X] * s;
R(3, 3) = d * (SQR(u[Z]) - 1) + 1;
R(1, 4) = R(4, 1) = R(2, 4) = R(4, 2) = R(3, 4) = R(4, 3) = 0;
R(4, 4) = 1;
}
void
set_angle_axis_rot_about_point(TRANSFORM r, FLOAT theta, POINT_3D p,
VECTOR_3D u)
{
VECTOR_3D u_unit;
TRANSFORM tmp;
if (u) {
find_unit_vec_3d(u_unit, u);
} else {
u_unit[X] = u_unit[Y] = 0;
u_unit[Z] = 1;
}
set_angle_axis_rot(r, theta, u_unit);
if (p) {
set_translation(tmp, -p[X], -p[Y], -p[Z]);
compose(r, r, tmp);
set_translation(tmp, p[X], p[Y], p[Z]);
compose(r, tmp, r);
}
}
void set_perspective_projection(TRANSFORM r, FLOAT p)
{
set_scale(r, p, p, p);
R(4, 4) = 0;
R(4, 3) = -1;
}
void set_perspective_transform(TRANSFORM r, FLOAT p)
{
set_scale(r, p, p, 1);
R(3, 4) = 1;
R(4, 3) = -1;
R(4, 4) = 0;
}
void set_parallel_projection(TRANSFORM r)
{
set_scale(r, 1, 1, 0);
}
void
set_view_transform(TRANSFORM r, POINT_3D eye, VECTOR_3D vd, VECTOR_3D up)
{
static VECTOR_3D default_up = { 0, 1, 0 };
VECTOR_3D unit_vd, unit_up, h, v;
TRANSFORM tmp;
if (vd) {
find_unit_vec_3d(unit_vd, vd);
} else {
negate_vec_3d(unit_vd, eye); // assumes point and vector are compatible
find_unit_vec_3d(unit_vd, unit_vd);
}
if (up)
find_unit_vec_3d(unit_up, up);
else
copy_vec_3d(unit_up, default_up);
cross(h, unit_vd, unit_up);
cross(v, h, unit_vd);
R(1, 1) = h[X];
R(1, 2) = h[Y];
R(1, 3) = h[Z];
R(1, 4) = 0;
R(2, 1) = v[X];
R(2, 2) = v[Y];
R(2, 3) = v[Z];
R(2, 4) = 0;
R(3, 1) = -unit_vd[X];
R(3, 2) = -unit_vd[Y];
R(3, 3) = -unit_vd[Z];
R(3, 4) = 0;
R(4, 1) = 0;
R(4, 2) = 0;
R(4, 3) = 0;
R(4, 4) = 1;
if (eye) {
set_translation(tmp, -eye[X], -eye[Y], -eye[Z]);
compose(r, r, tmp);
}
}
void
set_view_transform_with_look_at(TRANSFORM r, POINT_3D eye,
POINT_3D look_at, VECTOR_3D up)
{
VECTOR_3D vd;
sub_vecs_3d(vd, look_at, eye);
set_view_transform(r, eye, vd, up);
}
#define M(I,J) m[IT(I,J)]
// invert a transform using the method of cofactors
// this code was generated by the Perl program geninv.pl
void invert(TRANSFORM r, FLOAT * det_rtn, TRANSFORM m, FLOAT min_det)
{
int i;
FLOAT det;
FLOAT t001, t002, t003, t004, t005, t006, t007, t008,
t009, t010, t011, t012, t013, t014, t015, t016,
t017, t018, t019, t020, t021, t022, t023, t024,
t025, t026, t027, t028, t029, t030, t031, t032,
t033, t034, t035, t036, t037, t038, t039, t040,
t057, t058, t061, t062, t065, t066, t072, t073,
t076, t077, t085, t086, t097, t098, t101, t102,
t105, t106, t112, t113, t116, t117, t125, t126;
t001 = M(3, 3) * M(4, 4);
t002 = M(3, 4) * M(4, 3);
t003 = t001 - t002;
t004 = M(2, 2) * t003;
t005 = M(3, 2) * M(4, 4);
t006 = M(3, 4) * M(4, 2);
t007 = t006 - t005;
t008 = M(2, 3) * t007;
t009 = M(3, 2) * M(4, 3);
