1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
|
/* Copyright 2013-2014 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* TODO: Index array by PIR to be able to catch them easily
* from assembly such as machine checks etc...
*/
#include <skiboot.h>
#include <cpu.h>
#include <device.h>
#include <mem_region.h>
#include <opal.h>
#include <stack.h>
#include <trace.h>
#include <affinity.h>
#include <chip.h>
#include <timebase.h>
#include <ccan/str/str.h>
#include <ccan/container_of/container_of.h>
/* The cpu_threads array is static and indexed by PIR in
* order to speed up lookup from asm entry points
*/
struct cpu_stack {
union {
uint8_t stack[STACK_SIZE];
struct cpu_thread cpu;
};
} __align(STACK_SIZE);
static struct cpu_stack *cpu_stacks = (struct cpu_stack *)CPU_STACKS_BASE;
unsigned int cpu_thread_count;
unsigned int cpu_max_pir;
struct cpu_thread *boot_cpu;
static struct lock reinit_lock = LOCK_UNLOCKED;
static bool hile_supported;
static unsigned long hid0_hile;
static unsigned long hid0_attn;
unsigned long cpu_secondary_start __force_data = 0;
struct cpu_job {
struct list_node link;
void (*func)(void *data);
void *data;
const char *name;
bool complete;
bool no_return;
};
static struct lock global_job_queue_lock = LOCK_UNLOCKED;
static struct list_head global_job_queue;
/* attribute const as cpu_stacks is constant. */
unsigned long __attrconst cpu_stack_bottom(unsigned int pir)
{
return ((unsigned long)&cpu_stacks[pir]) +
sizeof(struct cpu_thread) + STACK_SAFETY_GAP;
}
unsigned long __attrconst cpu_stack_top(unsigned int pir)
{
/* This is the top of the MC stack which is above the normal
* stack, which means a SP between cpu_stack_bottom() and
* cpu_stack_top() can either be a normal stack pointer or
* a Machine Check stack pointer
*/
return ((unsigned long)&cpu_stacks[pir]) +
NORMAL_STACK_SIZE - STACK_TOP_GAP;
}
struct cpu_job *__cpu_queue_job(struct cpu_thread *cpu,
const char *name,
void (*func)(void *data), void *data,
bool no_return)
{
struct cpu_job *job;
#ifdef DEBUG_SERIALIZE_CPU_JOBS
if (cpu == NULL)
cpu = this_cpu();
#endif
if (cpu && !cpu_is_available(cpu)) {
prerror("CPU: Tried to queue job on unavailable CPU 0x%04x\n",
cpu->pir);
return NULL;
}
job = zalloc(sizeof(struct cpu_job));
if (!job)
return NULL;
job->func = func;
job->data = data;
job->name = name;
job->complete = false;
job->no_return = no_return;
if (cpu == NULL) {
lock(&global_job_queue_lock);
list_add_tail(&global_job_queue, &job->link);
unlock(&global_job_queue_lock);
} else if (cpu != this_cpu()) {
lock(&cpu->job_lock);
list_add_tail(&cpu->job_queue, &job->link);
unlock(&cpu->job_lock);
} else {
func(data);
job->complete = true;
}
/* XXX Add poking of CPU with interrupt */
return job;
}
bool cpu_poll_job(struct cpu_job *job)
{
lwsync();
return job->complete;
}
void cpu_wait_job(struct cpu_job *job, bool free_it)
{
unsigned long ticks = usecs_to_tb(5);
unsigned long period = msecs_to_tb(5);
unsigned long time_waited = 0;
if (!job)
return;
while(!job->complete) {
time_wait(ticks);
time_waited+=ticks;
if (time_waited % period == 0)
opal_run_pollers();
lwsync();
}
lwsync();
