File: p7ioc-phb.c

package info (click to toggle)
skiboot 5.3.3-1
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 13,280 kB
  • ctags: 13,840
  • sloc: ansic: 77,199; asm: 1,002; sh: 997; cpp: 894; tcl: 408; makefile: 325; python: 166; pascal: 65
file content (3267 lines) | stat: -rw-r--r-- 101,671 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
/* Copyright 2013-2014 IBM Corp.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * 	http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <skiboot.h>
#include <p7ioc.h>
#include <p7ioc-regs.h>
#include <io.h>
#include <timebase.h>
#include <affinity.h>
#include <pci-cfg.h>
#include <pci.h>
#include <pci-slot.h>
#include <interrupts.h>
#include <opal.h>
#include <ccan/str/str.h>

#define PHBDBG(p, fmt, a...)	prlog(PR_DEBUG, "PHB#%04x: " fmt, \
				      (p)->phb.opal_id, ## a)
#define PHBERR(p, fmt, a...)	prlog(PR_ERR, "PHB#%04x: " fmt, \
				      (p)->phb.opal_id, ## a)

/* Helper to select an IODA table entry */
static inline void p7ioc_phb_ioda_sel(struct p7ioc_phb *p, uint32_t table,
				      uint32_t addr, bool autoinc)
{
	out_be64(p->regs + PHB_IODA_ADDR,
		 (autoinc ? PHB_IODA_AD_AUTOINC : 0)	|
		 SETFIELD(PHB_IODA_AD_TSEL, 0ul, table)	|
		 SETFIELD(PHB_IODA_AD_TADR, 0ul, addr));
}

static bool p7ioc_phb_fenced(struct p7ioc_phb *p)
{
	struct p7ioc *ioc = p->ioc;
	uint64_t fence, fbits;

	fbits = 0x0003000000000000UL >> (p->index * 4);
	fence = in_be64(ioc->regs + P7IOC_CHIP_FENCE_SHADOW);

	return (fence & fbits) != 0;
}

/*
 * Configuration space access
 *
 * The PHB lock is assumed to be already held
 */
static int64_t p7ioc_pcicfg_check(struct p7ioc_phb *p, uint32_t bdfn,
				  uint32_t offset, uint32_t size)
{
	uint32_t sm = size - 1;

	if (offset > 0xfff || bdfn > 0xffff)
		return OPAL_PARAMETER;
	if (offset & sm)
		return OPAL_PARAMETER;

	/* The root bus only has a device at 0 and we get into an
	 * error state if we try to probe beyond that, so let's
	 * avoid that and just return an error to Linux
	 */
	if ((bdfn >> 8) == 0 && (bdfn & 0xff))
		return OPAL_HARDWARE;

	/* Check PHB state */
	if (p->state == P7IOC_PHB_STATE_BROKEN)
		return OPAL_HARDWARE;

	return OPAL_SUCCESS;
}

#define P7IOC_PCI_CFG_READ(size, type)	\
static int64_t p7ioc_pcicfg_read##size(struct phb *phb, uint32_t bdfn,	\
				       uint32_t offset, type *data)	\
{									\
	struct p7ioc_phb *p = phb_to_p7ioc_phb(phb);			\
	uint64_t addr;							\
	void *base = p->regs;						\
	int64_t rc;							\
									\
	/* Initialize data in case of error */				\
	*data = (type)0xffffffff;					\
									\
	rc = p7ioc_pcicfg_check(p, bdfn, offset, sizeof(type));		\
	if (rc)								\
		return rc;						\
									\
	if (p7ioc_phb_fenced(p)) {					\
		if (!(p->flags & P7IOC_PHB_CFG_USE_ASB))		\
			return OPAL_HARDWARE;				\
									\
		base = p->regs_asb;					\
	} else if ((p->flags & P7IOC_PHB_CFG_BLOCKED) && bdfn != 0) {	\
		return OPAL_HARDWARE;					\
	}								\
									\
	addr = PHB_CA_ENABLE;						\
	addr = SETFIELD(PHB_CA_BDFN, addr, bdfn);			\
	addr = SETFIELD(PHB_CA_REG, addr, offset);			\
	out_be64(base + PHB_CONFIG_ADDRESS, addr);			\
	*data = in_le##size(base + PHB_CONFIG_DATA +			\
		     (offset & (4 - sizeof(type))));			\
									\
	return OPAL_SUCCESS;						\
}

#define P7IOC_PCI_CFG_WRITE(size, type)	\
static int64_t p7ioc_pcicfg_write##size(struct phb *phb, uint32_t bdfn,	\
					uint32_t offset, type data)	\
{									\
	struct p7ioc_phb *p = phb_to_p7ioc_phb(phb);			\
	void *base = p->regs;						\
	uint64_t addr;							\
	int64_t rc;							\
									\
	rc = p7ioc_pcicfg_check(p, bdfn, offset, sizeof(type));		\
	if (rc)								\
		return rc;						\
									\
	if (p7ioc_phb_fenced(p)) {					\
		if (!(p->flags & P7IOC_PHB_CFG_USE_ASB))		\
			return OPAL_HARDWARE;				\
									\
		base = p->regs_asb;					\
	} else if ((p->flags & P7IOC_PHB_CFG_BLOCKED) && bdfn != 0) {	\
		return OPAL_HARDWARE;					\
	}								\
									\
	addr = PHB_CA_ENABLE;						\
	addr = SETFIELD(PHB_CA_BDFN, addr, bdfn);			\
	addr = SETFIELD(PHB_CA_REG, addr, offset);			\
	out_be64(base + PHB_CONFIG_ADDRESS, addr);			\
	out_le##size(base + PHB_CONFIG_DATA +				\
		     (offset & (4 - sizeof(type))), data);		\
									\
	return OPAL_SUCCESS;						\
}

P7IOC_PCI_CFG_READ(8, uint8_t)
P7IOC_PCI_CFG_READ(16, uint16_t)
P7IOC_PCI_CFG_READ(32, uint32_t)
P7IOC_PCI_CFG_WRITE(8, uint8_t)
P7IOC_PCI_CFG_WRITE(16, uint16_t)
P7IOC_PCI_CFG_WRITE(32, uint32_t)

static void p7ioc_eeh_read_phb_status(struct p7ioc_phb *p,
				      struct OpalIoP7IOCPhbErrorData *stat)
{
	uint16_t tmp16;
	unsigned int i;

	memset(stat, 0, sizeof(struct OpalIoP7IOCPhbErrorData));


	/* Error data common part */
	stat->common.version = OPAL_PHB_ERROR_DATA_VERSION_1;
	stat->common.ioType  = OPAL_PHB_ERROR_DATA_TYPE_P7IOC;
	stat->common.len     = sizeof(struct OpalIoP7IOCPhbErrorData);

	/*
	 * We read some registers using config space through AIB.
	 *
	 * Get to other registers using ASB when possible to get to them
	 * through a fence if one is present.
	 *
	 * Note that the OpalIoP7IOCPhbErrorData has oddities, such as the
	 * bridge control being 32-bit and the UTL registers being 32-bit
	 * (which they really are, but they use the top 32-bit of a 64-bit
	 * register so we need to be a bit careful).
	 */

	/* Use ASB to access PCICFG if the PHB has been fenced */
	p->flags |= P7IOC_PHB_CFG_USE_ASB;

	/* Grab RC bridge control, make it 32-bit */
	p7ioc_pcicfg_read16(&p->phb, 0, PCI_CFG_BRCTL, &tmp16);
	stat->brdgCtl = tmp16;

	/* Grab UTL status registers */
	stat->portStatusReg = hi32(in_be64(p->regs_asb
					   + UTL_PCIE_PORT_STATUS));
	stat->rootCmplxStatus = hi32(in_be64(p->regs_asb
					   + UTL_RC_STATUS));
	stat->busAgentStatus = hi32(in_be64(p->regs_asb
					   + UTL_SYS_BUS_AGENT_STATUS));

	/*
	 * Grab various RC PCIe capability registers. All device, slot
	 * and link status are 16-bit, so we grab the pair control+status
	 * for each of them
	 */
	p7ioc_pcicfg_read32(&p->phb, 0, p->ecap + PCICAP_EXP_DEVCTL,
			    &stat->deviceStatus);
	p7ioc_pcicfg_read32(&p->phb, 0, p->ecap + PCICAP_EXP_SLOTCTL,
			    &stat->slotStatus);
	p7ioc_pcicfg_read32(&p->phb, 0, p->ecap + PCICAP_EXP_LCTL,
			    &stat->linkStatus);

	/*
	 * I assume those are the standard config space header, cmd & status
	 * together makes 32-bit. Secondary status is 16-bit so I'll clear
	 * the top on that one
	 */
	p7ioc_pcicfg_read32(&p->phb, 0, PCI_CFG_CMD, &stat->devCmdStatus);
	p7ioc_pcicfg_read16(&p->phb, 0, PCI_CFG_SECONDARY_STATUS, &tmp16);
	stat->devSecStatus = tmp16;

	/* Grab a bunch of AER regs */
	p7ioc_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_RERR_STA,
			    &stat->rootErrorStatus);
	p7ioc_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_UE_STATUS,
			    &stat->uncorrErrorStatus);
	p7ioc_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_CE_STATUS,
			    &stat->corrErrorStatus);
	p7ioc_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_HDR_LOG0,
			    &stat->tlpHdr1);
	p7ioc_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_HDR_LOG1,
			    &stat->tlpHdr2);
	p7ioc_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_HDR_LOG2,
			    &stat->tlpHdr3);
	p7ioc_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_HDR_LOG3,
			    &stat->tlpHdr4);
	p7ioc_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_SRCID,
			    &stat->sourceId);

	/* Restore to AIB */
	p->flags &= ~P7IOC_PHB_CFG_USE_ASB;

	/*
	 * No idea what that that is supposed to be, opal.h says
	 * "Record data about the call to allocate a buffer."
	 *
	 * Let's leave them alone for now...
	 *
	 * uint64_t errorClass;
	 * uint64_t correlator;
	*/

	/* P7IOC MMIO Error Regs */
	stat->p7iocPlssr = in_be64(p->regs_asb + PHB_CPU_LOADSTORE_STATUS);
	stat->p7iocCsr = in_be64(p->regs_asb + PHB_DMA_CHAN_STATUS);
	stat->lemFir = in_be64(p->regs_asb + PHB_LEM_FIR_ACCUM);
	stat->lemErrorMask = in_be64(p->regs_asb + PHB_LEM_ERROR_MASK);
	stat->lemWOF = in_be64(p->regs_asb + PHB_LEM_WOF);
	stat->phbErrorStatus = in_be64(p->regs_asb + PHB_ERR_STATUS);
	stat->phbFirstErrorStatus = in_be64(p->regs_asb + PHB_ERR1_STATUS);
	stat->phbErrorLog0 = in_be64(p->regs_asb + PHB_ERR_LOG_0);
	stat->phbErrorLog1 = in_be64(p->regs_asb + PHB_ERR_LOG_1);
	stat->mmioErrorStatus = in_be64(p->regs_asb + PHB_OUT_ERR_STATUS);
	stat->mmioFirstErrorStatus = in_be64(p->regs_asb + PHB_OUT_ERR1_STATUS);
	stat->mmioErrorLog0 = in_be64(p->regs_asb + PHB_OUT_ERR_LOG_0);
	stat->mmioErrorLog1 = in_be64(p->regs_asb + PHB_OUT_ERR_LOG_1);
	stat->dma0ErrorStatus = in_be64(p->regs_asb + PHB_INA_ERR_STATUS);
	stat->dma0FirstErrorStatus = in_be64(p->regs_asb + PHB_INA_ERR1_STATUS);
	stat->dma0ErrorLog0 = in_be64(p->regs_asb + PHB_INA_ERR_LOG_0);
	stat->dma0ErrorLog1 = in_be64(p->regs_asb + PHB_INA_ERR_LOG_1);
	stat->dma1ErrorStatus = in_be64(p->regs_asb + PHB_INB_ERR_STATUS);
	stat->dma1FirstErrorStatus = in_be64(p->regs_asb + PHB_INB_ERR1_STATUS);
	stat->dma1ErrorLog0 = in_be64(p->regs_asb + PHB_INB_ERR_LOG_0);
	stat->dma1ErrorLog1 = in_be64(p->regs_asb + PHB_INB_ERR_LOG_1);

	/* Grab PESTA & B content */
	p7ioc_phb_ioda_sel(p, IODA_TBL_PESTA, 0, true);
	for (i = 0; i < OPAL_P7IOC_NUM_PEST_REGS; i++)
		stat->pestA[i] = in_be64(p->regs_asb + PHB_IODA_DATA0);
	p7ioc_phb_ioda_sel(p, IODA_TBL_PESTB, 0, true);
	for (i = 0; i < OPAL_P7IOC_NUM_PEST_REGS; i++)
		stat->pestB[i] = in_be64(p->regs_asb + PHB_IODA_DATA0);
}

static int64_t p7ioc_eeh_freeze_status(struct phb *phb, uint64_t pe_number,
				       uint8_t *freeze_state,
				       uint16_t *pci_error_type,
				       uint16_t *severity,
				       uint64_t *phb_status)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(phb);
	uint64_t peev_bit = PPC_BIT(pe_number & 0x3f);
	uint64_t peev, pesta, pestb;

	/* Defaults: not frozen */
	*freeze_state = OPAL_EEH_STOPPED_NOT_FROZEN;
	*pci_error_type = OPAL_EEH_NO_ERROR;

	/* Check dead */
	if (p->state == P7IOC_PHB_STATE_BROKEN) {
		*freeze_state = OPAL_EEH_STOPPED_MMIO_DMA_FREEZE;
		*pci_error_type = OPAL_EEH_PHB_ERROR;
		if (severity)
			*severity = OPAL_EEH_SEV_PHB_DEAD;
		goto bail;
	}

	/* Check fence */
	if (p7ioc_phb_fenced(p)) {
		/* Should be OPAL_EEH_STOPPED_TEMP_UNAVAIL ? */
		*freeze_state = OPAL_EEH_STOPPED_MMIO_DMA_FREEZE;
		*pci_error_type = OPAL_EEH_PHB_ERROR;
		if (severity)
			*severity = OPAL_EEH_SEV_PHB_FENCED;
		p->state = P7IOC_PHB_STATE_FENCED;
		goto bail;
	}

	/* Check the PEEV */
	p7ioc_phb_ioda_sel(p, IODA_TBL_PEEV, 0, true);
	peev = in_be64(p->regs + PHB_IODA_DATA0);
	if (pe_number > 63)
		peev = in_be64(p->regs + PHB_IODA_DATA0);
	if (!(peev & peev_bit))
		return OPAL_SUCCESS;

	/* Indicate that we have an ER pending */
	p7ioc_phb_set_err_pending(p, true);
	if (severity)
		*severity = OPAL_EEH_SEV_PE_ER;

	/* Read the PESTA & PESTB */
	p7ioc_phb_ioda_sel(p, IODA_TBL_PESTA, pe_number, false);
	pesta = in_be64(p->regs + PHB_IODA_DATA0);
	p7ioc_phb_ioda_sel(p, IODA_TBL_PESTB, pe_number, false);
	pestb = in_be64(p->regs + PHB_IODA_DATA0);

	/* Convert them */
	if (pesta & IODA_PESTA_MMIO_FROZEN)
		*freeze_state |= OPAL_EEH_STOPPED_MMIO_FREEZE;
	if (pestb & IODA_PESTB_DMA_STOPPED)
		*freeze_state |= OPAL_EEH_STOPPED_DMA_FREEZE;

	/* XXX Handle more causes */
	if (pesta & IODA_PESTA_MMIO_CAUSE)
		*pci_error_type = OPAL_EEH_PE_MMIO_ERROR;
	else
		*pci_error_type = OPAL_EEH_PE_DMA_ERROR;

 bail:
	if (phb_status)
		p7ioc_eeh_read_phb_status(p, (struct OpalIoP7IOCPhbErrorData *)
					  phb_status);
	return OPAL_SUCCESS;
}

static int64_t p7ioc_eeh_next_error(struct phb *phb, uint64_t *first_frozen_pe,
				    uint16_t *pci_error_type, uint16_t *severity)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(phb);
	struct p7ioc *ioc = p->ioc;
	uint64_t fir, peev0, peev1;
	uint32_t cfg32, i;

	/* Check if there're pending errors on the IOC. */
	if (p7ioc_err_pending(ioc) &&
	    p7ioc_check_LEM(ioc, pci_error_type, severity))
		return OPAL_SUCCESS;

	/* Clear result */
	*pci_error_type	= OPAL_EEH_NO_ERROR;
        *severity	= OPAL_EEH_SEV_NO_ERROR;
	*first_frozen_pe = (uint64_t)-1;

