1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
/* geometry.h
Copyright (C) 2005,2006,2007,2008 Eugene K. Ressler, Jr.
This file is part of Sketch, a small, simple system for making
3d drawings with LaTeX and the PSTricks or TikZ package.
Sketch is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
Sketch is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Sketch; see the file COPYING.txt. If not, see
http://www.gnu.org/copyleft */
#ifndef __GEOMETRY_H
#define __GEOMETRY_H
// ---- memory -----------------------------------------------------------------
#include <float.h> // floating point definitions
#include "dynarray.h" // dynamic arrays
// bit N
#define bit(N) (1u << (N))
// size of a static or auto declared array
#define ARRAY_SIZE(A) (sizeof (A) / sizeof (A)[0])
// checking memory allocators
void *safe_malloc(unsigned size);
void *safe_realloc(void *p, unsigned size);
char *safe_strdup(char *str);
void safe_free(void *p);
#ifdef _DEBUG
#define malloc(N) __call_safe_malloc_instead()
#define realloc(P,N) __call_safe_alloc_instead()
#define strdup(S) __call_safe_alloc_instead()
#define free(P) __call_safe_free_instead()
#endif
// ---- numerics ---------------------------------------------------------------
// float declarations to ease compilation
// with either single or double precision
typedef unsigned int SIZE, INDEX;
typedef double FLOAT;
#define FLOAT_SCAN_FMT "%lf"
#define FLOAT_EPS (8*DBL_EPSILON)
#define FLOAT_MIN FLT_MIN
#define FLOAT_MAX FLT_MAX
#ifdef _MSC_VER
// kill loss of precision warnings for case where FLOAT is float
#pragma warning(disable:4244 4305)
#endif
#define PI ((FLOAT)3.1415926535897932384626433832795028841971693993751)
// Max and min operators
FLOAT max_float(FLOAT x, FLOAT y);
FLOAT min_float(FLOAT x, FLOAT y);
// ---- points -----------------------------------------------------------------
// indices
#define X 0
#define Y 1
#define Z 2
#define W 3
// points
typedef FLOAT POINT_2D[2], POINT_3D[3];
void copy_pt_2d(POINT_2D r, POINT_2D s);
void copy_pt_3d(POINT_3D r, POINT_3D s);
void find_pt_3d_from_2d(POINT_3D r, POINT_2D pt);
// ---- polylines --------------------------------------------------------------
// polylines are just dynamic arrays of points
typedef struct polyline_2d_t {
DYNAMIC_2D_ARRAY_FIELDS(POINT_2D, v, n_vertices);
struct polyline_2d_t *next;
} POLYLINE_2D;
DECLARE_DYNAMIC_2D_ARRAY_PROTOS(POLYLINE_2D, POINT_2D, FLOAT, polyline_2d,
v, n_vertices);
typedef struct polyline_3d_t {
DYNAMIC_2D_ARRAY_FIELDS(POINT_3D, v, n_vertices);
struct polyline_3d_t *next;
} POLYLINE_3D;
DECLARE_DYNAMIC_2D_ARRAY_PROTOS(POLYLINE_3D, POINT_3D, FLOAT, polyline_3d,
v, n_vertices);
// ---- polygons ---------------------------------------------------------------
// polygons are just a dynamic arrays of points; chains represent complex polygons
typedef struct polygon_2d_t {
DYNAMIC_2D_ARRAY_FIELDS(POINT_2D, v, n_sides);
struct polygon_2d_t *next;
} POLYGON_2D;
DECLARE_DYNAMIC_2D_ARRAY_PROTOS(POLYGON_2D, POINT_2D, FLOAT, polygon_2d, v,
n_sides);
typedef struct polygon_3d_t {
DYNAMIC_2D_ARRAY_FIELDS(POINT_3D, v, n_sides);
struct polygon_3d_t *next;
} POLYGON_3D;
DECLARE_DYNAMIC_2D_ARRAY_PROTOS(POLYGON_3D, POINT_3D, FLOAT, polygon_3d, v,
n_sides);
// ---- vectors ----------------------------------------------------------------
typedef FLOAT *VECTOR;
// vectors of dynamic length
void init_vec(VECTOR * v);
void clear_vec(VECTOR * v);
void setup_vec(VECTOR * v, SIZE n);
void init_and_setup_vec(VECTOR * v, SIZE n);
void zero_vec(VECTOR r, SIZE n);
void copy_vec(VECTOR r, VECTOR v, SIZE n);
// vectors of useful static length.