smt_medium();
if (time_waited > msecs_to_tb(1000))
prlog(PR_DEBUG, "cpu_wait_job(%s) for %lu\n",
job->name, tb_to_msecs(time_waited));
if (free_it)
free(job);
}
void cpu_free_job(struct cpu_job *job)
{
if (!job)
return;
assert(job->complete);
free(job);
}
void cpu_process_jobs(void)
{
struct cpu_thread *cpu = this_cpu();
struct cpu_job *job = NULL;
void (*func)(void *);
void *data;
sync();
if (list_empty(&cpu->job_queue) && list_empty(&global_job_queue))
return;
lock(&cpu->job_lock);
while (true) {
bool no_return;
if (list_empty(&cpu->job_queue)) {
smt_medium();
if (list_empty(&global_job_queue))
break;
lock(&global_job_queue_lock);
job = list_pop(&global_job_queue, struct cpu_job, link);
unlock(&global_job_queue_lock);
} else {
smt_medium();
job = list_pop(&cpu->job_queue, struct cpu_job, link);
}
if (!job)
break;
func = job->func;
data = job->data;
no_return = job->no_return;
unlock(&cpu->job_lock);
prlog(PR_TRACE, "running job %s on %x\n", job->name, cpu->pir);
if (no_return)
free(job);
func(data);
lock(&cpu->job_lock);
if (!no_return) {
lwsync();
job->complete = true;
}
}
unlock(&cpu->job_lock);
}
void cpu_process_local_jobs(void)
{
struct cpu_thread *cpu = first_available_cpu();
while (cpu) {
if (cpu != this_cpu())
return;
cpu = next_available_cpu(cpu);
}
if (!cpu)
cpu = first_available_cpu();
/* No CPU to run on, just run synchro */
if (cpu == this_cpu()) {
prlog_once(PR_DEBUG, "Processing jobs synchronously\n");
cpu_process_jobs();
}
}
struct dt_node *get_cpu_node(u32 pir)
{
struct cpu_thread *t = find_cpu_by_pir(pir);
return t ? t->node : NULL;
}
/* This only covers primary, active cpus */
struct cpu_thread *find_cpu_by_chip_id(u32 chip_id)
{
struct cpu_thread *t;
for_each_available_cpu(t) {
if (t->is_secondary)
continue;
if (t->chip_id == chip_id)
return t;
}
return NULL;
}
struct cpu_thread *find_cpu_by_node(struct dt_node *cpu)
{
struct cpu_thread *t;
for_each_available_cpu(t) {
if (t->node == cpu)
return t;
}
return NULL;
}
struct cpu_thread *find_cpu_by_pir(u32 pir)
{
if (pir > cpu_max_pir)
return NULL;
return &cpu_stacks[pir].cpu;
}
struct cpu_thread *find_cpu_by_server(u32 server_no)
{
struct cpu_thread *t;
for_each_cpu(t) {
if (t->server_no == server_no)
return t;
}
return NULL;
}
struct cpu_thread *next_cpu(struct cpu_thread *cpu)
{
struct cpu_stack *s = container_of(cpu, struct cpu_stack, cpu);
unsigned int index;
if (cpu == NULL)
index = 0;
else
index = s - cpu_stacks + 1;
for (; index <= cpu_max_pir; index++) {
cpu = &cpu_stacks[index].cpu;
if (cpu->state != cpu_state_no_cpu)
return cpu;
}
return NULL;
}
struct cpu_thread *first_cpu(void)
{
return next_cpu(NULL);
}
struct cpu_thread *next_available_cpu(struct cpu_thread *cpu)
{
do {
cpu = next_cpu(cpu);
} while(cpu && !cpu_is_available(cpu));
return cpu;
}
struct cpu_thread *first_available_cpu(void)
{
return next_available_cpu(NULL);
}
u8 get_available_nr_cores_in_chip(u32 chip_id)
{
struct cpu_thread *core;
u8 nr_cores = 0;
for_each_available_core_in_chip(core, chip_id)
nr_cores++;
return nr_cores;
}
struct cpu_thread *next_available_core_in_chip(struct cpu_thread *core,
u32 chip_id)
{
do {