t010 = M(3, 3) * M(4, 2);
t011 = t009 - t010;
t012 = M(2, 4) * t011;
t013 = t004 + t008 + t012;
R(1, 1) = t013;
t014 = t002 - t001;
t015 = M(2, 1) * t014;
t016 = M(3, 1) * M(4, 4);
t017 = M(3, 4) * M(4, 1);
t018 = t016 - t017;
t019 = M(2, 3) * t018;
t020 = M(3, 1) * M(4, 3);
t021 = M(3, 3) * M(4, 1);
t022 = t021 - t020;
t023 = M(2, 4) * t022;
t024 = t015 + t019 + t023;
R(2, 1) = t024;
t025 = t005 - t006;
t026 = M(2, 1) * t025;
t027 = t017 - t016;
t028 = M(2, 2) * t027;
t029 = M(3, 1) * M(4, 2);
t030 = M(3, 2) * M(4, 1);
t031 = t029 - t030;
t032 = M(2, 4) * t031;
t033 = t026 + t028 + t032;
R(3, 1) = t033;
t034 = t010 - t009;
t035 = M(2, 1) * t034;
t036 = t020 - t021;
t037 = M(2, 2) * t036;
t038 = t030 - t029;
t039 = M(2, 3) * t038;
t040 = t035 + t037 + t039;
R(4, 1) = t040;
det =
(M(1, 1) * t013) + (M(1, 2) * t024) + (M(1, 3) * t033) +
(M(1, 4) * t040);
R(1, 2) = (M(1, 2) * t014) + (M(1, 3) * t025) + (M(1, 4) * t034);
R(2, 2) = (M(1, 1) * t003) + (M(1, 3) * t027) + (M(1, 4) * t036);
R(3, 2) = (M(1, 1) * t007) + (M(1, 2) * t018) + (M(1, 4) * t038);
R(4, 2) = (M(1, 1) * t011) + (M(1, 2) * t022) + (M(1, 3) * t031);
t057 = M(2, 3) * M(4, 4);
t058 = M(2, 4) * M(4, 3);
t061 = M(2, 2) * M(4, 4);
t062 = M(2, 4) * M(4, 2);
t065 = M(2, 2) * M(4, 3);
t066 = M(2, 3) * M(4, 2);
R(1, 3) =
((t057 - t058) * M(1, 2)) + ((t062 - t061) * M(1,
3)) + ((t065 -
t066) * M(1,
4));
t072 = M(2, 1) * M(4, 4);
t073 = M(2, 4) * M(4, 1);
t076 = M(2, 1) * M(4, 3);
t077 = M(2, 3) * M(4, 1);
R(2, 3) =
((t058 - t057) * M(1, 1)) + ((t072 - t073) * M(1,
3)) + ((t077 -
t076) * M(1,
4));
t085 = M(2, 1) * M(4, 2);
t086 = M(2, 2) * M(4, 1);
R(3, 3) =
((t061 - t062) * M(1, 1)) + ((t073 - t072) * M(1,
2)) + ((t085 -
t086) * M(1,
4));
R(4, 3) =
((t066 - t065) * M(1, 1)) + ((t076 - t077) * M(1,
2)) + ((t086 -
t085) * M(1,
3));
t097 = M(2, 3) * M(3, 4);
t098 = M(2, 4) * M(3, 3);
t101 = M(2, 2) * M(3, 4);
t102 = M(2, 4) * M(3, 2);
t105 = M(2, 2) * M(3, 3);
t106 = M(2, 3) * M(3, 2);
R(1, 4) =
((t098 - t097) * M(1, 2)) + ((t101 - t102) * M(1,
3)) + ((t106 -
t105) * M(1,
4));
t112 = M(2, 1) * M(3, 4);
t113 = M(2, 4) * M(3, 1);
t116 = M(2, 1) * M(3, 3);
t117 = M(2, 3) * M(3, 1);
R(2, 4) =
((t097 - t098) * M(1, 1)) + ((t113 - t112) * M(1,
3)) + ((t116 -
t117) * M(1,
4));
t125 = M(2, 1) * M(3, 2);
t126 = M(2, 2) * M(3, 1);
R(3, 4) =
((t102 - t101) * M(1, 1)) + ((t112 - t113) * M(1,
2)) + ((t126 -
t125) * M(1,
4));
R(4, 4) =
((t105 - t106) * M(1, 1)) + ((t117 - t116) * M(1,
2)) + ((t125 -
t126) * M(1,
3));
if (-min_det <= det && det <= min_det) {
*det_rtn = 0;
} else {
*det_rtn = det;
for (i = 0; i < 16; i++)
r[i] *= 1 / det;
}
}