	/* Check dead */
	if (p->state == P7IOC_PHB_STATE_BROKEN) {
		*pci_error_type = OPAL_EEH_PHB_ERROR;
		*severity = OPAL_EEH_SEV_PHB_DEAD;
		return OPAL_SUCCESS;
	}

	/* Check fence */
	if (p7ioc_phb_fenced(p)) {
		/* Should be OPAL_EEH_STOPPED_TEMP_UNAVAIL ? */
		*pci_error_type = OPAL_EEH_PHB_ERROR;
		*severity = OPAL_EEH_SEV_PHB_FENCED;
		p->state = P7IOC_PHB_STATE_FENCED;
		p7ioc_phb_set_err_pending(p, false);
		return OPAL_SUCCESS;
	}

	/*
	 * If we don't have pending errors, which might be moved
	 * from IOC to the PHB, then check if there has any frozen PEs.
	 */
	if (!p7ioc_phb_err_pending(p)) {
		p7ioc_phb_ioda_sel(p, IODA_TBL_PEEV, 0, true);
		peev0 = in_be64(p->regs + PHB_IODA_DATA0);
		peev1 = in_be64(p->regs + PHB_IODA_DATA0);
		if (peev0 || peev1) {
			p->err.err_src   = P7IOC_ERR_SRC_PHB0 + p->index;
			p->err.err_class = P7IOC_ERR_CLASS_ER;
			p->err.err_bit   = 0;
			p7ioc_phb_set_err_pending(p, true);
		}
	}

	/* Check the pending errors, which might come from IOC */
	if (p7ioc_phb_err_pending(p)) {
		/*
		 * If the frozen PE is caused by a malfunctioning TLP, we
		 * need reset the PHB. So convert ER to PHB-fatal error
		 * for the case.
		 */
		if (p->err.err_class == P7IOC_ERR_CLASS_ER) {
			fir = in_be64(p->regs_asb + PHB_LEM_FIR_ACCUM);
			if (fir & PPC_BIT(60)) {
				p7ioc_pcicfg_read32(&p->phb, 0,
					p->aercap + PCIECAP_AER_UE_STATUS, &cfg32);
				if (cfg32 & PCIECAP_AER_UE_MALFORMED_TLP)
					p->err.err_class = P7IOC_ERR_CLASS_PHB;
                        }
                }

		/*
		 * Map P7IOC internal error class to that one OS can handle.
		 * For P7IOC_ERR_CLASS_ER, we also need figure out the frozen
		 * PE.
		 */
		switch (p->err.err_class) {
		case P7IOC_ERR_CLASS_PHB:
			*pci_error_type = OPAL_EEH_PHB_ERROR;
			*severity = OPAL_EEH_SEV_PHB_FENCED;
			p7ioc_phb_set_err_pending(p, false);
			break;
		case P7IOC_ERR_CLASS_MAL:
		case P7IOC_ERR_CLASS_INF:
			*pci_error_type = OPAL_EEH_PHB_ERROR;
			*severity = OPAL_EEH_SEV_INF;
			p7ioc_phb_set_err_pending(p, false);
			break;
		case P7IOC_ERR_CLASS_ER:
			*pci_error_type = OPAL_EEH_PE_ERROR;
			*severity = OPAL_EEH_SEV_PE_ER;
			p7ioc_phb_ioda_sel(p, IODA_TBL_PEEV, 0, true);
			peev0 = in_be64(p->regs + PHB_IODA_DATA0);
			peev1 = in_be64(p->regs + PHB_IODA_DATA0);

			for (i = 0 ; i < 64; i++) {
				if (PPC_BIT(i) & peev1) {
					*first_frozen_pe = i + 64;
					break;
				}
			}
			for (i = 0 ;
			     *first_frozen_pe == (uint64_t)-1 && i < 64;
			     i++) {
				if (PPC_BIT(i) & peev0) {
					*first_frozen_pe = i;
					break;
				}
			}

			/* No frozen PE? */
			if (*first_frozen_pe == (uint64_t)-1) {
				*pci_error_type = OPAL_EEH_NO_ERROR;
				*severity = OPAL_EEH_SEV_NO_ERROR;
				p7ioc_phb_set_err_pending(p, false);
			}

			break;
		default:
			*pci_error_type = OPAL_EEH_NO_ERROR;
			*severity = OPAL_EEH_SEV_NO_ERROR;
			p7ioc_phb_set_err_pending(p, false);
		}
	}

	return OPAL_SUCCESS;
}

static void p7ioc_ER_err_clear(struct p7ioc_phb *p)
{
	u64 err, lem;
	u32 val;

	/* Rec 1,2 */
	lem = in_be64(p->regs + PHB_LEM_FIR_ACCUM);

	/* Rec 3,4,5 AER registers (could use cfg space accessors) */
	out_be64(p->regs + PHB_CONFIG_ADDRESS, 0x8000001c00000000ull);
	out_be32(p->regs + PHB_CONFIG_DATA, 0x10000000);

	/* Rec 6,7,8 XXX DOC whacks payload & req size ... we don't */
	out_be64(p->regs + PHB_CONFIG_ADDRESS, 0x8000005000000000ull);
	val = in_be32(p->regs + PHB_CONFIG_DATA);
	out_be32(p->regs + PHB_CONFIG_DATA, (val & 0xe0700000) | 0x0f000f00);

	/* Rec 9,10,11 */
	out_be64(p->regs + PHB_CONFIG_ADDRESS, 0x8000010400000000ull);
	out_be32(p->regs + PHB_CONFIG_DATA, 0xffffffff);

	/* Rec 12,13,14 */
	out_be64(p->regs + PHB_CONFIG_ADDRESS, 0x8000011000000000ull);
	out_be32(p->regs + PHB_CONFIG_DATA, 0xffffffff);

	/* Rec 23,24,25 */
	out_be64(p->regs + PHB_CONFIG_ADDRESS, 0x8000013000000000ull);
	out_be32(p->regs + PHB_CONFIG_DATA, 0xffffffff);

	/* Rec 26,27,28 */
	out_be64(p->regs + PHB_CONFIG_ADDRESS, 0x8000004000000000ull);
	out_be32(p->regs + PHB_CONFIG_DATA, 0x470100f8);

	/* Rec 29..34 UTL registers */
	err = in_be64(p->regs + UTL_SYS_BUS_AGENT_STATUS);
	out_be64(p->regs + UTL_SYS_BUS_AGENT_STATUS, err);
	err = in_be64(p->regs + UTL_PCIE_PORT_STATUS);
	out_be64(p->regs + UTL_PCIE_PORT_STATUS, err);
	err = in_be64(p->regs + UTL_RC_STATUS);
	out_be64(p->regs + UTL_RC_STATUS, err);

	/* PHB error traps registers */
	err = in_be64(p->regs + PHB_ERR_STATUS);
	out_be64(p->regs + PHB_ERR_STATUS, err);
	out_be64(p->regs + PHB_ERR1_STATUS, 0);
	out_be64(p->regs + PHB_ERR_LOG_0, 0);
	out_be64(p->regs + PHB_ERR_LOG_1, 0);

	err = in_be64(p->regs + PHB_OUT_ERR_STATUS);
	out_be64(p->regs + PHB_OUT_ERR_STATUS, err);
	out_be64(p->regs + PHB_OUT_ERR1_STATUS, 0);
	out_be64(p->regs + PHB_OUT_ERR_LOG_0, 0);
	out_be64(p->regs + PHB_OUT_ERR_LOG_1, 0);

	err = in_be64(p->regs + PHB_INA_ERR_STATUS);
	out_be64(p->regs + PHB_INA_ERR_STATUS, err);
	out_be64(p->regs + PHB_INA_ERR1_STATUS, 0);
	out_be64(p->regs + PHB_INA_ERR_LOG_0, 0);
	out_be64(p->regs + PHB_INA_ERR_LOG_1, 0);

	err = in_be64(p->regs + PHB_INB_ERR_STATUS);
	out_be64(p->regs + PHB_INB_ERR_STATUS, err);
	out_be64(p->regs + PHB_INB_ERR1_STATUS, 0);
	out_be64(p->regs + PHB_INB_ERR_LOG_0, 0);
	out_be64(p->regs + PHB_INB_ERR_LOG_1, 0);

	/* Rec 67, 68 LEM */
	out_be64(p->regs + PHB_LEM_FIR_AND_MASK, ~lem);
	out_be64(p->regs + PHB_LEM_WOF, 0);
}

static int64_t p7ioc_eeh_freeze_clear(struct phb *phb, uint64_t pe_number,
				      uint64_t eeh_action_token)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(phb);
	uint64_t peev0, peev1;

	/* XXX Now this is a heavy hammer, coming roughly from the P7IOC doc
	 * and my old "pseudopal" code. It will need to be refined. In general
	 * error handling will have to be reviewed and probably done properly
	 * "from scratch" based on the description in the p7IOC spec.
	 *
	 * XXX Additionally, when handling interrupts, we might want to consider
	 * masking while processing and/or ack'ing interrupt bits etc...
	 */
	u64 err;

	/* Summary. If nothing, move to clearing the PESTs which can
	 * contain a freeze state from a previous error or simply set
	 * explicitly by the user
	 */
	err = in_be64(p->regs + PHB_ETU_ERR_SUMMARY);
	if (err == 0)
		goto clear_pest;

	p7ioc_ER_err_clear(p);

 clear_pest:
	/* XXX We just clear the whole PESTA for MMIO clear and PESTB
	 * for DMA clear. We might want to only clear the frozen bit
	 * as to not clobber the rest of the state. However, we expect
	 * the state to have been harvested before the clear operations
	 * so this might not be an issue
	 */
	if (eeh_action_token & OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO) {
		p7ioc_phb_ioda_sel(p, IODA_TBL_PESTA, pe_number, false);
		out_be64(p->regs + PHB_IODA_DATA0, 0);
	}
	if (eeh_action_token & OPAL_EEH_ACTION_CLEAR_FREEZE_DMA) {
		p7ioc_phb_ioda_sel(p, IODA_TBL_PESTB, pe_number, false);
		out_be64(p->regs + PHB_IODA_DATA0, 0);
	}

	/* Update ER pending indication */
	p7ioc_phb_ioda_sel(p, IODA_TBL_PEEV, 0, true);
	peev0 = in_be64(p->regs + PHB_IODA_DATA0);
	peev1 = in_be64(p->regs + PHB_IODA_DATA0);
	if (peev0 || peev1) {
		p->err.err_src   = P7IOC_ERR_SRC_PHB0 + p->index;
		p->err.err_class = P7IOC_ERR_CLASS_ER;
		p->err.err_bit   = 0;
		p7ioc_phb_set_err_pending(p, true);
	} else
		p7ioc_phb_set_err_pending(p, false);

	return OPAL_SUCCESS;
}

static int64_t p7ioc_eeh_freeze_set(struct phb *phb, uint64_t pe_number,
				    uint64_t eeh_action_token)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(phb);
	uint64_t data;

	if (pe_number > 127)
		return OPAL_PARAMETER;

	if (eeh_action_token != OPAL_EEH_ACTION_SET_FREEZE_MMIO &&
	    eeh_action_token != OPAL_EEH_ACTION_SET_FREEZE_DMA &&
	    eeh_action_token != OPAL_EEH_ACTION_SET_FREEZE_ALL)
		return OPAL_PARAMETER;

	if (eeh_action_token & OPAL_EEH_ACTION_SET_FREEZE_MMIO) {
		p7ioc_phb_ioda_sel(p, IODA_TBL_PESTA, pe_number, false);
		data = in_be64(p->regs + PHB_IODA_DATA0);
		data |= IODA_PESTA_MMIO_FROZEN;
		out_be64(p->regs + PHB_IODA_DATA0, data);
	}

	if (eeh_action_token & OPAL_EEH_ACTION_SET_FREEZE_DMA) {
		p7ioc_phb_ioda_sel(p, IODA_TBL_PESTB, pe_number, false);
		data = in_be64(p->regs + PHB_IODA_DATA0);
		data |= IODA_PESTB_DMA_STOPPED;
		out_be64(p->regs + PHB_IODA_DATA0, data);
	}

	return OPAL_SUCCESS;
}

static int64_t p7ioc_err_inject_finalize(struct p7ioc_phb *p, uint64_t addr,
					 uint64_t mask, uint64_t ctrl,
					 bool is_write)
{
	if (is_write)
		ctrl |= PHB_PAPR_ERR_INJ_CTL_WR;
	else
		ctrl |= PHB_PAPR_ERR_INJ_CTL_RD;

	/* HW100549: Take read and write for outbound errors
	 * on DD10 chip
	 */
	if (p->rev == P7IOC_REV_DD10)
		ctrl |= (PHB_PAPR_ERR_INJ_CTL_RD | PHB_PAPR_ERR_INJ_CTL_WR);

	out_be64(p->regs + PHB_PAPR_ERR_INJ_ADDR, addr);
	out_be64(p->regs + PHB_PAPR_ERR_INJ_MASK, mask);
	out_be64(p->regs + PHB_PAPR_ERR_INJ_CTL, ctrl);

	return OPAL_SUCCESS;
}

static int64_t p7ioc_err_inject_mem32(struct p7ioc_phb *p, uint32_t pe_no,
				      uint64_t addr, uint64_t mask,
				      bool is_write)
{
	uint64_t a, m, prefer, base;
	uint64_t ctrl = PHB_PAPR_ERR_INJ_CTL_OUTB;
	int32_t index;

	a = 0x0ull;
	prefer = 0x0ull;
	for (index = 0; index < 128; index++) {
		if (GETFIELD(IODA_XXDT_PE, p->m32d_cache[index]) != pe_no)
			continue;

		base = p->m32_base + M32_PCI_START +
		       (M32_PCI_SIZE / 128) * index;

		/* Update preferred address */
		if (!prefer) {
			prefer = GETFIELD(PHB_PAPR_ERR_INJ_MASK_MMIO, base);
			prefer = SETFIELD(PHB_PAPR_ERR_INJ_MASK_MMIO,
					  0x0ull, prefer);
		}

		/* The input address matches ? */
		if (addr >= base &&
		    addr < base + (M32_PCI_SIZE / 128)) {
			a = addr;
			break;
		}
	}

	/* Invalid PE number */
	if (!prefer)
		return OPAL_PARAMETER;

	/* Specified address is out of range */
	if (!a) {
		a = prefer;
		m = PHB_PAPR_ERR_INJ_MASK_MMIO;
	} else {
		m = mask;
	}

	return p7ioc_err_inject_finalize(p, a, m, ctrl, is_write);
}

static int64_t p7ioc_err_inject_io32(struct p7ioc_phb *p, uint32_t pe_no,
				     uint64_t addr, uint64_t mask,
				     bool is_write)
{
	uint64_t a, m, prefer, base;
	uint64_t ctrl = PHB_PAPR_ERR_INJ_CTL_OUTB;
	int32_t index;

	a = 0x0ull;
	prefer = 0x0ull;
	for (index = 0; index < 128; index++) {
		if (GETFIELD(IODA_XXDT_PE, p->iod_cache[index]) != pe_no)
                        continue;

		base = p->io_base + (PHB_IO_SIZE / 128) * index;

		/* Update preferred address */
		if (!prefer) {
			prefer = GETFIELD(PHB_PAPR_ERR_INJ_MASK_IO, base);
			prefer = SETFIELD(PHB_PAPR_ERR_INJ_MASK_IO, 0x0ull, prefer);
		}

		/* The input address matches ? */
		if (addr >= base &&
		    addr <  base + (PHB_IO_SIZE / 128)) {
			a = addr;
			break;
		}
	}

	/* Invalid PE number */
	if (!prefer)
		return OPAL_PARAMETER;

	/* Specified address is out of range */
	if (!a) {
		a = prefer;
		m = PHB_PAPR_ERR_INJ_MASK_IO;
	} else {
		m = mask;
	}

	return p7ioc_err_inject_finalize(p, a, m, ctrl, is_write);
}

static int64_t p7ioc_err_inject_cfg(struct p7ioc_phb *p, uint32_t pe_no,
				    uint64_t addr, uint64_t mask,
				    bool is_write)
{
	uint64_t a, m;
	uint64_t ctrl = PHB_PAPR_ERR_INJ_CTL_CFG;
	uint8_t v_bits, base, bus_no;