core = next_cpu(core);
} while(core && (!cpu_is_available(core) ||
core->chip_id != chip_id ||
core->is_secondary));
return core;
}
struct cpu_thread *first_available_core_in_chip(u32 chip_id)
{
return next_available_core_in_chip(NULL, chip_id);
}
uint32_t cpu_get_core_index(struct cpu_thread *cpu)
{
return pir_to_core_id(cpu->pir);
}
void cpu_remove_node(const struct cpu_thread *t)
{
struct dt_node *i;
/* Find this cpu node */
dt_for_each_node(dt_root, i) {
const struct dt_property *p;
if (!dt_has_node_property(i, "device_type", "cpu"))
continue;
p = dt_find_property(i, "ibm,pir");
if (!p)
continue;
if (dt_property_get_cell(p, 0) == t->pir) {
dt_free(i);
return;
}
}
prerror("CPU: Could not find cpu node %i to remove!\n", t->pir);
abort();
}
void cpu_disable_all_threads(struct cpu_thread *cpu)
{
unsigned int i;
for (i = 0; i <= cpu_max_pir; i++) {
struct cpu_thread *t = &cpu_stacks[i].cpu;
if (t->primary == cpu->primary)
t->state = cpu_state_disabled;
}
/* XXX Do something to actually stop the core */
}
static void init_cpu_thread(struct cpu_thread *t,
enum cpu_thread_state state,
unsigned int pir)
{
init_lock(&t->job_lock);
list_head_init(&t->job_queue);
t->state = state;
t->pir = pir;
#ifdef STACK_CHECK_ENABLED
t->stack_bot_mark = LONG_MAX;
#endif
assert(pir == container_of(t, struct cpu_stack, cpu) - cpu_stacks);
}
static void enable_attn(void)
{
unsigned long hid0;
hid0 = mfspr(SPR_HID0);
hid0 |= hid0_attn;
set_hid0(hid0);
}
static void disable_attn(void)
{
unsigned long hid0;
hid0 = mfspr(SPR_HID0);
hid0 &= ~hid0_attn;
set_hid0(hid0);
}
extern void __trigger_attn(void);
void trigger_attn(void)
{
enable_attn();
__trigger_attn();
}
void init_hid(void)
{
/* attn is enabled even when HV=0, so make sure it's off */
disable_attn();
}
void pre_init_boot_cpu(void)
{
struct cpu_thread *cpu = this_cpu();
memset(cpu, 0, sizeof(struct cpu_thread));
}
void init_boot_cpu(void)
{
unsigned int i, pir, pvr;
pir = mfspr(SPR_PIR);
pvr = mfspr(SPR_PVR);
/* Get CPU family and other flags based on PVR */
switch(PVR_TYPE(pvr)) {
case PVR_TYPE_P7:
case PVR_TYPE_P7P:
proc_gen = proc_gen_p7;
break;
case PVR_TYPE_P8E:
case PVR_TYPE_P8:
proc_gen = proc_gen_p8;
hile_supported = PVR_VERS_MAJ(mfspr(SPR_PVR)) >= 2;
hid0_hile = SPR_HID0_POWER8_HILE;
hid0_attn = SPR_HID0_POWER8_ENABLE_ATTN;
break;
case PVR_TYPE_P8NVL:
proc_gen = proc_gen_p8;
hile_supported = true;
hid0_hile = SPR_HID0_POWER8_HILE;
hid0_attn = SPR_HID0_POWER8_ENABLE_ATTN;
break;
case PVR_TYPE_P9:
proc_gen = proc_gen_p9;
hile_supported = true;
hid0_hile = SPR_HID0_POWER9_HILE;
hid0_attn = SPR_HID0_POWER9_ENABLE_ATTN;
break;
default:
proc_gen = proc_gen_unknown;
}
/* Get a CPU thread count and an initial max PIR based on family */
switch(proc_gen) {
case proc_gen_p7:
cpu_thread_count = 4;
cpu_max_pir = SPR_PIR_P7_MASK;
prlog(PR_INFO, "CPU: P7 generation processor"
"(max %d threads/core)\n", cpu_thread_count);
break;
case proc_gen_p8:
cpu_thread_count = 8;
cpu_max_pir = SPR_PIR_P8_MASK;
prlog(PR_INFO, "CPU: P8 generation processor"
"(max %d threads/core)\n", cpu_thread_count);
break;
case proc_gen_p9:
cpu_thread_count = 4;