typedef FLOAT VECTOR_2D[2], VECTOR_3D[3], VECTOR_4D[4];
FLOAT length_vec_2d(VECTOR_2D v);
FLOAT length_vec_3d(VECTOR_3D v);
FLOAT dist_2d(POINT_2D p1, POINT_2D p2);
FLOAT dist_3d(POINT_3D p1, POINT_3D p2);
FLOAT length_vec_2d_sqr(VECTOR_2D v);
FLOAT length_vec_3d_sqr(VECTOR_3D v);
FLOAT dist_2d_sqr(POINT_2D p1, POINT_2D p2);
FLOAT dist_3d_sqr(POINT_3D p1, POINT_3D p2);
void zero_vec_2d(VECTOR_2D v);
void zero_vec_3d(VECTOR_3D v);
void negate_vec_2d(VECTOR_2D r, VECTOR_2D v);
void negate_vec_3d(VECTOR_3D r, VECTOR_3D v);
void copy_vec_2d(VECTOR_2D r, VECTOR_2D s);
void copy_vec_3d(VECTOR_3D r, VECTOR_3D s);
void scale_vec_2d(VECTOR_2D r, VECTOR_2D v, FLOAT s);
void scale_vec_3d(VECTOR_3D r, VECTOR_3D v, FLOAT s);
int find_unit_vec_2d(VECTOR_2D r, VECTOR_2D v);
int find_unit_vec_3d(VECTOR_3D r, VECTOR_3D v);
void add_vecs_2d(VECTOR_2D r, VECTOR_2D a, VECTOR_2D b);
void add_vecs_3d(VECTOR_3D r, VECTOR_3D a, VECTOR_3D b);
void sub_vecs_2d(VECTOR_2D r, VECTOR_2D a, VECTOR_2D b);
void sub_vecs_3d(VECTOR_3D r, VECTOR_3D a, VECTOR_3D b);
void add_vec_to_pt_2d(POINT_2D r, POINT_2D pt, VECTOR_2D v);
void add_vec_to_pt_3d(POINT_3D r, POINT_3D pt, VECTOR_3D v);
void add_scaled_vec_to_pt_2d(POINT_2D r, POINT_2D pt, VECTOR_2D v,
FLOAT s);
void add_scaled_vec_to_pt_3d(POINT_3D r, POINT_3D pt, VECTOR_3D v,
FLOAT s);
void sub_pts_2d(VECTOR_2D r, POINT_2D a, POINT_2D b);
void sub_pts_3d(VECTOR_3D r, POINT_3D a, POINT_3D b);
void fold_min_pt_2d(POINT_2D min, POINT_2D new_pt);
void fold_min_pt_3d(POINT_3D min, POINT_3D new_pt);
void fold_max_pt_2d(POINT_2D max, POINT_2D new_pt);
void fold_max_pt_3d(POINT_3D max, POINT_3D new_pt);
FLOAT dot_2d(VECTOR_2D a, VECTOR_2D b);
FLOAT dot_3d(VECTOR_3D a, VECTOR_3D b);
void cross(VECTOR_3D r, VECTOR_3D a, VECTOR_3D b);
// linear interpolation operators
void lerp_2d(POINT_2D r, FLOAT t, POINT_2D p1, POINT_2D p2);
void lerp_3d(POINT_3D r, FLOAT t, POINT_3D p1, POINT_3D p2);
// find parameters of intersection point of two line segments
int line_intersect_2d(POINT_2D a, POINT_2D b, POINT_2D c, POINT_2D d,
FLOAT eps, FLOAT * t_ab, FLOAT * t_cd);
// ---- planes -----------------------------------------------------------------
typedef struct plane_t {
VECTOR_3D n;
POINT_3D p;
FLOAT c;
} PLANE;
// return description of the plane of a polygon using Newell's method
void find_polygon_plane(PLANE * plane, POLYGON_3D * polygon);
#define S_IN (1)
#define S_ON (2)
#define S_OUT (4)
#define S_IN_ON (S_ON | 8)
#define S_OUT_ON (S_ON | 16)
#define S_SPLIT (32)
// #define PLANE_HALF_THICKNESS (10.0 * FLOAT_EPS)
#define PLANE_HALF_THICKNESS (.001/2)
// given a plane of thickness 2 * half_thickness, return:
// S_IN or S_OUT if the point is resp. inside or outside the thickness of the plane
// S_IN_ON or S_OUT_ON if the point is within half_thickness of the plane on the resp. side
// S_ON if the point is precisely on the plane; no IN or OUT determination can be made
int pt_side_of_plane(PLANE * plane, POINT_3D p);
// given a polygon and a plane, return:
// S_IN if all the verices are IN or ON the thickened plane
// S_OUT if all the verices are OUTside or ON the thickened plane
// S_ON if all vertice are ON the thickened plane
// S_SPLIT otherwise
int polygon_side_of_plane(POLYGON_3D * polygon, PLANE * plane);
// given a polyline and a plane, return:
// S_IN if all segments of the line are fully INside the thickened plane
// S_OUT if all segments of the line are fully OUTside the thickened plane
// S_ON if all vertice are ON the thickened plane
// S_SPLIT otherwise
int polyline_side_of_plane(POLYLINE_3D * polyline, PLANE * plane);
// ---- boxes ------------------------------------------------------------------
typedef struct box_2d_t {
POINT_2D min, max;
} BOX_2D;
typedef struct box_3d_t {
POINT_3D min, max;
} BOX_3D;
void init_box_2d(BOX_2D * b);
void init_box_3d(BOX_3D * b);
void fold_min_max_pt_2d(BOX_2D * b, POINT_2D p);
void fold_min_max_pt_3d(BOX_3D * b, POINT_3D p);
void fold_min_max_polygon_2d(BOX_2D * b, POLYGON_2D * polygon);