	/* Looking into PELTM to see if the PCI bus# is owned
	 * by the PE#. Otherwise, we have to figure one out.
	 */
	base = GETFIELD(IODA_PELTM_BUS, p->peltm_cache[pe_no]);
	v_bits = GETFIELD(IODA_PELTM_BUS_VALID, p->peltm_cache[pe_no]);
	switch (v_bits) {
	case IODA_BUS_VALID_3_BITS:
	case IODA_BUS_VALID_4_BITS:
	case IODA_BUS_VALID_5_BITS:
	case IODA_BUS_VALID_6_BITS:
	case IODA_BUS_VALID_7_BITS:
	case IODA_BUS_VALID_ALL:
		base = GETFIELD(IODA_PELTM_BUS, p->peltm_cache[pe_no]);
		base &= (0xff - (((1 << (7 - v_bits)) - 1)));
		a = SETFIELD(PHB_PAPR_ERR_INJ_MASK_CFG, 0x0ul, base);
		m = PHB_PAPR_ERR_INJ_MASK_CFG;

		bus_no = GETFIELD(PHB_PAPR_ERR_INJ_MASK_CFG, addr);
		bus_no &= (0xff - (((1 << (7 - v_bits)) - 1)));
		if (base == bus_no) {
			a = addr;
			m = mask;
		}

		break;
	case IODA_BUS_VALID_ANY:
	default:
		return OPAL_PARAMETER;
	}

	return p7ioc_err_inject_finalize(p, a, m, ctrl, is_write);
}

static int64_t p7ioc_err_inject_dma(struct p7ioc_phb *p, uint32_t pe_no,
				    uint64_t addr, uint64_t mask,
				    bool is_write)
{
	uint64_t ctrl = PHB_PAPR_ERR_INJ_CTL_INB;
	int32_t index;

	/* For DMA, we just pick address from TVT */
	for (index = 0; index < 128; index++) {
		if (GETFIELD(IODA_TVT1_PE_NUM, p->tve_hi_cache[index]) != pe_no)
			continue;

		addr = SETFIELD(PHB_PAPR_ERR_INJ_MASK_DMA, 0ul, index);
		mask = PHB_PAPR_ERR_INJ_MASK_DMA;
		break;
	}

	/* Some PE might not have DMA capability */
	if (index >= 128)
		return OPAL_PARAMETER;

	return p7ioc_err_inject_finalize(p, addr, mask, ctrl, is_write);
}

static int64_t p7ioc_err_inject(struct phb *phb, uint32_t pe_no,
				uint32_t type, uint32_t func,
				uint64_t addr, uint64_t mask)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(phb);
	int64_t (*handler)(struct p7ioc_phb *p, uint32_t pe_no,
			   uint64_t addr, uint64_t mask, bool is_write);
	bool is_write;

	/* To support 64-bits error later */
	if (type == OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64)
		return OPAL_UNSUPPORTED;

	/* We can't inject error to the reserved PE#127 */
	if (pe_no > 126)
		return OPAL_PARAMETER;

	/* Clear the leftover from last time */
	out_be64(p->regs + PHB_PAPR_ERR_INJ_CTL, 0x0ul);

	/* Check if PE number is valid one in PELTM cache */
	if (p->peltm_cache[pe_no] == 0x0001f80000000000ull)
		return OPAL_PARAMETER;

	/* Clear the leftover from last time */
	out_be64(p->regs + PHB_PAPR_ERR_INJ_CTL, 0x0ul);

	switch (func) {
	case OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR:
	case OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_DATA:
		is_write = false;
		handler = p7ioc_err_inject_mem32;
		break;
	case OPAL_ERR_INJECT_FUNC_IOA_ST_MEM_ADDR:
	case OPAL_ERR_INJECT_FUNC_IOA_ST_MEM_DATA:
		is_write = true;
		handler = p7ioc_err_inject_mem32;
		break;
	case OPAL_ERR_INJECT_FUNC_IOA_LD_IO_ADDR:
	case OPAL_ERR_INJECT_FUNC_IOA_LD_IO_DATA:
		is_write = false;
		handler = p7ioc_err_inject_io32;
		break;
	case OPAL_ERR_INJECT_FUNC_IOA_ST_IO_ADDR:
	case OPAL_ERR_INJECT_FUNC_IOA_ST_IO_DATA:
		is_write = true;
		handler = p7ioc_err_inject_io32;
		break;
	case OPAL_ERR_INJECT_FUNC_IOA_LD_CFG_ADDR:
	case OPAL_ERR_INJECT_FUNC_IOA_LD_CFG_DATA:
		is_write = false;
		handler = p7ioc_err_inject_cfg;
		break;
	case OPAL_ERR_INJECT_FUNC_IOA_ST_CFG_ADDR:
	case OPAL_ERR_INJECT_FUNC_IOA_ST_CFG_DATA:
		is_write = true;
		handler = p7ioc_err_inject_cfg;
		break;
	case OPAL_ERR_INJECT_FUNC_IOA_DMA_RD_ADDR:
	case OPAL_ERR_INJECT_FUNC_IOA_DMA_RD_DATA:
	case OPAL_ERR_INJECT_FUNC_IOA_DMA_RD_MASTER:
	case OPAL_ERR_INJECT_FUNC_IOA_DMA_RD_TARGET:
		is_write = false;
		handler = p7ioc_err_inject_dma;
		break;
	case OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_ADDR:
	case OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_DATA:
	case OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_MASTER:
	case OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET:
		is_write = true;
		handler = p7ioc_err_inject_dma;
		break;
	default:
		return OPAL_PARAMETER;
	}

	return handler(p, pe_no, addr, mask, is_write);
}

static int64_t p7ioc_get_diag_data(struct phb *phb, void *diag_buffer,
				   uint64_t diag_buffer_len)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(phb);
	struct OpalIoP7IOCPhbErrorData *diag = diag_buffer;

	if (diag_buffer_len < sizeof(struct OpalIoP7IOCPhbErrorData))
		return OPAL_PARAMETER;

	/* Specific error data */
	p7ioc_eeh_read_phb_status(p, diag);

	/*
	 * We're running to here probably because of errors (MAL
	 * or INF class) from IOC. For the case, we need clear
	 * the pending errors and mask the error bit for MAL class
	 * error. Fortunately, we shouldn't get MAL class error from
	 * IOC on P7IOC.
	 */
	if (p7ioc_phb_err_pending(p)			&&
	    p->err.err_class == P7IOC_ERR_CLASS_INF	&&
	    p->err.err_src >= P7IOC_ERR_SRC_PHB0	&&
	    p->err.err_src <= P7IOC_ERR_SRC_PHB5) {
		p7ioc_ER_err_clear(p);
		p7ioc_phb_set_err_pending(p, false);
	}

	return OPAL_SUCCESS;
}

/*
 * We don't support address remapping now since all M64
 * BARs are sharing on remapping base address. We might
 * introduce flag to the PHB in order to trace that. The
 * flag allows to be changed for once. It's something to
 * do in future.
 */
static int64_t p7ioc_set_phb_mem_window(struct phb *phb,
                                        uint16_t window_type,
                                        uint16_t window_num,
                                        uint64_t base,
                                        uint64_t __unused pci_base,
                                        uint64_t size)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(phb);
	uint64_t data64;

	switch (window_type) {
	case OPAL_IO_WINDOW_TYPE:
	case OPAL_M32_WINDOW_TYPE:
		return OPAL_UNSUPPORTED;
	case OPAL_M64_WINDOW_TYPE:
		if (window_num >= 16)
			return OPAL_PARAMETER;
		/* The base and size should be 16MB aligned */
		if (base & 0xFFFFFF || size & 0xFFFFFF)
			return OPAL_PARAMETER;
		data64 = p->m64b_cache[window_num];
		data64 = SETFIELD(IODA_M64BT_BASE, data64, base >> 24);
		size = (size >> 24);
		data64 = SETFIELD(IODA_M64BT_MASK, data64, 0x1000000 - size);
		break;
	default:
		return OPAL_PARAMETER;
	}

	/*
	 * If the M64 BAR hasn't enabled yet, we needn't flush
	 * the setting to hardware and just keep it to the cache
	 */
	p->m64b_cache[window_num] = data64;
	if (!(data64 & IODA_M64BT_ENABLE))
		return OPAL_SUCCESS;
	p7ioc_phb_ioda_sel(p, IODA_TBL_M64BT, window_num, false);
	out_be64(p->regs + PHB_IODA_DATA0, data64);

	return OPAL_SUCCESS;
}

/*
 * We can't enable or disable I/O and M32 dynamically, even
 * unnecessary. So the function only support M64 BARs.
 */
static int64_t p7ioc_phb_mmio_enable(struct phb *phb,
				     uint16_t window_type,
				     uint16_t window_num,
				     uint16_t enable)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(phb);
	uint64_t data64, base, mask;

	switch (window_type) {
	case OPAL_IO_WINDOW_TYPE:
	case OPAL_M32_WINDOW_TYPE:
		return OPAL_UNSUPPORTED;
	case OPAL_M64_WINDOW_TYPE:
		if (window_num >= 16 ||
		    enable >= OPAL_ENABLE_M64_NON_SPLIT)
			return OPAL_PARAMETER;

		break;
	default:
		return OPAL_PARAMETER;
	}

	/*
	 * While enabling one specific M64 BAR, we should have
	 * the base/size configured correctly. Otherwise, it
	 * probably incurs fenced AIB.
	 */
	data64 = p->m64b_cache[window_num];
	if (enable == OPAL_ENABLE_M64_SPLIT) {
		base = GETFIELD(IODA_M64BT_BASE, data64);
		base = (base << 24);
		mask = GETFIELD(IODA_M64BT_MASK, data64);
		if (base < p->m64_base || mask == 0x0ul)
			return OPAL_PARTIAL;

		data64 |= IODA_M64BT_ENABLE;
	} else if (enable == OPAL_DISABLE_M64) {
		data64 &= ~IODA_M64BT_ENABLE;
	}

	p7ioc_phb_ioda_sel(p, IODA_TBL_M64BT, window_num, false);
	out_be64(p->regs + PHB_IODA_DATA0, data64);
	p->m64b_cache[window_num] = data64;

	return OPAL_SUCCESS;
}

static int64_t p7ioc_map_pe_mmio_window(struct phb *phb, uint16_t pe_number,
					uint16_t window_type,
					uint16_t window_num,
					uint16_t segment_num)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(phb);
	uint64_t tbl, index;
	uint64_t *cache;

	if (pe_number > 127)
		return OPAL_PARAMETER;

	switch(window_type) {
	case OPAL_IO_WINDOW_TYPE:
		if (window_num != 0 || segment_num > 127)
			return OPAL_PARAMETER;
		tbl = IODA_TBL_IODT;
		index = segment_num;
		cache = &p->iod_cache[index];
		break;
	case OPAL_M32_WINDOW_TYPE:
		if (window_num != 0 || segment_num > 127)
			return OPAL_PARAMETER;
		tbl = IODA_TBL_M32DT;
		index = segment_num;
		cache = &p->m32d_cache[index];
		break;
	case OPAL_M64_WINDOW_TYPE:
		if (window_num > 15 || segment_num > 7)
			return OPAL_PARAMETER;

		tbl = IODA_TBL_M64DT;
		index = window_num << 3 | segment_num;
		cache = &p->m64d_cache[index];
		break;
	default:
		return OPAL_PARAMETER;
	}

	p7ioc_phb_ioda_sel(p, tbl, index, false);
	out_be64(p->regs + PHB_IODA_DATA0,
		 SETFIELD(IODA_XXDT_PE, 0ull, pe_number));

	/* Update cache */
	*cache = SETFIELD(IODA_XXDT_PE, 0ull, pe_number);

	return OPAL_SUCCESS;
}


static int64_t p7ioc_set_pe(struct phb *phb, uint64_t pe_number,
			    uint64_t bdfn, uint8_t bus_compare,
			    uint8_t dev_compare, uint8_t func_compare,
			    uint8_t pe_action)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(phb);
	uint64_t pelt;
	uint64_t *cache = &p->peltm_cache[pe_number];

	if (pe_number > 127 || bdfn > 0xffff)
		return OPAL_PARAMETER;
	if (pe_action != OPAL_MAP_PE && pe_action != OPAL_UNMAP_PE)
		return OPAL_PARAMETER;
	if (bus_compare > 7)
		return OPAL_PARAMETER;

	if (pe_action == OPAL_MAP_PE) {
		pelt  = SETFIELD(IODA_PELTM_BUS, 0ul, bdfn >> 8);
		pelt |= SETFIELD(IODA_PELTM_DEV, 0ul, (bdfn >> 3) & 0x1f);
		pelt |= SETFIELD(IODA_PELTM_FUNC, 0ul, bdfn & 0x7);
		pelt |= SETFIELD(IODA_PELTM_BUS_VALID, 0ul, bus_compare);
		if (dev_compare)
			pelt |= IODA_PELTM_DEV_VALID;
		if (func_compare)
			pelt |= IODA_PELTM_FUNC_VALID;
	} else
		pelt = 0;

	p7ioc_phb_ioda_sel(p, IODA_TBL_PELTM, pe_number, false);
	out_be64(p->regs + PHB_IODA_DATA0, pelt);

	/* Update cache */
	*cache = pelt;

	return OPAL_SUCCESS;
}


static int64_t p7ioc_set_peltv(struct phb *phb, uint32_t parent_pe,
			       uint32_t child_pe, uint8_t state)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(phb);
	uint32_t reg;
	uint64_t mask, peltv;
	uint64_t *cache;
	if (parent_pe > 127 || child_pe > 127)
		return OPAL_PARAMETER;

	cache = (child_pe >> 6) ? &p->peltv_hi_cache[parent_pe] :
		&p->peltv_lo_cache[parent_pe];
	reg = (child_pe >> 6) ? PHB_IODA_DATA1 : PHB_IODA_DATA0;
	child_pe &= 0x2f;
	mask = 1ull << (63 - child_pe);

	p7ioc_phb_ioda_sel(p, IODA_TBL_PELTV, parent_pe, false);
	peltv = in_be64(p->regs + reg);
	if (state)
		peltv |= mask;
	else
		peltv &= ~mask;
	out_be64(p->regs + reg, peltv);

	/* Update cache */
	*cache = peltv;

	return OPAL_SUCCESS;
}

static int64_t p7ioc_map_pe_dma_window(struct phb *phb, uint16_t pe_number,
				       uint16_t window_id, uint16_t tce_levels,
				       uint64_t tce_table_addr,
				       uint64_t tce_table_size,
				       uint64_t tce_page_size)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(phb);
	uint64_t tvt0, tvt1, t, pelt;
	uint64_t dma_window_size;
	uint64_t *cache_lo, *cache_hi;

	if (pe_number > 127 || window_id > 127 || tce_levels != 1)
		return OPAL_PARAMETER;
	cache_lo = &p->tve_lo_cache[window_id];
        cache_hi = &p->tve_hi_cache[window_id];

	/* Encode table size */
	dma_window_size = tce_page_size * (tce_table_size >> 3);
	t = ilog2(dma_window_size);
	if (t < 27)
		return OPAL_PARAMETER;
	tvt0 = SETFIELD(IODA_TVT0_TCE_TABLE_SIZE, 0ul, (t - 26));

	/* Encode TCE page size */
	switch(tce_page_size) {
	case 0x1000:		/* 4K */
		tvt1 = SETFIELD(IODA_TVT1_IO_PSIZE, 0ul, 1ul);
		break;
	case 0x10000:		/* 64K */
		tvt1 = SETFIELD(IODA_TVT1_IO_PSIZE, 0ul, 5ul);
		break;
	case 0x1000000:		/* 16M */
		tvt1 = SETFIELD(IODA_TVT1_IO_PSIZE, 0ul, 13ul);
		break;
	case 0x400000000UL:	/* 16G */
		tvt1 = SETFIELD(IODA_TVT1_IO_PSIZE, 0ul, 23ul);
		break;
	default:
		return OPAL_PARAMETER;
	}

	/* XXX Hub number ... leave 0 for now */

	/* Shift in the address. The table address is "off by 4 bits"
	 * but since the field is itself shifted by 16, we basically
	 * need to write the address >> 12, which basically boils down
	 * to writing a 4k page address
	 */
	tvt0 = SETFIELD(IODA_TVT0_TABLE_ADDR, tvt0, tce_table_addr >> 12);

	/* Read the PE filter info from the PELT-M */
	p7ioc_phb_ioda_sel(p, IODA_TBL_PELTM, pe_number, false);
	pelt = in_be64(p->regs + PHB_IODA_DATA0);

	/* Copy in filter bits from PELT */
	tvt0 = SETFIELD(IODA_TVT0_BUS_VALID, tvt0,
			GETFIELD(IODA_PELTM_BUS_VALID, pelt));
	tvt0 = SETFIELD(IODA_TVT0_BUS_NUM, tvt0,
			GETFIELD(IODA_PELTM_BUS, pelt));
	tvt1 = SETFIELD(IODA_TVT1_DEV_NUM, tvt1,
			GETFIELD(IODA_PELTM_DEV, pelt));
	tvt1 = SETFIELD(IODA_TVT1_FUNC_NUM, tvt1,
			GETFIELD(IODA_PELTM_FUNC, pelt));
	if (pelt & IODA_PELTM_DEV_VALID)
		tvt1 |= IODA_TVT1_DEV_VALID;
	if (pelt & IODA_PELTM_FUNC_VALID)
		tvt1 |= IODA_TVT1_FUNC_VALID;
	tvt1 = SETFIELD(IODA_TVT1_PE_NUM, tvt1, pe_number);