cpu_max_pir = SPR_PIR_P9_MASK;
prlog(PR_INFO, "CPU: P9 generation processor"
"(max %d threads/core)\n", cpu_thread_count);
break;
default:
prerror("CPU: Unknown PVR, assuming 1 thread\n");
cpu_thread_count = 1;
cpu_max_pir = mfspr(SPR_PIR);
}
prlog(PR_DEBUG, "CPU: Boot CPU PIR is 0x%04x PVR is 0x%08x\n",
pir, pvr);
prlog(PR_DEBUG, "CPU: Initial max PIR set to 0x%x\n", cpu_max_pir);
/* Clear the CPU structs */
for (i = 0; i <= cpu_max_pir; i++)
memset(&cpu_stacks[i].cpu, 0, sizeof(struct cpu_thread));
/* Setup boot CPU state */
boot_cpu = &cpu_stacks[pir].cpu;
init_cpu_thread(boot_cpu, cpu_state_active, pir);
init_boot_tracebuf(boot_cpu);
assert(this_cpu() == boot_cpu);
init_hid();
list_head_init(&global_job_queue);
}
static void enable_large_dec(bool on)
{
u64 lpcr = mfspr(SPR_LPCR);
if (on)
lpcr |= SPR_LPCR_P9_LD;
else
lpcr &= ~SPR_LPCR_P9_LD;
mtspr(SPR_LPCR, lpcr);
}
#define HIGH_BIT (1ull << 63)
static int find_dec_bits(void)
{
int bits = 65; /* we always decrement once */
u64 mask = ~0ull;
if (proc_gen < proc_gen_p9)
return 32;
/* The ISA doesn't specify the width of the decrementer register so we
* need to discover it. When in large mode (LPCR.LD = 1) reads from the
* DEC SPR are sign extended to 64 bits and writes are truncated to the
* physical register width. We can use this behaviour to detect the
* width by starting from an all 1s value and left shifting until we
* read a value from the DEC with it's high bit cleared.
*/
enable_large_dec(true);
do {
bits--;
mask = mask >> 1;
mtspr(SPR_DEC, mask);
} while (mfspr(SPR_DEC) & HIGH_BIT);
enable_large_dec(false);
prlog(PR_DEBUG, "CPU: decrementer bits %d\n", bits);
return bits;
}
void init_all_cpus(void)
{
struct dt_node *cpus, *cpu;
unsigned int thread, new_max_pir = 0;
int dec_bits = find_dec_bits();
cpus = dt_find_by_path(dt_root, "/cpus");
assert(cpus);
/* Iterate all CPUs in the device-tree */
dt_for_each_child(cpus, cpu) {
unsigned int pir, server_no, chip_id;
enum cpu_thread_state state;
const struct dt_property *p;
struct cpu_thread *t, *pt;
/* Skip cache nodes */
if (strcmp(dt_prop_get(cpu, "device_type"), "cpu"))
continue;
server_no = dt_prop_get_u32(cpu, "reg");
/* If PIR property is absent, assume it's the same as the
* server number
*/
pir = dt_prop_get_u32_def(cpu, "ibm,pir", server_no);
/* We should always have an ibm,chip-id property */
chip_id = dt_get_chip_id(cpu);
/* Only use operational CPUs */
if (!strcmp(dt_prop_get(cpu, "status"), "okay"))
state = cpu_state_present;
else
state = cpu_state_unavailable;
prlog(PR_INFO, "CPU: CPU from DT PIR=0x%04x Server#=0x%x"
" State=%d\n", pir, server_no, state);
/* Setup thread 0 */
assert(pir <= cpu_max_pir);
t = pt = &cpu_stacks[pir].cpu;
if (t != boot_cpu) {
init_cpu_thread(t, state, pir);
/* Each cpu gets its own later in init_trace_buffers */
t->trace = boot_cpu->trace;
}
t->server_no = server_no;
t->primary = t;
t->node = cpu;
t->chip_id = chip_id;
t->icp_regs = NULL; /* Will be set later */
t->core_hmi_state = 0;
t->core_hmi_state_ptr = &t->core_hmi_state;
t->thread_mask = 1;
/* Add associativity properties */
add_core_associativity(t);
/* Add the decrementer width property */