#define A(I,J) a[IT(I,J)]
#define B(I,J) b[IT(I,J)]
void compose_unsafe(TRANSFORM r, TRANSFORM a, TRANSFORM b)
{
int i, j;
FLOAT *p = r;
for (j = 1; j <= 4; j++)
for (i = 1; i <= 4; i++)
*p++ =
A(i, 1) * B(1, j) + A(i, 2) * B(2, j) + A(i, 3) * B(3,
j) +
A(i, 4) * B(4, j);
}
void compose(TRANSFORM r, TRANSFORM a, TRANSFORM b)
{
TRANSFORM t;
compose_unsafe(t, a, b);
copy_transform(r, t);
}
void transform_pt_3d(POINT_3D r, TRANSFORM m, POINT_3D p)
{
POINT_3D t;
FLOAT wi;
wi = 1 / (M(4, 1) * p[X] + M(4, 2) * p[Y] + M(4, 3) * p[Z] + M(4, 4));
t[X] =
(M(1, 1) * p[X] + M(1, 2) * p[Y] + M(1, 3) * p[Z] + M(1, 4)) * wi;
t[Y] =
(M(2, 1) * p[X] + M(2, 2) * p[Y] + M(2, 3) * p[Z] + M(2, 4)) * wi;
t[Z] =
(M(3, 1) * p[X] + M(3, 2) * p[Y] + M(3, 3) * p[Z] + M(3, 4)) * wi;
copy_pt_3d(r, t);
}
void transform_vec_3d(VECTOR_3D r, TRANSFORM m, VECTOR_3D v)
{
VECTOR_3D t;
t[X] = M(1, 1) * v[X] + M(1, 2) * v[Y] + M(1, 3) * v[Z];
t[Y] = M(2, 1) * v[X] + M(2, 2) * v[Y] + M(2, 3) * v[Z];
t[Z] = M(3, 1) * v[X] + M(3, 2) * v[Y] + M(3, 3) * v[Z];
copy_vec_3d(r, t);
}
void set_ident_quat(QUATERNION q)
{
q[W] = 1;
q[X] = q[Y] = q[Z] = 0;
}
void set_angle_axis_quat(QUATERNION q, FLOAT theta, VECTOR_3D axis)
{
VECTOR_3D v;
find_unit_vec_3d(v, axis);
scale_vec_3d(&q[X], v, sin(theta));
q[W] = cos(theta);
}
void mult_quat(QUATERNION r, QUATERNION a, QUATERNION b)
{
r[W] = a[W] * b[W] - a[X] * b[X] - a[Y] * b[Y] - a[Z] * b[Z];
r[X] = a[W] * b[X] + a[X] * b[W] + a[Y] * b[Z] - a[Z] * b[Y];
r[Y] = a[W] * b[Y] - a[X] * b[Z] + a[Y] * b[W] + a[Z] * b[X];
r[Z] = a[W] * b[Z] + a[X] * b[Y] - a[Y] * b[X] + a[Z] * b[W];
}
#define R(I,J) r[IT(I,J)]
#define SQR(A) ((A) * (A))
void find_rot_from_quat(TRANSFORM r, QUATERNION q)
{
FLOAT len2 = SQR(q[W]) + SQR(q[X]) + SQR(q[Y]) + SQR(q[Z]);
FLOAT s = len2 > 0 ? 2 / len2 : 0;
R(1, 1) = 1 - s * (SQR(q[Y]) + SQR(q[Z]));
R(1, 2) = s * (q[X] * q[Y] - q[W] * q[Z]);
R(1, 3) = s * (q[X] * q[Z] + q[W] * q[Y]);
R(2, 1) = s * (q[X] * q[Y] + q[W] * q[Z]);
R(2, 2) = 1 - s * (SQR(q[X]) + SQR(q[Z]));
R(2, 3) = s * (q[Y] * q[Z] - q[W] * q[X]);
R(3, 1) = s * (q[X] * q[Z] - q[W] * q[Y]);
R(3, 2) = s * (q[Y] * q[Z] + q[W] * q[X]);
R(3, 3) = 1 - s * (SQR(q[X]) + SQR(q[Y]));
R(1, 4) = R(4, 1) = R(2, 4) = R(4, 2) = R(3, 4) = R(4, 3) = 0;
R(4, 4) = 1;
}
void find_quat_from_rot(QUATERNION q, TRANSFORM r)
{
if (R(1, 1) + R(2, 2) + R(3, 3) >= 0) { // w first
FLOAT w2 = sqrt(R(1, 1) + R(2, 2) + R(3, 3) + 1);
q[W] = 0.5 * w2; // 1st
q[X] = (0.5 / w2) * (R(3, 2) - R(2, 3)); // (f)
q[Y] = (0.5 / w2) * (R(1, 3) - R(3, 1)); // (d)
q[Z] = (0.5 / w2) * (R(2, 1) - R(1, 2)); // (b)
return;
}
// x, y, or z first