	/* Write the TVE */
	p7ioc_phb_ioda_sel(p, IODA_TBL_TVT, window_id, false);
	out_be64(p->regs + PHB_IODA_DATA1, tvt1);
	out_be64(p->regs + PHB_IODA_DATA0, tvt0);

	/* Update cache */
	*cache_lo = tvt0;
	*cache_hi = tvt1;

	return OPAL_SUCCESS;
}

static int64_t p7ioc_map_pe_dma_window_real(struct phb *phb __unused,
					    uint16_t pe_number __unused,
					    uint16_t dma_window_num __unused,
					    uint64_t pci_start_addr __unused,
					    uint64_t pci_mem_size __unused)
{
	/* XXX Not yet implemented (not yet used by Linux) */
	return OPAL_UNSUPPORTED;
}

static int64_t p7ioc_set_mve(struct phb *phb, uint32_t mve_number,
			     uint32_t pe_number)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(phb);
	uint64_t pelt, mve = 0;
	uint64_t *cache = &p->mve_cache[mve_number];

	if (pe_number > 127 || mve_number > 255)
		return OPAL_PARAMETER;

	/* Read the PE filter info from the PELT-M */
	p7ioc_phb_ioda_sel(p, IODA_TBL_PELTM, pe_number, false);
	pelt = in_be64(p->regs + PHB_IODA_DATA0);

	mve = SETFIELD(IODA_MVT_BUS_VALID, mve,
		       GETFIELD(IODA_PELTM_BUS_VALID, pelt));
	mve = SETFIELD(IODA_MVT_BUS_NUM, mve,
		       GETFIELD(IODA_PELTM_BUS, pelt));
	mve = SETFIELD(IODA_MVT_DEV_NUM, mve,
		       GETFIELD(IODA_PELTM_DEV, pelt));
	mve = SETFIELD(IODA_MVT_FUNC_NUM, mve,
		       GETFIELD(IODA_PELTM_FUNC, pelt));
	if (pelt & IODA_PELTM_DEV_VALID)
		mve |= IODA_MVT_DEV_VALID;
	if (pelt & IODA_PELTM_FUNC_VALID)
		mve |= IODA_MVT_FUNC_VALID;
	mve = SETFIELD(IODA_MVT_PE_NUM, mve, pe_number);

	p7ioc_phb_ioda_sel(p, IODA_TBL_MVT, mve_number, false);
	out_be64(p->regs + PHB_IODA_DATA0, mve);

	/* Update cache */
	*cache = mve;

	return OPAL_SUCCESS;
}

static int64_t p7ioc_set_mve_enable(struct phb *phb, uint32_t mve_number,
				    uint32_t state)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(phb);
	uint64_t mve;
	uint64_t *cache = &p->mve_cache[mve_number];

	if (mve_number > 255)
		return OPAL_PARAMETER;

	p7ioc_phb_ioda_sel(p, IODA_TBL_MVT, mve_number, false);
	mve = in_be64(p->regs + PHB_IODA_DATA0);
	if (state)
		mve |= IODA_MVT_VALID;
	else
		mve &= ~IODA_MVT_VALID;
	out_be64(p->regs + PHB_IODA_DATA0, mve);

	/* Update cache */
	*cache = mve;

	return OPAL_SUCCESS;
}

static int64_t p7ioc_set_xive_pe(struct phb *phb, uint32_t pe_number,
				 uint32_t xive_num)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(phb);
	uint64_t xive;

	if (pe_number > 127 || xive_num > 255)
		return OPAL_PARAMETER;

	/* Update MXIVE cache */
	xive = p->mxive_cache[xive_num];
	xive = SETFIELD(IODA_XIVT_PENUM, xive, pe_number);
	p->mxive_cache[xive_num] = xive;

	/* Update HW */
	p7ioc_phb_ioda_sel(p, IODA_TBL_MXIVT, xive_num, false);	
	xive = in_be64(p->regs + PHB_IODA_DATA0);
	xive = SETFIELD(IODA_XIVT_PENUM, xive, pe_number);
	out_be64(p->regs + PHB_IODA_DATA0, xive);

	return OPAL_SUCCESS;
}

static int64_t p7ioc_get_xive_source(struct phb *phb, uint32_t xive_num,
				     int32_t *interrupt_source_number)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(phb);

	if (xive_num > 255 || !interrupt_source_number)
		return OPAL_PARAMETER;

	*interrupt_source_number = (p->buid_msi << 4) | xive_num;

	return OPAL_SUCCESS;
}

static int64_t p7ioc_get_msi_32(struct phb *phb __unused, uint32_t mve_number,
				uint32_t xive_num, uint8_t msi_range,
				uint32_t *msi_address, uint32_t *message_data)
{
	if (mve_number > 255 || xive_num > 255 || msi_range != 1)
		return OPAL_PARAMETER;

	*msi_address = 0xffff0000 | (mve_number << 4);
	*message_data = xive_num;

	return OPAL_SUCCESS;
}

static int64_t p7ioc_get_msi_64(struct phb *phb __unused, uint32_t mve_number,
				uint32_t xive_num, uint8_t msi_range,
				uint64_t *msi_address, uint32_t *message_data)
{
	if (mve_number > 255 || xive_num > 255 || msi_range != 1)
		return OPAL_PARAMETER;

	*msi_address = (9ul << 60) | (((u64)mve_number) << 48);
	*message_data = xive_num;

	return OPAL_SUCCESS;
}

static void p7ioc_root_port_init(struct phb *phb, struct pci_device *dev,
				 int ecap, int aercap)
{
	uint16_t bdfn = dev->bdfn;
	uint16_t val16;
	uint32_t val32;

	/* Enable SERR and parity checking */
	pci_cfg_read16(phb, bdfn, PCI_CFG_CMD, &val16);
	val16 |= (PCI_CFG_CMD_SERR_EN | PCI_CFG_CMD_PERR_RESP);
	pci_cfg_write16(phb, bdfn, PCI_CFG_CMD, val16);

	/* Enable reporting various errors */
	if (!ecap) return;
	pci_cfg_read16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, &val16);
	val16 |= (PCICAP_EXP_DEVCTL_CE_REPORT |
		  PCICAP_EXP_DEVCTL_NFE_REPORT |
		  PCICAP_EXP_DEVCTL_FE_REPORT |
		  PCICAP_EXP_DEVCTL_UR_REPORT);
	pci_cfg_write16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, val16);

        /* Mask various unrecoverable errors */
	if (!aercap) return;
	pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_UE_MASK, &val32);
	val32 |= (PCIECAP_AER_UE_MASK_POISON_TLP |
		  PCIECAP_AER_UE_MASK_COMPL_TIMEOUT |
		  PCIECAP_AER_UE_MASK_COMPL_ABORT |
		  PCIECAP_AER_UE_MASK_ECRC);
	pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_UE_MASK, val32);

	/* Report various unrecoverable errors as fatal errors */
	pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_UE_SEVERITY, &val32);
	val32 |= (PCIECAP_AER_UE_SEVERITY_DLLP |
		  PCIECAP_AER_UE_SEVERITY_SURPRISE_DOWN |
		  PCIECAP_AER_UE_SEVERITY_FLOW_CTL_PROT |
		  PCIECAP_AER_UE_SEVERITY_UNEXP_COMPL |
		  PCIECAP_AER_UE_SEVERITY_RECV_OVFLOW |
		  PCIECAP_AER_UE_SEVERITY_MALFORMED_TLP);
	pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_UE_SEVERITY, val32);

	/* Mask various recoverable errors */
	pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_CE_MASK, &val32);
	val32 |= PCIECAP_AER_CE_MASK_ADV_NONFATAL;
	pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CE_MASK, val32);

	/* Enable ECRC check */
	pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, &val32);
	val32 |= (PCIECAP_AER_CAPCTL_ECRCG_EN |
		  PCIECAP_AER_CAPCTL_ECRCC_EN);
	pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, val32);

	/* Enable all error reporting */
	pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_RERR_CMD, &val32);
	val32 |= (PCIECAP_AER_RERR_CMD_FE |
		  PCIECAP_AER_RERR_CMD_NFE |
		  PCIECAP_AER_RERR_CMD_CE);
	pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_RERR_CMD, val32);
}

static void p7ioc_switch_port_init(struct phb *phb,
				   struct pci_device *dev,
				   int ecap, int aercap)
{
	uint16_t bdfn = dev->bdfn;
	uint16_t val16;
	uint32_t val32;

	/* Enable SERR and parity checking and disable INTx */
	pci_cfg_read16(phb, bdfn, PCI_CFG_CMD, &val16);
	val16 |= (PCI_CFG_CMD_PERR_RESP |
		  PCI_CFG_CMD_SERR_EN |
		  PCI_CFG_CMD_INTx_DIS);
	pci_cfg_write16(phb, bdfn, PCI_CFG_CMD, val16);

	/* Disable partity error and enable system error */
	pci_cfg_read16(phb, bdfn, PCI_CFG_BRCTL, &val16);
	val16 &= ~PCI_CFG_BRCTL_PERR_RESP_EN;
	val16 |= PCI_CFG_BRCTL_SERR_EN;
	pci_cfg_write16(phb, bdfn, PCI_CFG_BRCTL, val16);

	/* Enable reporting various errors */
	if (!ecap) return;
	pci_cfg_read16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, &val16);
	val16 |= (PCICAP_EXP_DEVCTL_CE_REPORT |
		  PCICAP_EXP_DEVCTL_NFE_REPORT |
		  PCICAP_EXP_DEVCTL_FE_REPORT);
	pci_cfg_write16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, val16);

	/* Unmask all unrecoverable errors */
	if (!aercap) return;
	pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_UE_MASK, 0x0);

	/* Severity of unrecoverable errors */
	if (dev->dev_type == PCIE_TYPE_SWITCH_UPPORT)
		val32 = (PCIECAP_AER_UE_SEVERITY_DLLP |
			 PCIECAP_AER_UE_SEVERITY_SURPRISE_DOWN |
			 PCIECAP_AER_UE_SEVERITY_FLOW_CTL_PROT |
			 PCIECAP_AER_UE_SEVERITY_RECV_OVFLOW |
			 PCIECAP_AER_UE_SEVERITY_MALFORMED_TLP |
			 PCIECAP_AER_UE_SEVERITY_INTERNAL);
	else
		val32 = (PCIECAP_AER_UE_SEVERITY_FLOW_CTL_PROT |
			 PCIECAP_AER_UE_SEVERITY_INTERNAL);
	pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_UE_SEVERITY, val32);

        /* Mask various correctable errors */
	val32 = PCIECAP_AER_CE_MASK_ADV_NONFATAL;
	pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CE_MASK, val32);

	/* Enable ECRC generation and disable ECRC check */
	pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, &val32);
	val32 |= PCIECAP_AER_CAPCTL_ECRCG_EN;
	val32 &= ~PCIECAP_AER_CAPCTL_ECRCC_EN;
	pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, val32);
}

static void p7ioc_endpoint_init(struct phb *phb,
				struct pci_device *dev,
				int ecap, int aercap)
{
	uint16_t bdfn = dev->bdfn;
	uint16_t val16;
	uint32_t val32;

	/* Enable SERR and parity checking */
	pci_cfg_read16(phb, bdfn, PCI_CFG_CMD, &val16);
	val16 |= (PCI_CFG_CMD_PERR_RESP |
		  PCI_CFG_CMD_SERR_EN);
	pci_cfg_write16(phb, bdfn, PCI_CFG_CMD, val16);

	/* Enable reporting various errors */
	if (!ecap) return;
	pci_cfg_read16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, &val16);
	val16 &= ~PCICAP_EXP_DEVCTL_CE_REPORT;
	val16 |= (PCICAP_EXP_DEVCTL_NFE_REPORT |
		  PCICAP_EXP_DEVCTL_FE_REPORT |
		  PCICAP_EXP_DEVCTL_UR_REPORT);
	pci_cfg_write16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, val16);

	/* Enable ECRC generation and check */
	pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, &val32);
	val32 |= (PCIECAP_AER_CAPCTL_ECRCG_EN |
		  PCIECAP_AER_CAPCTL_ECRCC_EN);
	pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, val32);
}

static int p7ioc_device_init(struct phb *phb,
			     struct pci_device *dev,
			     void *data __unused)
{
	int ecap = 0;
	int aercap = 0;

	/* Figure out AER capability */
	if (pci_has_cap(dev, PCI_CFG_CAP_ID_EXP, false)) {
		ecap = pci_cap(dev, PCI_CFG_CAP_ID_EXP, false);

		if (!pci_has_cap(dev, PCIECAP_ID_AER, true)) {
			aercap = pci_find_ecap(phb, dev->bdfn,
					       PCIECAP_ID_AER, NULL);
			if (aercap > 0)
				pci_set_cap(dev, PCIECAP_ID_AER, aercap, true);
		} else {
			aercap = pci_cap(dev, PCIECAP_ID_AER, true);
		}
	}

	/* Common initialization for the device */
	pci_device_init(phb, dev);

	if (dev->dev_type == PCIE_TYPE_ROOT_PORT)
		p7ioc_root_port_init(phb, dev, ecap, aercap);
	else if (dev->dev_type == PCIE_TYPE_SWITCH_UPPORT ||
		dev->dev_type == PCIE_TYPE_SWITCH_DNPORT)
		p7ioc_switch_port_init(phb, dev, ecap, aercap);
	else
		p7ioc_endpoint_init(phb, dev, ecap, aercap);

	return 0;
}

static int64_t p7ioc_pci_reinit(struct phb *phb,
				uint64_t scope, uint64_t data)
{
	struct pci_device *pd;
	uint16_t bdfn = data;
	int ret;

	if (scope != OPAL_REINIT_PCI_DEV)
		return OPAL_PARAMETER;

	pd = pci_find_dev(phb, bdfn);
	if (!pd)
		return OPAL_PARAMETER;

	ret = p7ioc_device_init(phb, pd, NULL);
	if (ret)
		return OPAL_HARDWARE;

	return OPAL_SUCCESS;
}

static uint8_t p7ioc_choose_bus(struct phb *phb __unused,
				struct pci_device *bridge,
				uint8_t candidate, uint8_t *max_bus,
				bool *use_max)
{
	uint8_t m, al;
	int i;	

	/* Bus number selection is nasty on P7IOC. Our EEH HW can only cope
	 * with bus ranges that are naturally aligned powers of two. It also
	 * has "issues" with dealing with more than 32 bus numbers.
	 *
	 * On the other hand we can deal with overlaps to some extent as
	 * the PELT-M entries are ordered.
	 *
	 * We also don't need to bother with the busses between the upstream
	 * and downstream ports of switches.
	 *
	 * For now we apply this simple mechanism which matche what OFW does
	 * under OPAL:
	 *
	 * - Top level bus (PHB to RC) is 0
	 * - RC to first device is 1..ff
	 * - Then going down, a switch gets (N = parent bus, M = parent max)
	 *       * Upstream bridge is N+1, M, use_max = false
	 *       * Downstream bridge is closest power of two from 32 down and
	 *       * use max
	 *
	 * XXX NOTE: If we have access to HW VPDs, we could know whether
	 * this is a bridge with a single device on it such as IPR and
	 * limit ourselves to a single bus number.
	 */

	/* Default use_max is false (legacy) */
	*use_max = false;

	/* If we are the root complex or we are not in PCIe land anymore, just
	 * use legacy algorithm
	 */
	if (!bridge || !pci_has_cap(bridge, PCI_CFG_CAP_ID_EXP, false))
		return candidate;

	/* Figure out the bridge type */
	switch(bridge->dev_type) {
	case PCIE_TYPE_PCIX_TO_PCIE:
		/* PCI-X to PCIE ... hrm, let's not bother too much with that */
		return candidate;
	case PCIE_TYPE_SWITCH_UPPORT:
	case PCIE_TYPE_ROOT_PORT:
		/* Upstream port, we use legacy handling as well */
		return candidate;
	case PCIE_TYPE_SWITCH_DNPORT:
	case PCIE_TYPE_PCIE_TO_PCIX:
		/* That leaves us with the interesting cases that we handle */
		break;
	default:
		/* Should not happen, treat as legacy */
		prerror("PCI: Device %04x has unsupported type %d in choose_bus\n",
			bridge->bdfn, bridge->dev_type);
		return candidate;
	}