dt_add_property_cells(cpu, "ibm,dec-bits", dec_bits);
/* Adjust max PIR */
if (new_max_pir < (pir + cpu_thread_count - 1))
new_max_pir = pir + cpu_thread_count - 1;
/* Iterate threads */
p = dt_find_property(cpu, "ibm,ppc-interrupt-server#s");
if (!p)
continue;
for (thread = 1; thread < (p->len / 4); thread++) {
prlog(PR_TRACE, "CPU: secondary thread %d found\n",
thread);
t = &cpu_stacks[pir + thread].cpu;
init_cpu_thread(t, state, pir + thread);
t->trace = boot_cpu->trace;
t->server_no = ((const u32 *)p->prop)[thread];
t->is_secondary = true;
t->primary = pt;
t->node = cpu;
t->chip_id = chip_id;
t->core_hmi_state_ptr = &pt->core_hmi_state;
t->thread_mask = 1 << thread;
}
prlog(PR_INFO, "CPU: %d secondary threads\n", thread);
}
cpu_max_pir = new_max_pir;
prlog(PR_DEBUG, "CPU: New max PIR set to 0x%x\n", new_max_pir);
adjust_cpu_stacks_alloc();
}
void cpu_bringup(void)
{
struct cpu_thread *t;
prlog(PR_INFO, "CPU: Setting up secondary CPU state\n");
op_display(OP_LOG, OP_MOD_CPU, 0x0000);
/* Tell everybody to chime in ! */
prlog(PR_INFO, "CPU: Calling in all processors...\n");
cpu_secondary_start = 1;
sync();
op_display(OP_LOG, OP_MOD_CPU, 0x0002);
for_each_cpu(t) {
if (t->state != cpu_state_present &&
t->state != cpu_state_active)
continue;
/* Add a callin timeout ? If so, call cpu_remove_node(t). */
while (t->state != cpu_state_active) {
smt_very_low();
sync();
}
smt_medium();
}
prlog(PR_INFO, "CPU: All processors called in...\n");
op_display(OP_LOG, OP_MOD_CPU, 0x0003);
}
void cpu_callin(struct cpu_thread *cpu)
{
cpu->state = cpu_state_active;
}
static void opal_start_thread_job(void *data)
{
cpu_give_self_os();
/* We do not return, so let's mark the job as
* complete
*/
start_kernel_secondary((uint64_t)data);
}
static int64_t opal_start_cpu_thread(uint64_t server_no, uint64_t start_address)
{
struct cpu_thread *cpu;
struct cpu_job *job;
cpu = find_cpu_by_server(server_no);
if (!cpu) {
prerror("OPAL: Start invalid CPU 0x%04llx !\n", server_no);
return OPAL_PARAMETER;
}
prlog(PR_DEBUG, "OPAL: Start CPU 0x%04llx (PIR 0x%04x) -> 0x%016llx\n",
server_no, cpu->pir, start_address);
lock(&reinit_lock);
if (!cpu_is_available(cpu)) {
unlock(&reinit_lock);
prerror("OPAL: CPU not active in OPAL !\n");
return OPAL_WRONG_STATE;
}
if (cpu->in_reinit) {
unlock(&reinit_lock);
prerror("OPAL: CPU being reinitialized !\n");
return OPAL_WRONG_STATE;
}
job = __cpu_queue_job(cpu, "start_thread",
opal_start_thread_job, (void *)start_address,
true);
unlock(&reinit_lock);
if (!job) {
prerror("OPAL: Failed to create CPU start job !\n");
return OPAL_INTERNAL_ERROR;
}
return OPAL_SUCCESS;
}
opal_call(OPAL_START_CPU, opal_start_cpu_thread, 2);
static int64_t opal_query_cpu_status(uint64_t server_no, uint8_t *thread_status)
{
struct cpu_thread *cpu;
cpu = find_cpu_by_server(server_no);
if (!cpu) {
prerror("OPAL: Query invalid CPU 0x%04llx !\n", server_no);
return OPAL_PARAMETER;
}
if (!cpu_is_available(cpu) && cpu->state != cpu_state_os) {
prerror("OPAL: CPU not active in OPAL nor OS !\n");
return OPAL_PARAMETER;
}
switch(cpu->state) {
case cpu_state_os:
*thread_status = OPAL_THREAD_STARTED;