if (R(1, 1) > R(2, 2))
if (R(1, 1) > R(3, 3))
goto x_first;
else
goto z_first;
else // R(2,2) >= R(1,1)
if (R(2, 2) > R(3, 3))
goto y_first;
else
goto z_first;
x_first:{
FLOAT x2 = sqrt(R(1, 1) - R(2, 2) - R(3, 3) + 1);
q[W] = (0.5 / x2) * (R(3, 2) - R(2, 3)); // (f)
q[X] = 0.5 * x2; // 1st
q[Y] = (0.5 / x2) * (R(2, 1) + R(1, 2)); // (a)
q[Z] = (0.5 / x2) * (R(1, 3) + R(3, 1)); // (c)
return;
}
y_first:{
FLOAT y2 = sqrt(-R(1, 1) + R(2, 2) - R(3, 3) + 1);
q[W] = (0.5 / y2) * (R(1, 3) - R(3, 1)); // (d)
q[X] = (0.5 / y2) * (R(2, 1) + R(1, 2)); // (a)
q[Y] = 0.5 * y2; // 1st
q[Z] = (0.5 / y2) * (R(3, 2) + R(2, 3)); // (e)
return;
}
z_first:{
FLOAT z2 = sqrt(-R(1, 1) - R(2, 2) + R(3, 3) + 1);
q[W] = (0.5 / z2) * (R(2, 1) - R(1, 2)); // (b)
q[X] = (0.5 / z2) * (R(1, 3) + R(3, 1)); // (c)
q[Y] = (0.5 / z2) * (R(3, 2) + R(2, 3)); // (e)
q[Z] = 0.5 * z2; // 1st
return;
}
}
#undef R
void
make_cso_polygon_2d(POLYGON_2D * r, POLYGON_2D * a, POINT_2D p,
POLYGON_2D * b)
{
int j, ia, ja, ib, jb, ir, nb;
FLOAT x, y, dx_a, dy_a, dx_b, dy_b;
setup_polygon_2d(r, a->n_sides + b->n_sides);
r->n_sides = a->n_sides + b->n_sides;
ja = 0;
x = a->v[ja][X];
for (j = 1; j < a->n_sides; j++)
if (a->v[j][X] < x) {
x = a->v[j][X];
ja = j;
}
jb = 0;
x = b->v[0][X];
for (j = 1; j < b->n_sides; j++)
if (b->v[j][X] > x) {
x = b->v[j][X];
jb = j;
}
// this point is certain to be an extreme point of the cso
x = b->v[jb][X] + (p[X] - a->v[ja][X]);
y = b->v[jb][Y] + (p[Y] - a->v[ja][Y]);
ia = (ja + 1) % a->n_sides;
dx_a = a->v[ja][X] - a->v[ia][X];
dy_a = a->v[ja][Y] - a->v[ia][Y];
ib = (jb + 1) % b->n_sides;
dx_b = b->v[ib][X] - b->v[jb][X];
dy_b = b->v[ib][Y] - b->v[jb][Y];
nb = b->n_sides;
ir = 0;
for (;;) {
// record obstacle polygon point and quit if done
r->v[ir][X] = x;
r->v[ir][Y] = y;
if (++ir == r->n_sides)
break;
// merge next edge of lowest theta. */
if (nb == 0 || dx_a * dy_b - dy_a * dx_b > 0) {
x += dx_a;
y += dy_a;
ja = ia;
ia = (ja + 1) % a->n_sides;
dx_a = a->v[ja][X] - a->v[ia][X];
dy_a = a->v[ja][Y] - a->v[ia][Y];
} else {
x += dx_b;
y += dy_b;
jb = ib;
ib = (jb + 1) % b->n_sides;
dx_b = b->v[ib][X] - b->v[jb][X];
dy_b = b->v[ib][Y] - b->v[jb][Y];
nb--;
}
}
}
int point_near_convex_polygon_2d_p(POINT_2D p, POLYGON_2D * a, FLOAT eps)
{
int i, j;
VECTOR_2D vji_perp, vjp;
// if the point is more than eps right of any edge, we're outside
for (i = 0, j = a->n_sides - 1; i < a->n_sides; j = i++) {
vji_perp[X] = a->v[j][Y] - a->v[i][Y];
vji_perp[Y] = a->v[i][X] - a->v[j][X];
find_unit_vec_2d(vji_perp, vji_perp);
sub_pts_2d(vjp, p, a->v[j]);
if (dot_2d(vjp, vji_perp) <= eps)
return 0;
}
// else we're inside!