	/* Ok, let's find a power of two that fits, fallback to 1 */
	for (i = 5; i >= 0; i--) {
		m = (1 << i) - 1;
		al = (candidate + m) & ~m;
		if (al <= *max_bus && (al + m) <= *max_bus)
			break;
	}
	if (i < 0)
		return 0;
	*use_max = true;
	*max_bus = al + m;
	return al;
}

static int64_t p7ioc_get_reserved_pe_number(struct phb *phb __unused)
{
	return 127;
}

/* p7ioc_phb_init_ioda_cache - Reset the IODA cache values
 */
static void p7ioc_phb_init_ioda_cache(struct p7ioc_phb *p)
{
	unsigned int i;

	for (i = 0; i < 8; i++)
		p->lxive_cache[i] = SETFIELD(IODA_XIVT_PRIORITY, 0ull, 0xff);
	for (i = 0; i < 256; i++) {
		p->mxive_cache[i] = SETFIELD(IODA_XIVT_PRIORITY, 0ull, 0xff);
		p->mve_cache[i]   = 0;
	}
	for (i = 0; i < 16; i++)
		p->m64b_cache[i] = 0;

	/*
	 * Since there is only one root port under the PHB,
	 * We make all PELTM entries except last one to be
	 * invalid by configuring their RID to 00:00.1. The
	 * last entry is to encompass all RIDs.
	 */
	for (i = 0; i < 127; i++)
		p->peltm_cache[i] = 0x0001f80000000000UL;
	p->peltm_cache[127] = 0x0ul;

	for (i = 0; i < 128; i++) {
		p->peltv_lo_cache[i]	= 0;
		p->peltv_hi_cache[i]	= 0;
		p->tve_lo_cache[i]	= 0;
		p->tve_hi_cache[i]	= 0;
		p->iod_cache[i]		= 0;
		p->m32d_cache[i]	= 0;
		p->m64d_cache[i]	= 0;
	}
}

/* p7ioc_phb_ioda_reset - Reset the IODA tables
 *
 * @purge: If true, the cache is cleared and the cleared values
 *         are applied to HW. If false, the cached values are
 *         applied to HW
 *
 * This reset the IODA tables in the PHB. It is called at
 * initialization time, on PHB reset, and can be called
 * explicitly from OPAL
 */
static int64_t p7ioc_ioda_reset(struct phb *phb, bool purge)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(phb);
	unsigned int i;
	uint64_t reg64;
	uint64_t data64, data64_hi;
	uint8_t prio;
	uint16_t server;
	uint64_t m_server, m_prio;

	/* If the "purge" argument is set, we clear the table cache */
	if (purge)
		p7ioc_phb_init_ioda_cache(p);

	/* Init_18..19: Setup the HRT
	 *
	 * XXX NOTE: I still don't completely get that HRT business so
	 * I'll just mimmic BML and put the PHB number + 1 in there
	 */
	p7ioc_phb_ioda_sel(p, IODA_TBL_HRT, 0, true);
	out_be64(p->regs + PHB_IODA_DATA0, p->index + 1);
	out_be64(p->regs + PHB_IODA_DATA0, p->index + 1);
	out_be64(p->regs + PHB_IODA_DATA0, p->index + 1);
	out_be64(p->regs + PHB_IODA_DATA0, p->index + 1);

	/* Init_20..21: Cleanup the LXIVT
	 *
	 * We set the priority to FF (masked) and clear everything
	 * else. That means we leave the HRT index to 0 which is
	 * going to remain unmodified... for now.
	 */
	p7ioc_phb_ioda_sel(p, IODA_TBL_LXIVT, 0, true);
	for (i = 0; i < 8; i++) {
		data64 = p->lxive_cache[i];
		server = GETFIELD(IODA_XIVT_SERVER, data64);
		prio = GETFIELD(IODA_XIVT_PRIORITY, data64);

		/* Now we mangle the server and priority */
		if (prio == 0xff) {
			m_server = 0;
			m_prio = 0xff;
		} else {
			m_server = server >> 3;
			m_prio = (prio >> 3) | ((server & 7) << 5);
		}

		data64 = SETFIELD(IODA_XIVT_SERVER,   data64, m_server);
		data64 = SETFIELD(IODA_XIVT_PRIORITY, data64, m_prio);
		out_be64(p->regs + PHB_IODA_DATA0, data64);
	}

	/* Init_22..23: Cleanup the MXIVT
	 *
	 * We set the priority to FF (masked) and clear everything
	 * else. That means we leave the HRT index to 0 which is
	 * going to remain unmodified... for now.
	 */
	p7ioc_phb_ioda_sel(p, IODA_TBL_MXIVT, 0, true);
	for (i = 0; i < 256; i++) {
		data64 = p->mxive_cache[i];
		server = GETFIELD(IODA_XIVT_SERVER, data64);
		prio = GETFIELD(IODA_XIVT_PRIORITY, data64);

		/* Now we mangle the server and priority */
		if (prio == 0xff) {
			m_server = 0;
			m_prio = 0xff;
		} else {
			m_server = server >> 3;
			m_prio = (prio >> 3) | ((server & 7) << 5);
		}

		data64 = SETFIELD(IODA_XIVT_SERVER,   data64, m_server);
		data64 = SETFIELD(IODA_XIVT_PRIORITY, data64, m_prio);
		out_be64(p->regs + PHB_IODA_DATA0, data64);
	}

	/* Init_24..25: Cleanup the MVT */
	p7ioc_phb_ioda_sel(p, IODA_TBL_MVT, 0, true);
	for (i = 0; i < 256; i++) {
		data64 = p->mve_cache[i];
		out_be64(p->regs + PHB_IODA_DATA0, data64);
	}

	/* Init_26..27: Cleanup the PELTM
	 *
	 * A completely clear PELTM should make everything match PE 0
	 */
	p7ioc_phb_ioda_sel(p, IODA_TBL_PELTM, 0, true);
	for (i = 0; i < 127; i++) {
		data64 = p->peltm_cache[i];
		out_be64(p->regs + PHB_IODA_DATA0, data64);
	}

	/* Init_28..30: Cleanup the PELTV */
	p7ioc_phb_ioda_sel(p, IODA_TBL_PELTV, 0, true);
	for (i = 0; i < 127; i++) {
		data64 = p->peltv_lo_cache[i];
		data64_hi = p->peltv_hi_cache[i];
		out_be64(p->regs + PHB_IODA_DATA1, data64_hi);
		out_be64(p->regs + PHB_IODA_DATA0, data64);
	}

	/* Init_31..33: Cleanup the TVT */
	p7ioc_phb_ioda_sel(p, IODA_TBL_TVT, 0, true);
	for (i = 0; i < 127; i++) {
		data64 = p->tve_lo_cache[i];
		data64_hi = p->tve_hi_cache[i];
		out_be64(p->regs + PHB_IODA_DATA1, data64_hi);
		out_be64(p->regs + PHB_IODA_DATA0, data64);
	}

	/* Init_34..35: Cleanup the M64BT
	 *
	 * We don't enable M64 BARs by default. However,
	 * we shouldn't purge the hw and cache for it in
	 * future.
	 */
	p7ioc_phb_ioda_sel(p, IODA_TBL_M64BT, 0, true);
	for (i = 0; i < 16; i++)
		out_be64(p->regs + PHB_IODA_DATA0, 0);

	/* Init_36..37: Cleanup the IODT */
	p7ioc_phb_ioda_sel(p, IODA_TBL_IODT, 0, true);
	for (i = 0; i < 127; i++) {
		data64 = p->iod_cache[i];
		out_be64(p->regs + PHB_IODA_DATA0, data64);
	}

	/* Init_38..39: Cleanup the M32DT */
	p7ioc_phb_ioda_sel(p, IODA_TBL_M32DT, 0, true);
	for (i = 0; i < 127; i++) {
		data64 = p->m32d_cache[i];
		out_be64(p->regs + PHB_IODA_DATA0, data64);
	}

	/* Init_40..41: Cleanup the M64DT */
	p7ioc_phb_ioda_sel(p, IODA_TBL_M64BT, 0, true);
	for (i = 0; i < 16; i++) {
		data64 = p->m64b_cache[i];
		out_be64(p->regs + PHB_IODA_DATA0, data64);
	}

	p7ioc_phb_ioda_sel(p, IODA_TBL_M64DT, 0, true);
	for (i = 0; i < 127; i++) {
		data64 = p->m64d_cache[i];
		out_be64(p->regs + PHB_IODA_DATA0, data64);
	}

	/* Clear up the TCE cache */
	reg64 = in_be64(p->regs + PHB_PHB2_CONFIG);
	reg64 &= ~PHB_PHB2C_64B_TCE_EN;
	out_be64(p->regs + PHB_PHB2_CONFIG, reg64);
	reg64 |= PHB_PHB2C_64B_TCE_EN;
	out_be64(p->regs + PHB_PHB2_CONFIG, reg64);
	in_be64(p->regs + PHB_PHB2_CONFIG);

	/* Clear PEST & PEEV */
	for (i = 0; i < OPAL_P7IOC_NUM_PEST_REGS; i++) {
		uint64_t pesta, pestb;

		p7ioc_phb_ioda_sel(p, IODA_TBL_PESTA, i, false);
		pesta = in_be64(p->regs + PHB_IODA_DATA0);
		out_be64(p->regs + PHB_IODA_DATA0, 0);
		p7ioc_phb_ioda_sel(p, IODA_TBL_PESTB, i, false);
		pestb = in_be64(p->regs + PHB_IODA_DATA0);
		out_be64(p->regs + PHB_IODA_DATA0, 0);

		if ((pesta & IODA_PESTA_MMIO_FROZEN) ||
		    (pestb & IODA_PESTB_DMA_STOPPED))
			PHBDBG(p, "Frozen PE#%d (%s - %s)\n",
			       i, (pestb & IODA_PESTB_DMA_STOPPED) ? "DMA" : "",
			       (pesta & IODA_PESTA_MMIO_FROZEN) ? "MMIO" : "");
	}

	p7ioc_phb_ioda_sel(p, IODA_TBL_PEEV, 0, true);
	for (i = 0; i < 2; i++)
		out_be64(p->regs + PHB_IODA_DATA0, 0);

	return OPAL_SUCCESS;
}

/*
 * Clear anything we have in PAPR Error Injection registers. Though
 * the spec says the PAPR error injection should be one-shot without
 * the "sticky" bit. However, that's false according to the experiments
 * I had. So we have to clear it at appropriate point in kernel to
 * avoid endless frozen PE.
 */
static int64_t p7ioc_papr_errinjct_reset(struct phb *phb)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(phb);

	out_be64(p->regs + PHB_PAPR_ERR_INJ_CTL, 0x0ul);
	out_be64(p->regs + PHB_PAPR_ERR_INJ_ADDR, 0x0ul);
	out_be64(p->regs + PHB_PAPR_ERR_INJ_MASK, 0x0ul);

	return OPAL_SUCCESS;
}

static int64_t p7ioc_get_presence_state(struct pci_slot *slot, uint8_t *val)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(slot->phb);
	uint64_t reg;

	reg = in_be64(p->regs + PHB_PCIE_SLOTCTL2);
	if (reg & PHB_PCIE_SLOTCTL2_PRSTN_STAT)
		*val = OPAL_PCI_SLOT_PRESENT;
	else
		*val = OPAL_PCI_SLOT_EMPTY;

	return OPAL_SUCCESS;
}

static int64_t p7ioc_get_link_state(struct pci_slot *slot, uint8_t *val)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(slot->phb);
	uint64_t reg64;
	uint16_t state;
	int64_t rc;

	/* Check if the link training is completed */
	reg64 = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
	if (!(reg64 & PHB_PCIE_DLP_TC_DL_LINKACT)) {
		*val = 0;
		return OPAL_SUCCESS;
	}

	/* Grab link width from PCIe capability */
	rc = p7ioc_pcicfg_read16(&p->phb, 0, p->ecap + PCICAP_EXP_LSTAT,
				 &state);
	if (rc < 0) {
		PHBERR(p, "%s: Error %lld reading link status\n",
		       __func__, rc);
		return OPAL_HARDWARE;
	}

	if (state & PCICAP_EXP_LSTAT_DLLL_ACT)
		*val = ((state & PCICAP_EXP_LSTAT_WIDTH) >> 4);
	else
		*val = 0;

	return OPAL_SUCCESS;
}

static int64_t p7ioc_get_power_state(struct pci_slot *slot, uint8_t *val)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(slot->phb);
	uint64_t reg64;

	reg64 = in_be64(p->regs + PHB_PCIE_SLOTCTL2);
	if (reg64 & PHB_PCIE_SLOTCTL2_PWR_EN_STAT)
		*val = PCI_SLOT_POWER_ON;
	else
		*val = PCI_SLOT_POWER_OFF;

	return OPAL_SUCCESS;
}

static int64_t p7ioc_set_power_state(struct pci_slot *slot, uint8_t val)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(slot->phb);
	uint64_t reg64;
	uint8_t state = PCI_SLOT_POWER_OFF;

	if (val != PCI_SLOT_POWER_OFF && val != PCI_SLOT_POWER_ON)
		return OPAL_PARAMETER;

	/* If the power state has been put into the requested one */
	reg64 = in_be64(p->regs + PHB_PCIE_SLOTCTL2);
	if (reg64 & PHB_PCIE_SLOTCTL2_PWR_EN_STAT)
		state = PCI_SLOT_POWER_ON;
	if (state == val)
		return OPAL_SUCCESS;

	/* Power on/off */
	if (val == PCI_SLOT_POWER_ON) {
		reg64 &= ~(0x8c00000000000000ul);
		out_be64(p->regs + PHB_HOTPLUG_OVERRIDE, reg64);
		reg64 |= 0x8400000000000000ul;
		out_be64(p->regs + PHB_HOTPLUG_OVERRIDE, reg64);
	} else {
		reg64 &= ~(0x8c00000000000000ul);
		reg64 |= 0x8400000000000000ul;
		out_be64(p->regs + PHB_HOTPLUG_OVERRIDE, reg64);
		reg64 &= ~(0x8c00000000000000ul);
		reg64 |= 0x0c00000000000000ul;
		out_be64(p->regs + PHB_HOTPLUG_OVERRIDE, reg64);
	}

	return OPAL_SUCCESS;
}

static void p7ioc_prepare_link_change(struct pci_slot *slot, bool up)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(slot->phb);
	uint64_t ci_idx = p->index + 2;
	uint32_t cfg32;

	if (!up) {
		/* Mask PCIE port interrupts and AER receiver error */
		out_be64(p->regs + UTL_PCIE_PORT_IRQ_EN, 0x7E00000000000000);
		p7ioc_pcicfg_read32(&p->phb, 0,
				    p->aercap + PCIECAP_AER_CE_MASK, &cfg32);
		cfg32 |= PCIECAP_AER_CE_RECVR_ERR;
		p7ioc_pcicfg_write32(&p->phb, 0,
				     p->aercap + PCIECAP_AER_CE_MASK, cfg32);

		/* Mask CI port error and clear it */
		out_be64(p->ioc->regs + P7IOC_CIn_LEM_ERR_MASK(ci_idx),
			 0xa4f4000000000000ul);
		out_be64(p->regs + PHB_LEM_ERROR_MASK,
			 0xadb650c9808dd051ul);
		out_be64(p->ioc->regs + P7IOC_CIn_LEM_FIR(ci_idx),
			 0x0ul);

		/* Block access to PCI-CFG space */
		p->flags |= P7IOC_PHB_CFG_BLOCKED;
	} else {
		/* Clear spurious errors and enable PCIE port interrupts */
		out_be64(p->regs + UTL_PCIE_PORT_STATUS, 0x00E0000000000000);
		out_be64(p->regs + UTL_PCIE_PORT_IRQ_EN, 0xFE65000000000000);

		/* Clear AER receiver error status */
		p7ioc_pcicfg_write32(&p->phb, 0,
				     p->aercap + PCIECAP_AER_CE_STATUS,
				     PCIECAP_AER_CE_RECVR_ERR);
		/* Unmask receiver error status in AER */
		p7ioc_pcicfg_read32(&p->phb, 0,
				    p->aercap + PCIECAP_AER_CE_MASK, &cfg32);
		cfg32 &= ~PCIECAP_AER_CE_RECVR_ERR;
		p7ioc_pcicfg_write32(&p->phb, 0,
				     p->aercap + PCIECAP_AER_CE_MASK, cfg32);
		/* Clear and Unmask CI port and PHB errors */
		out_be64(p->ioc->regs + P7IOC_CIn_LEM_FIR(ci_idx), 0x0ul);
		out_be64(p->regs + PHB_LEM_FIR_ACCUM, 0x0ul);
		out_be64(p->ioc->regs + P7IOC_CIn_LEM_ERR_MASK_AND(ci_idx),
			 0x0ul);
		out_be64(p->regs + PHB_LEM_ERROR_MASK, 0x1249a1147f500f2cul);