break;
case cpu_state_active:
/* Active in skiboot -> inactive in OS */
*thread_status = OPAL_THREAD_INACTIVE;
break;
default:
*thread_status = OPAL_THREAD_UNAVAILABLE;
}
return OPAL_SUCCESS;
}
opal_call(OPAL_QUERY_CPU_STATUS, opal_query_cpu_status, 2);
static int64_t opal_return_cpu(void)
{
prlog(PR_DEBUG, "OPAL: Returning CPU 0x%04x\n", this_cpu()->pir);
__secondary_cpu_entry();
return OPAL_HARDWARE; /* Should not happen */
}
opal_call(OPAL_RETURN_CPU, opal_return_cpu, 0);
static void cpu_change_hile(void *hilep)
{
bool hile = *(bool *)hilep;
unsigned long hid0;
hid0 = mfspr(SPR_HID0);
if (hile)
hid0 |= hid0_hile;
else
hid0 &= ~hid0_hile;
prlog(PR_DEBUG, "CPU: [%08x] HID0 set to 0x%016lx\n",
this_cpu()->pir, hid0);
set_hid0(hid0);
this_cpu()->current_hile = hile;
}
static int64_t cpu_change_all_hile(bool hile)
{
struct cpu_thread *cpu;
prlog(PR_INFO, "CPU: Switching HILE on all CPUs to %d\n", hile);
for_each_available_cpu(cpu) {
if (cpu->current_hile == hile)
continue;
if (cpu == this_cpu()) {
cpu_change_hile(&hile);
continue;
}
cpu_wait_job(cpu_queue_job(cpu, "cpu_change_hile",
cpu_change_hile, &hile), true);
}
return OPAL_SUCCESS;
}
static int64_t opal_reinit_cpus(uint64_t flags)
{
struct cpu_thread *cpu;
int64_t rc = OPAL_SUCCESS;
int i;
prlog(PR_INFO, "OPAL: Trying a CPU re-init with flags: 0x%llx\n", flags);
again:
lock(&reinit_lock);
for (cpu = first_cpu(); cpu; cpu = next_cpu(cpu)) {
if (cpu == this_cpu() || cpu->in_reinit)
continue;
if (cpu->state == cpu_state_os) {
unlock(&reinit_lock);
/*
* That might be a race with return CPU during kexec
* where we are still, wait a bit and try again
*/
for (i = 0; (i < 1000) &&
(cpu->state == cpu_state_os); i++) {
time_wait_ms(1);
}
if (cpu->state == cpu_state_os) {
prerror("OPAL: CPU 0x%x not in OPAL !\n", cpu->pir);
return OPAL_WRONG_STATE;
}
goto again;
}
cpu->in_reinit = true;
}
/*
* Now we need to mark ourselves "active" or we'll be skipped
* by the various "for_each_active_..." calls done by slw_reinit()
*/
this_cpu()->state = cpu_state_active;
this_cpu()->in_reinit = true;
unlock(&reinit_lock);
/*
* If the flags affect endianness and we are on P8 DD2 or later, then
* use the HID bit. We use the PVR (we could use the EC level in
* the chip but the PVR is more readily available).
*/
if (hile_supported &&
(flags & (OPAL_REINIT_CPUS_HILE_BE | OPAL_REINIT_CPUS_HILE_LE))) {
bool hile = !!(flags & OPAL_REINIT_CPUS_HILE_LE);
flags &= ~(OPAL_REINIT_CPUS_HILE_BE | OPAL_REINIT_CPUS_HILE_LE);
rc = cpu_change_all_hile(hile);
}
/* If we have a P7, error out for LE switch, do nothing for BE */
if (proc_gen < proc_gen_p8) {
if (flags & OPAL_REINIT_CPUS_HILE_LE)
rc = OPAL_UNSUPPORTED;
flags &= ~(OPAL_REINIT_CPUS_HILE_BE | OPAL_REINIT_CPUS_HILE_LE);
}
/* Any flags left ? */
if (flags != 0 && proc_gen == proc_gen_p8)
rc = slw_reinit(flags);
else if (flags != 0)
rc = OPAL_UNSUPPORTED;
/* And undo the above */
lock(&reinit_lock);
this_cpu()->state = cpu_state_os;
for (cpu = first_cpu(); cpu; cpu = next_cpu(cpu))
cpu->in_reinit = false;
unlock(&reinit_lock);
return rc;
}
opal_call(OPAL_REINIT_CPUS, opal_reinit_cpus, 1);
|