return 1;
}
int point_inside_convex_polygon_2d_p(POINT_2D p, POLYGON_2D * a)
{
int i, j;
// if the point is right of any edge, we're outside
for (i = 0, j = a->n_sides - 1; i < a->n_sides; j = i++)
if ((p[X] - a->v[j][X]) * (a->v[i][Y] - a->v[j][Y]) -
(p[Y] - a->v[j][Y]) * (a->v[i][X] - a->v[j][X]) >= 0)
return 0;
// else we're inside!
return 1;
}
// The Franklin code...
int point_inside_polygon_2d_p(POINT_2D p, POLYGON_2D * a)
{
int i, j, r = 0;
for (i = 0, j = a->n_sides - 1; i < a->n_sides; j = i++) {
if (((a->v[i][Y] <= p[Y] && p[Y] < a->v[j][Y]) ||
(a->v[j][Y] <= p[Y] && p[Y] < a->v[i][Y])) &&
(p[X] < (a->v[j][X] - a->v[i][X]) * (p[Y] - a->v[i][Y]) /
(a->v[j][Y] - a->v[i][Y]) + a->v[i][X]))
r ^= 1;
}
return r;
}
#ifdef TEST_INVERT
void print_transform(TRANSFORM m)
{
int i, j;
printf("[\n");
for (i = 1; i <= 4; i++) {
printf("[");
for (j = 1; j <= 4; j++) {
printf(" %8.3g", m[IT(i, j)]);
}
printf("]\n");
}
printf("]\n");
}
int main(void)
{
TRANSFORM m =
{ 1, 0, 1, 1, 2, 4, 0, 19, 3, 5, 6, 57, 14, -3, 34, 1 }, r;
FLOAT det;
VECTOR_3D axis = { 1, 2, 3 };
POINT_3D pt = { -10, 2, 41 };
// set_angle_axis_rot_about_point(m, 30, pt, axis);
print_transform(m);
invert(r, &det, m, 1e-4);
printf("det=%.3g\n", det);
print_transform(r);
invert(m, &det, r, 1e-4);
printf("det=%.3g\n", det);
print_transform(m);
}
#endif
#ifdef TEST_DYNARRAY_H
// we need a dynamic arrao of these things
typedef struct foo_t {
char *name;
int count;
} FOO;
typedef struct foo_array_t {
DYNAMIC_ARRAY_FIELDS(FOO, val, n_vals);
} FOO_ARRAY;
// do the prototypes for the constructor, destructor, and accessor functions
DECLARE_DYNAMIC_ARRAY_PROTOS(FOO_ARRAY, FOO, foo_list, val, n_vals)
// ---- in foo.c ----
// create the bodies for the constructor, destructor, and accessor functions
DECLARE_DYNAMIC_ARRAY_FUNCS(FOO_ARRAY, FOO, foo_list, val, n_vals)
// use all the new stuff!
void do_stuff_with_foos(void)
{
int i;
char buf[100];
FOO_ARRAY list[1]; // or FOO_ARRAY list; but then we're forever &'ing
FOO_ARRAY copy[1];
init_foo_list(list); // do this JUST ONCE right after declaration
init_foo_list(copy); // (not necessary for static/global decls)
setup_foo_list(list, 10); // allow for 10 elements
// read some data and push it on the list tail
while (scanf("%d %s", &i, buf) == 2) {
// get pointer to new (empty) element at the end of array
FOO *p = pushed_foo_list_val(list);
// fill in field values
p->name = strdup(buf);
p->count = i;
}
// shows unsafe access to elements
printf("forward listing:\n");
for (i = 0; i < list->n_vals; i++)
printf("name=%s count=%d (%d)\n", list->val[i].name, // fast unsafe access
foo_list_val_ptr(list, i)->count, // slower safe pointer access
foo_list_val(list, i).count); // copying access
copy_foo_list_filled(copy, list); // copies only filled elements
// print in reverse order by popping from tail
printf("backward listing:\n");
while (copy->n_vals > 0) {
FOO *p = popped_foo_list_val(copy);
printf("name=%s count=%d\n", p->name, p->count);
}
// clear out all the allocated storage for the ilst
clear_foo_list(list);
clear_foo_list(copy);
}
#endif
|