		/* Don't block access to PCI-CFG space */
		p->flags &= ~P7IOC_PHB_CFG_BLOCKED;

		/* Restore slot's state */
		pci_slot_set_state(slot, P7IOC_SLOT_NORMAL);

		/*
		 * We might lose the bus numbers in the reset and we need
		 * restore the bus numbers. Otherwise, some adpaters (e.g.
		 * IPR) can't be probed properly by kernel. We don't need
		 * restore bus numbers for all kinds of resets. However,
		 * it's not harmful to restore the bus numbers, which makes
		 * the logic simplified
		 */
		pci_restore_bridge_buses(slot->phb, slot->pd);
		if (slot->phb->ops->device_init)
			pci_walk_dev(slot->phb, slot->pd,
				     slot->phb->ops->device_init, NULL);
	}
}

static int64_t p7ioc_poll_link(struct pci_slot *slot)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(slot->phb);
	uint64_t reg64;

	switch (slot->state) {
	case P7IOC_SLOT_NORMAL:
	case P7IOC_SLOT_LINK_START:
		PHBDBG(p, "LINK: Start polling\n");
		reg64 = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
		reg64 &= ~PHB_PCIE_DLP_TCTX_DISABLE;
		out_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL, reg64);
		slot->retries = 100;
		pci_slot_set_state(slot, P7IOC_SLOT_LINK_WAIT);
		return pci_slot_set_sm_timeout(slot, msecs_to_tb(10));
	case P7IOC_SLOT_LINK_WAIT:
		reg64 = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
		if (reg64 & PHB_PCIE_DLP_TC_DL_LINKACT) {
			PHBDBG(p, "LINK: Up\n");
			slot->ops.prepare_link_change(slot, true);
			return OPAL_SUCCESS;
		}

		if (slot->retries-- == 0) {
			PHBERR(p, "LINK: Timeout waiting for link up\n");
			goto out;
		}
		return pci_slot_set_sm_timeout(slot, msecs_to_tb(10));
	default:
		PHBERR(p, "LINK: Unexpected slot state %08x\n",
		       slot->state);
	}

out:
	pci_slot_set_state(slot, P7IOC_SLOT_NORMAL);
	return OPAL_HARDWARE;
}

static int64_t p7ioc_hreset(struct pci_slot *slot)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(slot->phb);
	uint8_t presence = 1;
	uint16_t brctl;
	uint64_t reg64;

	switch (slot->state) {
	case P7IOC_SLOT_NORMAL:
		PHBDBG(p, "HRESET: Starts\n");
		if (slot->ops.get_presence_state)
			slot->ops.get_presence_state(slot, &presence);
		if (!presence) {
			PHBDBG(p, "HRESET: No device\n");
			return OPAL_SUCCESS;
		}

		PHBDBG(p, "HRESET: Prepare for link down\n");
		slot->ops.prepare_link_change(slot, false);

		/* Disable link to avoid training issues */
		PHBDBG(p, "HRESET: Disable link training\n");
		reg64 = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
		reg64 |= PHB_PCIE_DLP_TCTX_DISABLE;
		out_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL, reg64);
		pci_slot_set_state(slot, P7IOC_SLOT_HRESET_TRAINING);
		slot->retries = 15;
		/* fall through */
	case P7IOC_SLOT_HRESET_TRAINING:
		reg64 = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
		if (!(reg64 & PHB_PCIE_DLP_TCRX_DISABLED)) {
			if (slot->retries -- == 0) {
				PHBERR(p, "HRESET: Timeout disabling link training\n");
				goto out;
			}

			return pci_slot_set_sm_timeout(slot, msecs_to_tb(10));
		}
		/* fall through */
	case P7IOC_SLOT_HRESET_START:
		PHBDBG(p, "HRESET: Assert\n");
		p7ioc_pcicfg_read16(&p->phb, 0, PCI_CFG_BRCTL, &brctl);
		brctl |= PCI_CFG_BRCTL_SECONDARY_RESET;
		p7ioc_pcicfg_write16(&p->phb, 0, PCI_CFG_BRCTL, brctl);

		pci_slot_set_state(slot, P7IOC_SLOT_HRESET_DELAY);
		return pci_slot_set_sm_timeout(slot, secs_to_tb(1));
	case P7IOC_SLOT_HRESET_DELAY:
		PHBDBG(p, "HRESET: Deassert\n");
		p7ioc_pcicfg_read16(&p->phb, 0, PCI_CFG_BRCTL, &brctl);
		brctl &= ~PCI_CFG_BRCTL_SECONDARY_RESET;
		p7ioc_pcicfg_write16(&p->phb, 0, PCI_CFG_BRCTL, brctl);
		pci_slot_set_state(slot, P7IOC_SLOT_HRESET_DELAY2);
		return pci_slot_set_sm_timeout(slot, msecs_to_tb(200));
	case P7IOC_SLOT_HRESET_DELAY2:
		pci_slot_set_state(slot, P7IOC_SLOT_LINK_START);
		return slot->ops.poll_link(slot);
	default:
		PHBERR(p, "HRESET: Unexpected slot state %08x\n",
		       slot->state);
	}

out:
	pci_slot_set_state(slot, P7IOC_SLOT_NORMAL);
	return OPAL_HARDWARE;
}

static int64_t p7ioc_freset(struct pci_slot *slot)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(slot->phb);
	uint8_t presence = 1;
	uint64_t reg64;

	switch (slot->state) {
	case P7IOC_SLOT_NORMAL:
	case P7IOC_SLOT_FRESET_START:
		PHBDBG(p, "FRESET: Starts\n");
		if (slot->ops.get_presence_state)
			slot->ops.get_presence_state(slot, &presence);
		if (!presence) {
			PHBDBG(p, "FRESET: No device\n");
			pci_slot_set_state(slot, P7IOC_SLOT_NORMAL);
			return OPAL_SUCCESS;
		}

		PHBDBG(p, "FRESET: Prepare for link down\n");
		slot->ops.prepare_link_change(slot, false);

		/* Check power state */
		reg64 = in_be64(p->regs + PHB_PCIE_SLOTCTL2);
		if (reg64 & PHB_PCIE_SLOTCTL2_PWR_EN_STAT) {
			PHBDBG(p, "FRESET: Power on, turn off\n");
			reg64 = in_be64(p->regs + PHB_HOTPLUG_OVERRIDE);
			reg64 &= ~(0x8c00000000000000ul);
			reg64 |= 0x8400000000000000ul;
			out_be64(p->regs + PHB_HOTPLUG_OVERRIDE, reg64);
			reg64 &= ~(0x8c00000000000000ul);
			reg64 |= 0x0c00000000000000ul;
			out_be64(p->regs + PHB_HOTPLUG_OVERRIDE, reg64);
			pci_slot_set_state(slot, P7IOC_SLOT_FRESET_POWER_OFF);
			return pci_slot_set_sm_timeout(slot, secs_to_tb(2));
		}
		/* fall through */
	case P7IOC_SLOT_FRESET_POWER_OFF:
		PHBDBG(p, "FRESET: Power off, turn on\n");
		reg64 = in_be64(p->regs + PHB_HOTPLUG_OVERRIDE);
		reg64 &= ~(0x8c00000000000000ul);
		out_be64(p->regs + PHB_HOTPLUG_OVERRIDE, reg64);
		reg64 |= 0x8400000000000000ul;
		out_be64(p->regs + PHB_HOTPLUG_OVERRIDE, reg64);
		pci_slot_set_state(slot, P7IOC_SLOT_FRESET_POWER_ON);
		return pci_slot_set_sm_timeout(slot, secs_to_tb(2));
	case P7IOC_SLOT_FRESET_POWER_ON:
		PHBDBG(p, "FRESET: Disable link training\n");
		reg64 = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
		reg64 |= PHB_PCIE_DLP_TCTX_DISABLE;
		out_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL, reg64);
		pci_slot_set_state(slot, P7IOC_SLOT_HRESET_TRAINING);
		slot->retries = 200;
		/* fall through */
	case P7IOC_SLOT_HRESET_TRAINING:
		reg64 = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
		if (!(reg64 & PHB_PCIE_DLP_TCRX_DISABLED)) {
			if (slot->retries -- == 0) {
				PHBERR(p, "HRESET: Timeout disabling link training\n");
				goto out;
			}

			return pci_slot_set_sm_timeout(slot, msecs_to_tb(10));
		}

		PHBDBG(p, "FRESET: Assert\n");
		reg64 = in_be64(p->regs + PHB_RESET);
		reg64 &= ~0x2000000000000000ul;
		out_be64(p->regs + PHB_RESET, reg64);
		pci_slot_set_state(slot, P7IOC_SLOT_FRESET_ASSERT);
		return pci_slot_set_sm_timeout(slot, secs_to_tb(1));
	case P7IOC_SLOT_FRESET_ASSERT:
		PHBDBG(p, "FRESET: Deassert\n");
		reg64 = in_be64(p->regs + PHB_RESET);
		reg64 |= 0x2000000000000000ul;
		out_be64(p->regs + PHB_RESET, reg64);
		if (slot->ops.pfreset) {
			pci_slot_set_state(slot,
					   P7IOC_SLOT_PFRESET_START);
			return slot->ops.pfreset(slot);
		}

		pci_slot_set_state(slot, P7IOC_SLOT_HRESET_START);
		return slot->ops.hreset(slot);
	default:
		PHBERR(p, "FRESET: Unexpected slot state %08x\n",
		       slot->state);
	}

out:
	pci_slot_set_state(slot, P7IOC_SLOT_NORMAL);
	return OPAL_HARDWARE;
}

static int64_t p7ioc_creset(struct pci_slot *slot)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(slot->phb);
	struct p7ioc *ioc = p->ioc;
	uint64_t reg64;

	switch (slot->state) {
	case P7IOC_SLOT_NORMAL:
		PHBDBG(p, "CRESET: Starts\n");
		p->flags |= P7IOC_PHB_CFG_BLOCKED;
		p7ioc_phb_reset(slot->phb);

		/*
		 * According to the experiment, we probably still have the
		 * fenced state with the corresponding PHB in the Fence WOF
		 * and we need clear that explicitly. Besides, the RGC might
		 * already have informational error and we should clear that
		 * explicitly as well. Otherwise, RGC XIVE#0 won't issue
		 * interrupt any more.
		 */
		reg64 = in_be64(ioc->regs + P7IOC_CHIP_FENCE_WOF);
		reg64 &= ~PPC_BIT(15 + p->index * 4);
		out_be64(ioc->regs + P7IOC_CHIP_FENCE_WOF, reg64);

		/* Clear informational error from RGC */
		reg64 = in_be64(ioc->regs + P7IOC_RGC_LEM_BASE +
				P7IOC_LEM_WOF_OFFSET);
		reg64 &= ~PPC_BIT(18);
		out_be64(ioc->regs + P7IOC_RGC_LEM_BASE +
			 P7IOC_LEM_WOF_OFFSET, reg64);
		reg64 = in_be64(ioc->regs + P7IOC_RGC_LEM_BASE +
				P7IOC_LEM_FIR_OFFSET);
		reg64 &= ~PPC_BIT(18);
		out_be64(ioc->regs + P7IOC_RGC_LEM_BASE +
			 P7IOC_LEM_FIR_OFFSET, reg64);

		/* Swith to fundamental reset */
		pci_slot_set_state(slot, P7IOC_SLOT_FRESET_START);
		return slot->ops.freset(slot);
	default:
		PHBERR(p, "CRESET: Unexpected slot state %08x\n",
		       slot->state);
	}

	pci_slot_set_state(slot, P7IOC_SLOT_NORMAL);
	return OPAL_HARDWARE;
}

static struct pci_slot *p7ioc_phb_slot_create(struct phb *phb)
{
	struct pci_slot *slot;

	slot = pci_slot_alloc(phb, NULL);
	if (!slot)
		return NULL;

	/* Elementary functions */
	slot->ops.get_presence_state   = p7ioc_get_presence_state;
	slot->ops.get_link_state       = p7ioc_get_link_state;
	slot->ops.get_power_state      = p7ioc_get_power_state;
	slot->ops.get_attention_state  = NULL;
	slot->ops.get_latch_state      = NULL;
	slot->ops.set_power_state      = p7ioc_set_power_state;
	slot->ops.set_attention_state  = NULL;

	/*
	 * For PHB slots, we have to split the fundamental reset
	 * into 2 steps. We might not have the first step which
	 * is to power off/on the slot, or it's controlled by
	 * individual platforms.
	 */
	slot->ops.prepare_link_change  = p7ioc_prepare_link_change;
	slot->ops.poll_link            = p7ioc_poll_link;
	slot->ops.hreset               = p7ioc_hreset;
	slot->ops.freset               = p7ioc_freset;
	slot->ops.pfreset              = NULL;
	slot->ops.creset               = p7ioc_creset;

	return slot;
}

static const struct phb_ops p7ioc_phb_ops = {
	.cfg_read8		= p7ioc_pcicfg_read8,
	.cfg_read16		= p7ioc_pcicfg_read16,
	.cfg_read32		= p7ioc_pcicfg_read32,
	.cfg_write8		= p7ioc_pcicfg_write8,
	.cfg_write16		= p7ioc_pcicfg_write16,
	.cfg_write32		= p7ioc_pcicfg_write32,
	.choose_bus		= p7ioc_choose_bus,
	.get_reserved_pe_number	= p7ioc_get_reserved_pe_number,
	.device_init		= p7ioc_device_init,
	.pci_reinit		= p7ioc_pci_reinit,
	.eeh_freeze_status	= p7ioc_eeh_freeze_status,
	.eeh_freeze_clear	= p7ioc_eeh_freeze_clear,
	.eeh_freeze_set		= p7ioc_eeh_freeze_set,
	.err_inject		= p7ioc_err_inject,
	.get_diag_data		= NULL,
	.get_diag_data2		= p7ioc_get_diag_data,
	.next_error		= p7ioc_eeh_next_error,
	.phb_mmio_enable	= p7ioc_phb_mmio_enable,
	.set_phb_mem_window	= p7ioc_set_phb_mem_window,
	.map_pe_mmio_window	= p7ioc_map_pe_mmio_window,
	.set_pe			= p7ioc_set_pe,
	.set_peltv		= p7ioc_set_peltv,
	.map_pe_dma_window	= p7ioc_map_pe_dma_window,
	.map_pe_dma_window_real	= p7ioc_map_pe_dma_window_real,
	.set_mve		= p7ioc_set_mve,
	.set_mve_enable		= p7ioc_set_mve_enable,
	.set_xive_pe		= p7ioc_set_xive_pe,
	.get_xive_source	= p7ioc_get_xive_source,
	.get_msi_32		= p7ioc_get_msi_32,
	.get_msi_64		= p7ioc_get_msi_64,
	.ioda_reset		= p7ioc_ioda_reset,
	.papr_errinjct_reset	= p7ioc_papr_errinjct_reset,
};

/* p7ioc_phb_get_xive - Interrupt control from OPAL */
static int64_t p7ioc_msi_get_xive(struct irq_source *is, uint32_t isn,
				  uint16_t *server, uint8_t *prio)
{
	struct p7ioc_phb *p = is->data;
	uint32_t irq, fbuid = P7_IRQ_FBUID(isn);
	uint64_t xive;

	if (fbuid < p->buid_msi || fbuid >= (p->buid_msi + 0x10))
		return OPAL_PARAMETER;

	irq = isn & 0xff;
	xive = p->mxive_cache[irq];

	*server = GETFIELD(IODA_XIVT_SERVER, xive);
	*prio = GETFIELD(IODA_XIVT_PRIORITY, xive);

	return OPAL_SUCCESS;
}

/* p7ioc_phb_set_xive - Interrupt control from OPAL */
static int64_t p7ioc_msi_set_xive(struct irq_source *is, uint32_t isn,
				  uint16_t server, uint8_t prio)
{
	struct p7ioc_phb *p = is->data;
	uint32_t irq, fbuid = P7_IRQ_FBUID(isn);
	uint64_t xive, m_server, m_prio;

	if (fbuid < p->buid_msi || fbuid >= (p->buid_msi + 0x10))
		return OPAL_PARAMETER;

	/* We cache the arguments because we have to mangle
	 * it in order to hijack 3 bits of priority to extend
	 * the server number
	 */
	irq = isn & 0xff;
	xive = p->mxive_cache[irq];
	xive = SETFIELD(IODA_XIVT_SERVER, xive, server);
	xive = SETFIELD(IODA_XIVT_PRIORITY, xive, prio);
	p->mxive_cache[irq] = xive;

	/* Now we mangle the server and priority */
	if (prio == 0xff) {
		m_server = 0;
		m_prio = 0xff;
	} else {
		m_server = server >> 3;
		m_prio = (prio >> 3) | ((server & 7) << 5);
	}