void fold_min_max_polygon_3d(BOX_3D * b, POLYGON_3D * polygon);
void fold_min_max_polyline_2d(BOX_2D * b, POLYLINE_2D * polyline);
void fold_min_max_polyline_3d(BOX_3D * b, POLYLINE_3D * polyline);
void copy_box_2d(BOX_2D * r, BOX_2D * s);
void copy_box_3d(BOX_3D * r, BOX_3D * s);
int boxes_2d_intersect_p(BOX_2D * a, BOX_2D * b);
int boxes_3d_intersect_p(BOX_2D * a, BOX_2D * b);
// ---- transformations --------------------------------------------------------
// homogeneous transform stored in column major order
typedef FLOAT TRANSFORM[16];
// for initializations of identity transforms
#define IDENT_TRANSFORM \
{ 1.0, 0.0, 0.0, 0.0, \
0.0, 1.0, 0.0, 0.0, \
0.0, 0.0, 1.0, 0.0, \
0.0, 0.0, 0.0, 1.0 }
// ---- global contstants ------------------------------------------------------
extern TRANSFORM identity;
extern POINT_2D origin_2d;
extern POINT_3D origin_3d;
extern VECTOR_2D I_2d;
extern VECTOR_2D J_2d;
extern VECTOR_3D I_3d;
extern VECTOR_3D J_3d;
extern VECTOR_3D K_3d;
// row-column tranform indexing matches OpenGL convention: column major
#define IT(I,J) (4 * ((J) - 1) + ((I) - 1))
// copy source to result transform
void copy_transform(TRANSFORM r, TRANSFORM s);
// set the result transform to the identity
void set_ident(TRANSFORM r);
// create a rotation transform thru angle theta about axis u (must be unit vec)
void set_angle_axis_rot(TRANSFORM r, FLOAT theta, VECTOR_3D u);
// create a rotation transform thru angle theta
// u is optional axis which need not be a unit vector (default is [0,0,1])
// p is optional center of rotation (default is (0,0,0))
void set_angle_axis_rot_about_point(TRANSFORM r, FLOAT theta,
POINT_3D p, VECTOR_3D u);
// create a scale transform
void set_scale(TRANSFORM r, FLOAT sx, FLOAT sy, FLOAT sz);
// create a translation transform
void set_translation(TRANSFORM r, FLOAT dx, FLOAT dy, FLOAT dz);
// create a true perspective projection (depth = p for all projected points)
void set_perspective_projection(TRANSFORM r, FLOAT p);
// create a perspective transformation (depth is a pseudodepth)
void set_perspective_transform(TRANSFORM r, FLOAT p);
// create a true parallel projection (depth = 0 for all projected points)
void set_parallel_projection(TRANSFORM r);
// create an OpenGL-like view transformation matrix
void set_view_transform(TRANSFORM r, POINT_3D eye, VECTOR_3D vd,
VECTOR_3D up);
void set_view_transform_with_look_at(TRANSFORM r, POINT_3D eye,
POINT_3D look_at, VECTOR_3D up);
// invert a given transform m; return its determinant; we give up if the
// determinant is too small
void invert(TRANSFORM r, FLOAT * det_rtn, TRANSFORM m, FLOAT min_det);
// compose two transforms, but result cannot be the same as either operand
void compose_unsafe(TRANSFORM r, TRANSFORM a, TRANSFORM b);
// same as above, but safe to use either operand to hold result.
void compose(TRANSFORM r, TRANSFORM a, TRANSFORM b);
void transform_pt_3d(POINT_3D r, TRANSFORM m, POINT_3D p);
void transform_vec_3d(VECTOR_3D r, TRANSFORM m, VECTOR_3D p);
// ---- quaternions ------------------------------------------------------------
typedef FLOAT QUATERNION[4];
// for initializations of identity quaternions
#define IDENT_QUAT { 0.0, 0.0, 0.0, 1.0 }
void set_ident_quat(QUATERNION q);
void set_angle_axis_quat(QUATERNION q, FLOAT theta, VECTOR_3D axis);
void find_rot_from_quat(TRANSFORM r, QUATERNION q);
void find_quat_from_rot(QUATERNION q, TRANSFORM r);
void mult_quat(QUATERNION r, QUATERNION a, QUATERNION b);
// clear any storage for vertices in a polygon; after this,
// its state is the same as after init_polygon_2d()
void clear_polygon_2d(POLYGON_2D * poly);
// compute minkowski difference B - A with distinguished point p
void make_cso_polygon_2d(POLYGON_2D * r, POLYGON_2D * a, POINT_2D p,
POLYGON_2D * b);
// checks to see if p is left of or on all the edges of polygon a.
int point_inside_convex_polygon_2d_p(POINT_2D p, POLYGON_2D * a);
// checks to see if p is no more than eps right of all the edges of polygon a.
int point_near_convex_polygon_2d_p(POINT_2D p, POLYGON_2D * a, FLOAT eps);
#endif
|