	/* We use HRT entry 0 always for now */
	p7ioc_phb_ioda_sel(p, IODA_TBL_MXIVT, irq, false);
	xive = in_be64(p->regs + PHB_IODA_DATA0);
	xive = SETFIELD(IODA_XIVT_SERVER, xive, m_server);
	xive = SETFIELD(IODA_XIVT_PRIORITY, xive, m_prio);
	out_be64(p->regs + PHB_IODA_DATA0, xive);

	return OPAL_SUCCESS;
}

/* p7ioc_phb_get_xive - Interrupt control from OPAL */
static int64_t p7ioc_lsi_get_xive(struct irq_source *is, uint32_t isn,
				  uint16_t *server, uint8_t *prio)
{
	struct p7ioc_phb *p = is->data;
	uint32_t irq = (isn & 0x7);
	uint32_t fbuid = P7_IRQ_FBUID(isn);
	uint64_t xive;

	if (fbuid != p->buid_lsi)
		return OPAL_PARAMETER;

	xive = p->lxive_cache[irq];
	*server = GETFIELD(IODA_XIVT_SERVER, xive);
	*prio = GETFIELD(IODA_XIVT_PRIORITY, xive);

	return OPAL_SUCCESS;
}

/* p7ioc_phb_set_xive - Interrupt control from OPAL */
static int64_t p7ioc_lsi_set_xive(struct irq_source *is, uint32_t isn,
				  uint16_t server, uint8_t prio)
{
	struct p7ioc_phb *p = is->data;
	uint32_t irq = (isn & 0x7);
	uint32_t fbuid = P7_IRQ_FBUID(isn);
	uint64_t xive, m_server, m_prio;

	if (fbuid != p->buid_lsi)
		return OPAL_PARAMETER;

	xive = SETFIELD(IODA_XIVT_SERVER, 0ull, server);
	xive = SETFIELD(IODA_XIVT_PRIORITY, xive, prio);

	/*
	 * We cache the arguments because we have to mangle
	 * it in order to hijack 3 bits of priority to extend
	 * the server number
	 */
	p->lxive_cache[irq] = xive;

	/* Now we mangle the server and priority */
	if (prio == 0xff) {
		m_server = 0;
		m_prio = 0xff;
	} else {
		m_server = server >> 3;
		m_prio = (prio >> 3) | ((server & 7) << 5);
	}

	/* We use HRT entry 0 always for now */
	p7ioc_phb_ioda_sel(p, IODA_TBL_LXIVT, irq, false);
	xive = in_be64(p->regs + PHB_IODA_DATA0);
	xive = SETFIELD(IODA_XIVT_SERVER, xive, m_server);
	xive = SETFIELD(IODA_XIVT_PRIORITY, xive, m_prio);
	out_be64(p->regs + PHB_IODA_DATA0, xive);

	return OPAL_SUCCESS;
}

static void p7ioc_phb_err_interrupt(struct irq_source *is, uint32_t isn)
{
	struct p7ioc_phb *p = is->data;
	uint64_t peev0, peev1;

	PHBDBG(p, "Got interrupt 0x%04x\n", isn);

	opal_pci_eeh_set_evt(p->phb.opal_id);

	/* If the PHB is broken, go away */
	if (p->state == P7IOC_PHB_STATE_BROKEN)
		return;

	/*
	 * Check if there's an error pending and update PHB fence
	 * state and return, the ER error is drowned at this point
	 */
	phb_lock(&p->phb);
	if (p7ioc_phb_fenced(p)) {
		p->state = P7IOC_PHB_STATE_FENCED;
		PHBERR(p, "ER error ignored, PHB fenced\n");
		phb_unlock(&p->phb);
		return;
	}

	/*
	 * If we already had pending errors, which might be
	 * moved from IOC, then we needn't check PEEV to avoid
	 * overwriting the errors from IOC.
	 */
	if (!p7ioc_phb_err_pending(p)) {
		phb_unlock(&p->phb);
		return;
	}

	/*
	 * We don't have pending errors from IOC, it's safe
	 * to check PEEV for frozen PEs.
	 */
	p7ioc_phb_ioda_sel(p, IODA_TBL_PEEV, 0, true);
	peev0 = in_be64(p->regs + PHB_IODA_DATA0);
	peev1 = in_be64(p->regs + PHB_IODA_DATA0);
	if (peev0 || peev1) {
		p->err.err_src   = P7IOC_ERR_SRC_PHB0 + p->index;
		p->err.err_class = P7IOC_ERR_CLASS_ER;
		p->err.err_bit   = 0;
		p7ioc_phb_set_err_pending(p, true);
	}
	phb_unlock(&p->phb);
}

/* MSIs (OS owned) */
static const struct irq_source_ops p7ioc_msi_irq_ops = {
	.get_xive = p7ioc_msi_get_xive,
	.set_xive = p7ioc_msi_set_xive,
};

/* LSIs (OS owned) */
static const struct irq_source_ops p7ioc_lsi_irq_ops = {
	.get_xive = p7ioc_lsi_get_xive,
	.set_xive = p7ioc_lsi_set_xive,
};

/* PHB Errors (Ski owned) */
static const struct irq_source_ops p7ioc_phb_err_irq_ops = {
	.get_xive = p7ioc_lsi_get_xive,
	.set_xive = p7ioc_lsi_set_xive,
	.interrupt = p7ioc_phb_err_interrupt,
};

static void p7ioc_pcie_add_node(struct p7ioc_phb *p)
{

	uint64_t reg[2], iob, m32b, m64b, tkill;
	uint32_t lsibase, icsp = get_ics_phandle();
	struct dt_node *np;

	reg[0] = cleanup_addr((uint64_t)p->regs);
	reg[1] = 0x100000;

	np = dt_new_addr(p->ioc->dt_node, "pciex", reg[0]);
	if (!np)
		return;

	p->phb.dt_node = np;
	dt_add_property_strings(np, "compatible", "ibm,p7ioc-pciex",
				"ibm,ioda-phb");
	dt_add_property_strings(np, "device_type", "pciex");
	dt_add_property(np, "reg", reg, sizeof(reg));
	dt_add_property_cells(np, "#address-cells", 3);
	dt_add_property_cells(np, "#size-cells", 2);
	dt_add_property_cells(np, "#interrupt-cells", 1);
	dt_add_property_cells(np, "bus-range", 0, 0xff);
	dt_add_property_cells(np, "clock-frequency", 0x200, 0); /* ??? */
	dt_add_property_cells(np, "interrupt-parent", icsp);
	/* XXX FIXME: add slot-name */
	//dt_property_cell("bus-width", 8); /* Figure it out from VPD ? */

	/* "ranges", we only expose IO and M32
	 *
	 * Note: The kernel expects us to have chopped of 64k from the
	 * M32 size (for the 32-bit MSIs). If we don't do that, it will
	 * get confused (OPAL does it)
	 */
	iob = cleanup_addr(p->io_base);
	m32b = cleanup_addr(p->m32_base + M32_PCI_START);
	dt_add_property_cells(np, "ranges",
			      /* IO space */
			      0x01000000, 0x00000000, 0x00000000,
			      hi32(iob), lo32(iob), 0, PHB_IO_SIZE,
			      /* M32 space */
			      0x02000000, 0x00000000, M32_PCI_START,
			      hi32(m32b), lo32(m32b), 0,M32_PCI_SIZE - 0x10000);

	/* XXX FIXME: add opal-memwin32, dmawins, etc... */
	m64b = cleanup_addr(p->m64_base);
	dt_add_property_cells(np, "ibm,opal-m64-window",
			      hi32(m64b), lo32(m64b),
			      hi32(m64b), lo32(m64b),
			      hi32(PHB_M64_SIZE), lo32(PHB_M64_SIZE));
	dt_add_property_cells(np, "ibm,opal-msi-ports", 256);
	dt_add_property_cells(np, "ibm,opal-num-pes", 128);
	dt_add_property_cells(np, "ibm,opal-reserved-pe", 127);
	dt_add_property_cells(np, "ibm,opal-msi-ranges",
			      p->buid_msi << 4, 0x100);
	tkill = reg[0] + PHB_TCE_KILL;
	dt_add_property_cells(np, "ibm,opal-tce-kill",
			      hi32(tkill), lo32(tkill));

	/* Add associativity properties */
	add_chip_dev_associativity(np);

	/* The interrupt maps will be generated in the RC node by the
	 * PCI code based on the content of this structure:
	 */
	lsibase = p->buid_lsi << 4;
	p->phb.lstate.int_size = 2;
	p->phb.lstate.int_val[0][0] = lsibase + PHB_LSI_PCIE_INTA;
	p->phb.lstate.int_val[0][1] = 1;
	p->phb.lstate.int_val[1][0] = lsibase + PHB_LSI_PCIE_INTB;
	p->phb.lstate.int_val[1][1] = 1;
	p->phb.lstate.int_val[2][0] = lsibase + PHB_LSI_PCIE_INTC;
	p->phb.lstate.int_val[2][1] = 1;
	p->phb.lstate.int_val[3][0] = lsibase + PHB_LSI_PCIE_INTD;
	p->phb.lstate.int_val[3][1] = 1;
	p->phb.lstate.int_parent[0] = icsp;
	p->phb.lstate.int_parent[1] = icsp;
	p->phb.lstate.int_parent[2] = icsp;
	p->phb.lstate.int_parent[3] = icsp;
}

/* p7ioc_phb_setup - Setup a p7ioc_phb data structure
 *
 * WARNING: This is called before the AIB register routing is
 * established. If this wants to access PHB registers, it must
 * use the ASB hard coded variant (slower)
 */
void p7ioc_phb_setup(struct p7ioc *ioc, uint8_t index)
{
	struct p7ioc_phb *p = &ioc->phbs[index];
	unsigned int buid_base = ioc->buid_base + PHBn_BUID_BASE(index);
	struct pci_slot *slot;

	p->index = index;
	p->ioc = ioc;
	p->gen = 2;	/* Operate in Gen2 mode by default */
	p->phb.ops = &p7ioc_phb_ops;
	p->phb.phb_type = phb_type_pcie_v2;
	p->regs_asb = ioc->regs + PHBn_ASB_BASE(index);
	p->regs = ioc->regs + PHBn_AIB_BASE(index);
	p->buid_lsi = buid_base + PHB_BUID_LSI_OFFSET;
	p->buid_msi = buid_base + PHB_BUID_MSI_OFFSET;
	p->io_base = ioc->mmio1_win_start + PHBn_IO_BASE(index);
	p->m32_base = ioc->mmio2_win_start + PHBn_M32_BASE(index);
	p->m64_base = ioc->mmio2_win_start + PHBn_M64_BASE(index);
	p->state = P7IOC_PHB_STATE_UNINITIALIZED;
	p->phb.scan_map = 0x1; /* Only device 0 to scan */

	/* Find P7IOC base location code in IOC */
	p->phb.base_loc_code = dt_prop_get_def(ioc->dt_node,
					       "ibm,io-base-loc-code", NULL);
	if (!p->phb.base_loc_code)
		prerror("P7IOC: Base location code not found !\n");

	/* Create device node for PHB */
	p7ioc_pcie_add_node(p);

	/* Register OS interrupt sources */
	register_irq_source(&p7ioc_msi_irq_ops, p, p->buid_msi << 4, 256);
	register_irq_source(&p7ioc_lsi_irq_ops, p, p->buid_lsi << 4, 4);

	/* Register internal interrupt source (LSI 7) */
	register_irq_source(&p7ioc_phb_err_irq_ops, p,
			    (p->buid_lsi << 4) + PHB_LSI_PCIE_ERROR, 1);

	/* Initialize IODA table caches */
	p7ioc_phb_init_ioda_cache(p);

	/* We register the PHB before we initialize it so we
	 * get a useful OPAL ID for it
	 */
	pci_register_phb(&p->phb, OPAL_DYNAMIC_PHB_ID);
	slot = p7ioc_phb_slot_create(&p->phb);
	if (!slot)
		prlog(PR_NOTICE, "P7IOC: Cannot create PHB#%d slot\n",
		      p->phb.opal_id);

	/* Platform additional setup */
	if (platform.pci_setup_phb)
		platform.pci_setup_phb(&p->phb, p->index);
}

static bool p7ioc_phb_wait_dlp_reset(struct p7ioc_phb *p)
{
	unsigned int i;
	uint64_t val;

	/*
	 * Firmware cannot access the UTL core regs or PCI config space
	 * until the cores are out of DL_PGRESET.
	 * DL_PGRESET should be polled until it is inactive with a value
	 * of '0'. The recommended polling frequency is once every 1ms.
	 * Firmware should poll at least 200 attempts before giving up.
	 * MMIO Stores to the link are silently dropped by the UTL core if
	 * the link is down.
	 * MMIO Loads to the link will be dropped by the UTL core and will
	 * eventually time-out and will return an all ones response if the
	 * link is down.
	 */
#define DLP_RESET_ATTEMPTS	400

	printf("P7IOC: Waiting for DLP PG reset to complete...\n");
	for (i = 0; i < DLP_RESET_ATTEMPTS; i++) {
		val = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
		if (!(val & PHB_PCIE_DLP_TC_DL_PGRESET))
			break;
		time_wait_ms(1);
	}
	if (val & PHB_PCIE_DLP_TC_DL_PGRESET) {
		PHBERR(p, "Timeout waiting for DLP PG reset !\n");
		return false;
	}
	return true;
}

/* p7ioc_phb_init_rc - Initialize the Root Complex config space
 */
static bool p7ioc_phb_init_rc_cfg(struct p7ioc_phb *p)
{
	int64_t ecap, aercap;

	/* XXX Handle errors ? */

	/* Init_51..51:
	 *
	 * Set primary bus to 0, secondary to 1 and subordinate to 0xff
	 */
	p7ioc_pcicfg_write32(&p->phb, 0, PCI_CFG_PRIMARY_BUS, 0x00ff0100);

	/* Init_52..57
	 *
	 * IO and Memory base & limits are set to base > limit, which
	 * allows all inbounds.
	 *
	 * XXX This has the potential of confusing the OS which might
	 * think that nothing is forwarded downstream. We probably need
	 * to fix this to match the IO and M32 PHB windows
	 */
	p7ioc_pcicfg_write16(&p->phb, 0, PCI_CFG_IO_BASE, 0x0010);
	p7ioc_pcicfg_write32(&p->phb, 0, PCI_CFG_MEM_BASE, 0x00000010);
	p7ioc_pcicfg_write32(&p->phb, 0, PCI_CFG_PREF_MEM_BASE, 0x00000010);

	/* Init_58..: Setup bridge control to enable forwarding of CORR, FATAL,
	 * and NONFATAL errors
	*/
	p7ioc_pcicfg_write16(&p->phb, 0, PCI_CFG_BRCTL, PCI_CFG_BRCTL_SERR_EN);

	/* Init_60..61
	 *
	 * PCIE Device control/status, enable error reporting, disable relaxed
	 * ordering, set MPS to 128 (see note), clear errors.
	 *
	 * Note: The doc recommends to set MPS to 4K. This has proved to have
	 * some issues as it requires specific claming of MRSS on devices and
	 * we've found devices in the field that misbehave when doing that.
	 *
	 * We currently leave it all to 128 bytes (minimum setting) at init
	 * time. The generic PCIe probing later on might apply a different
	 * value, or the kernel will, but we play it safe at early init
	 */
	if (p->ecap <= 0) {
		ecap = pci_find_cap(&p->phb, 0, PCI_CFG_CAP_ID_EXP);
		if (ecap < 0) {
			PHBERR(p, "Can't locate PCI-E capability\n");
			return false;
		}
		p->ecap = ecap;
	} else {
		ecap = p->ecap;
	}

	p7ioc_pcicfg_write16(&p->phb, 0, ecap + PCICAP_EXP_DEVSTAT,
			     PCICAP_EXP_DEVSTAT_CE	|
			     PCICAP_EXP_DEVSTAT_NFE	|
			     PCICAP_EXP_DEVSTAT_FE	|
			     PCICAP_EXP_DEVSTAT_UE);

	p7ioc_pcicfg_write16(&p->phb, 0, ecap + PCICAP_EXP_DEVCTL,
			     PCICAP_EXP_DEVCTL_CE_REPORT	|
			     PCICAP_EXP_DEVCTL_NFE_REPORT	|
			     PCICAP_EXP_DEVCTL_FE_REPORT	|
			     PCICAP_EXP_DEVCTL_UR_REPORT	|
			     SETFIELD(PCICAP_EXP_DEVCTL_MPS, 0, PCIE_MPS_128B));

	/* Init_62..63
	 *
	 * Root Control Register. Enable error reporting
	 *
	 * Note: Added CRS visibility.
	 */
	p7ioc_pcicfg_write16(&p->phb, 0, ecap + PCICAP_EXP_RC,
			     PCICAP_EXP_RC_SYSERR_ON_CE		|
			     PCICAP_EXP_RC_SYSERR_ON_NFE	|
			     PCICAP_EXP_RC_SYSERR_ON_FE		|
			     PCICAP_EXP_RC_CRS_VISIBLE);

	/* Init_64..65
	 *
	 * Device Control 2. Enable ARI fwd, set timer
	 */
	p7ioc_pcicfg_write16(&p->phb, 0, ecap + PCICAP_EXP_DCTL2,
			     SETFIELD(PCICAP_EXP_DCTL2_CMPTOUT, 0, 2) |
			     PCICAP_EXP_DCTL2_ARI_FWD);

	/* Init_66..81
	 *
	 * AER inits
	 */
	aercap = pci_find_ecap(&p->phb, 0, PCIECAP_ID_AER, NULL);
	if (aercap < 0) {
		/* Shouldn't happen */
		PHBERR(p, "Failed to locate AER capability in bridge\n");
		return false;
	}
	p->aercap = aercap;

	/* Clear all UE status */
	p7ioc_pcicfg_write32(&p->phb, 0, aercap + PCIECAP_AER_UE_STATUS,
			     0xffffffff);
	/* Disable some error reporting as per the P7IOC spec */
	p7ioc_pcicfg_write32(&p->phb, 0, aercap + PCIECAP_AER_UE_MASK,
			     PCIECAP_AER_UE_POISON_TLP		|
			     PCIECAP_AER_UE_COMPL_TIMEOUT	|
			     PCIECAP_AER_UE_COMPL_ABORT		|
			     PCIECAP_AER_UE_ECRC);
	/* Report some errors as fatal */
	p7ioc_pcicfg_write32(&p->phb, 0, aercap + PCIECAP_AER_UE_SEVERITY,
			     PCIECAP_AER_UE_DLP 		|
			     PCIECAP_AER_UE_SURPRISE_DOWN	|
			     PCIECAP_AER_UE_FLOW_CTL_PROT	|
			     PCIECAP_AER_UE_UNEXP_COMPL		|
			     PCIECAP_AER_UE_RECV_OVFLOW		|
			     PCIECAP_AER_UE_MALFORMED_TLP);
	/* Clear all CE status */
	p7ioc_pcicfg_write32(&p->phb, 0, aercap + PCIECAP_AER_CE_STATUS,
			     0xffffffff);
	/* Disable some error reporting as per the P7IOC spec */
	p7ioc_pcicfg_write32(&p->phb, 0, aercap + PCIECAP_AER_CE_MASK,
			     PCIECAP_AER_CE_ADV_NONFATAL);
	/* Enable ECRC generation & checking */
	p7ioc_pcicfg_write32(&p->phb, 0, aercap + PCIECAP_AER_CAPCTL,
			     PCIECAP_AER_CAPCTL_ECRCG_EN	|
			     PCIECAP_AER_CAPCTL_ECRCC_EN);
	/* Enable reporting in root error control */
	p7ioc_pcicfg_write32(&p->phb, 0, aercap + PCIECAP_AER_RERR_CMD,
			     PCIECAP_AER_RERR_CMD_FE		|
			     PCIECAP_AER_RERR_CMD_NFE		|
			     PCIECAP_AER_RERR_CMD_CE);
	/* Clear root error status */
	p7ioc_pcicfg_write32(&p->phb, 0, aercap + PCIECAP_AER_RERR_STA,
			     0xffffffff);

	return true;
}

static void p7ioc_phb_init_utl(struct p7ioc_phb *p)
{
	/* Init_82..84: Clear spurious errors and assign errors to the
	 * right "interrupt" signal
	 */
	out_be64(p->regs + UTL_SYS_BUS_AGENT_STATUS,       0xffffffffffffffffUL);
	out_be64(p->regs + UTL_SYS_BUS_AGENT_ERR_SEVERITY, 0x0000000000000000UL);
	out_be64(p->regs + UTL_SYS_BUS_AGENT_IRQ_EN,       0xac80000000000000UL);

	/* Init_85..89: Setup buffer allocations */
	out_be64(p->regs + UTL_OUT_POST_DAT_BUF_ALLOC,     0x0400000000000000UL);
	out_be64(p->regs + UTL_IN_POST_HDR_BUF_ALLOC,      0x1000000000000000UL);
	out_be64(p->regs + UTL_IN_POST_DAT_BUF_ALLOC,      0x4000000000000000UL);
	out_be64(p->regs + UTL_PCIE_TAGS_ALLOC,            0x0800000000000000UL);
	out_be64(p->regs + UTL_GBIF_READ_TAGS_ALLOC,       0x0800000000000000UL);

	/* Init_90: PCI Express port control */
	out_be64(p->regs + UTL_PCIE_PORT_CONTROL,          0x8480000000000000UL);

	/* Init_91..93: Clean & setup port errors */
	out_be64(p->regs + UTL_PCIE_PORT_STATUS,           0xff7fffffffffffffUL);
	out_be64(p->regs + UTL_PCIE_PORT_ERROR_SEV,        0x00e0000000000000UL);
	out_be64(p->regs + UTL_PCIE_PORT_IRQ_EN,           0x7e65000000000000UL);

	/* Init_94 : Cleanup RC errors */
	out_be64(p->regs + UTL_RC_STATUS,                  0xffffffffffffffffUL);
}

static void p7ioc_phb_init_errors(struct p7ioc_phb *p)
{
	/* Init_98: LEM Error Mask : Temporarily disable error interrupts */
	out_be64(p->regs + PHB_LEM_ERROR_MASK,		   0xffffffffffffffffUL);

	/* Init_99..107: Configure main error traps & clear old state */
	out_be64(p->regs + PHB_ERR_STATUS,		   0xffffffffffffffffUL);
	out_be64(p->regs + PHB_ERR1_STATUS,		   0x0000000000000000UL);
	out_be64(p->regs + PHB_ERR_LEM_ENABLE,		   0xffffffffefffffffUL);
	out_be64(p->regs + PHB_ERR_FREEZE_ENABLE,	   0x0000000061c00000UL);
	out_be64(p->regs + PHB_ERR_AIB_FENCE_ENABLE,	   0xffffffc58c000000UL);
	out_be64(p->regs + PHB_ERR_LOG_0,		   0x0000000000000000UL);
	out_be64(p->regs + PHB_ERR_LOG_1,		   0x0000000000000000UL);
	out_be64(p->regs + PHB_ERR_STATUS_MASK,		   0x0000000000000000UL);
	out_be64(p->regs + PHB_ERR1_STATUS_MASK,	   0x0000000000000000UL);

	/* Init_108_116: Configure MMIO error traps & clear old state */
	out_be64(p->regs + PHB_OUT_ERR_STATUS,		   0xffffffffffffffffUL);
	out_be64(p->regs + PHB_OUT_ERR1_STATUS,		   0x0000000000000000UL);
	out_be64(p->regs + PHB_OUT_ERR_LEM_ENABLE,	   0xffffffffffffffffUL);
	out_be64(p->regs + PHB_OUT_ERR_FREEZE_ENABLE,	   0x0000430803000000UL);
	out_be64(p->regs + PHB_OUT_ERR_AIB_FENCE_ENABLE,   0x9df3bc00f0f0700fUL);
	out_be64(p->regs + PHB_OUT_ERR_LOG_0,		   0x0000000000000000UL);
	out_be64(p->regs + PHB_OUT_ERR_LOG_1,		   0x0000000000000000UL);
	out_be64(p->regs + PHB_OUT_ERR_STATUS_MASK,	   0x0000000000000000UL);
	out_be64(p->regs + PHB_OUT_ERR1_STATUS_MASK,	   0x0000000000000000UL);

	/* Init_117_125: Configure DMA_A error traps & clear old state */
	out_be64(p->regs + PHB_INA_ERR_STATUS,		   0xffffffffffffffffUL);
	out_be64(p->regs + PHB_INA_ERR1_STATUS,		   0x0000000000000000UL);
	out_be64(p->regs + PHB_INA_ERR_LEM_ENABLE,	   0xffffffffffffffffUL);
	out_be64(p->regs + PHB_INA_ERR_FREEZE_ENABLE,	   0xc00003ff01006000UL);
	out_be64(p->regs + PHB_INA_ERR_AIB_FENCE_ENABLE,   0x3fff50007e559fd8UL);
	out_be64(p->regs + PHB_INA_ERR_LOG_0,		   0x0000000000000000UL);
	out_be64(p->regs + PHB_INA_ERR_LOG_1,		   0x0000000000000000UL);
	out_be64(p->regs + PHB_INA_ERR_STATUS_MASK,	   0x0000000000000000UL);
	out_be64(p->regs + PHB_INA_ERR1_STATUS_MASK,	   0x0000000000000000UL);

	/* Init_126_134: Configure DMA_B error traps & clear old state */
	out_be64(p->regs + PHB_INB_ERR_STATUS,		   0xffffffffffffffffUL);
	out_be64(p->regs + PHB_INB_ERR1_STATUS,		   0x0000000000000000UL);
	out_be64(p->regs + PHB_INB_ERR_LEM_ENABLE,	   0xffffffffffffffffUL);
	out_be64(p->regs + PHB_INB_ERR_FREEZE_ENABLE,	   0x0000000000000000UL);
	out_be64(p->regs + PHB_INB_ERR_AIB_FENCE_ENABLE,   0x18ff80ffff7f0000UL);
	out_be64(p->regs + PHB_INB_ERR_LOG_0,		   0x0000000000000000UL);
	out_be64(p->regs + PHB_INB_ERR_LOG_1,		   0x0000000000000000UL);
	out_be64(p->regs + PHB_INB_ERR_STATUS_MASK,	   0x0000000000000000UL);
	out_be64(p->regs + PHB_INB_ERR1_STATUS_MASK,	   0x0000000000000000UL);

	/* Init_135..138: Cleanup & configure LEM */
	out_be64(p->regs + PHB_LEM_FIR_ACCUM,		   0x0000000000000000UL);
	out_be64(p->regs + PHB_LEM_ACTION0,		   0xffffffffffffffffUL);
	out_be64(p->regs + PHB_LEM_ACTION1,		   0x0000000000000000UL);
	out_be64(p->regs + PHB_LEM_WOF,			   0x0000000000000000UL);
}

/* p7ioc_phb_init - Initialize the PHB hardware
 *
 * This is currently only called at boot time. It will eventually
 * be called at runtime, for example in some cases of error recovery
 * after a PHB reset in which case we might need locks etc... 
 */
int64_t p7ioc_phb_init(struct p7ioc_phb *p)
{
	uint64_t val;

	PHBDBG(p, "Initializing PHB %d...\n", p->index);

	p->state = P7IOC_PHB_STATE_INITIALIZING;

	/* For some reason, the doc wants us to read the version
	 * register, so let's do it. We shoud probably check that
	 * the value makes sense...
	 */
	val = in_be64(p->regs_asb + PHB_VERSION);
	p->rev = ((val >> 16) & 0xffff) | (val & 0xffff);
	PHBDBG(p, "PHB version: %08x\n", p->rev);

	/*
	 * Configure AIB operations
	 *
	 * This register maps upbound commands to AIB channels.
	 * DMA Write=0, DMA Read=2, MMIO Load Response=1,
	 * Interrupt Request=1, TCE Read=3.
	 */
	/* Init_1: AIB TX Channel Mapping */
	out_be64(p->regs_asb + PHB_AIB_TX_CHAN_MAPPING,    0x0211300000000000UL);

	/*
	 * This group of steps initializes the AIB RX credits for
	 * the CI block’s port that is attached to this PHB.
	 *
	 * Channel 0 (Dkill): 32 command credits, 0 data credits
	 *                    (effectively infinite command credits)
	 * Channel 1 (DMA/TCE Read Responses): 32 command credits, 32 data
	 *                                     credits (effectively infinite
	 *                                     command and data credits)
	 * Channel 2 (Interrupt Reissue/Return): 32 command, 0 data credits
	 *                                       (effectively infinite
	 *                                       command credits)
	 * Channel 3 (MMIO Load/Stores, EOIs): 1 command, 1 data credit
	 */

	/* Init_2: AIB RX Command Credit */
	out_be64(p->regs_asb + PHB_AIB_RX_CMD_CRED,        0x0020002000200001UL);
	/* Init_3: AIB RX Data Credit */
	out_be64(p->regs_asb + PHB_AIB_RX_DATA_CRED,       0x0000002000000001UL);
	/* Init_4: AXIB RX Credit Init Timer */
	out_be64(p->regs_asb + PHB_AIB_RX_CRED_INIT_TIMER, 0xFF00000000000000UL);

	/*
	 * Enable all 32 AIB and TCE tags.
	 *
	 * AIB tags are used for DMA read requests.
	 * TCE tags are used for every internal transaction as well as TCE
	 * read requests.
	 */

	/* Init_5:  PHB - AIB Tag Enable Register */
	out_be64(p->regs_asb + PHB_AIB_TAG_ENABLE,         0xFFFFFFFF00000000UL);
	/* Init_6: PHB – TCE Tag Enable Register */
	out_be64(p->regs_asb + PHB_TCE_TAG_ENABLE,         0xFFFFFFFF00000000UL);

	/* Init_7: PCIE - System Configuration Register
	 *
	 * This is the default value out of reset. This register can be
	 * modified to change the following fields if needed:
	 *
	 *  bits 04:09 - SYS_EC0C_MAXLINKWIDTH[5:0]
	 *               The default link width is x8. This can be reduced
	 *               to x1 or x4, if needed.
	 *
	 *  bits 10:12 - SYS_EC04_MAX_PAYLOAD[2:0]
	 *
	 *               The default max payload size is 4KB. This can be
	 *               reduced to the allowed ranges from 128B
	 *               to 2KB if needed.
	 */
	out_be64(p->regs + PHB_PCIE_SYSTEM_CONFIG,         0x422800FC20000000UL);

	/* Init_8: PHB - PCI-E Reset Register
	 *
	 * This will deassert reset for the PCI-E cores, including the
	 * PHY and HSS macros. The TLDLP core will begin link training
	 * shortly after this register is written.
	 * This will also assert reset for the internal scan-only error
	 * report macros. The error report macro reset will be deasserted
	 * in a later step.
	 * Firmware will verify in a later step whether the PCI-E link
	 * has been established.
	 *
	 * NOTE: We perform a PERST at the end of the init sequence so
	 * we could probably skip that link training.
	 */
	out_be64(p->regs + PHB_RESET,                      0xE800000000000000UL);

	/* Init_9: BUID
	 *
	 * Only the top 5 bit of the MSI field are implemented, the bottom
	 * are always 0. Our buid_msi value should also be a multiple of
	 * 16 so it should all fit well
	 */
	val  = SETFIELD(PHB_BUID_LSI, 0ul, P7_BUID_BASE(p->buid_lsi));
	val |= SETFIELD(PHB_BUID_MSI, 0ul, P7_BUID_BASE(p->buid_msi));
	out_be64(p->regs + PHB_BUID, val);

	/* Init_10..12: IO Space */
	out_be64(p->regs + PHB_IO_BASE_ADDR, p->io_base);
	out_be64(p->regs + PHB_IO_BASE_MASK, ~(PHB_IO_SIZE - 1));
	out_be64(p->regs + PHB_IO_START_ADDR, 0);

	/* Init_13..15: M32 Space */
	out_be64(p->regs + PHB_M32_BASE_ADDR, p->m32_base + M32_PCI_START);
	out_be64(p->regs + PHB_M32_BASE_MASK, ~(M32_PCI_SIZE - 1));
	out_be64(p->regs + PHB_M32_START_ADDR, M32_PCI_START);

	/* Init_16: PCIE-E Outbound Request Upper Address */
	out_be64(p->regs + PHB_M64_UPPER_BITS, 0);

	/* Init_17: PCIE-E PHB2 Configuration
	 *
	 * We enable IO, M32, 32-bit MSI and 64-bit MSI
	 */
	out_be64(p->regs + PHB_PHB2_CONFIG,
		 PHB_PHB2C_32BIT_MSI_EN	|
		 PHB_PHB2C_IO_EN	|
		 PHB_PHB2C_64BIT_MSI_EN	|
		 PHB_PHB2C_M32_EN |
		 PHB_PHB2C_64B_TCE_EN);

	/* Init_18..xx: Reset all IODA tables */
	p7ioc_ioda_reset(&p->phb, false);

	/* Init_42..47: Clear UTL & DLP error log regs */
	out_be64(p->regs + PHB_PCIE_UTL_ERRLOG1,	   0xffffffffffffffffUL);
	out_be64(p->regs + PHB_PCIE_UTL_ERRLOG2,	   0xffffffffffffffffUL);
	out_be64(p->regs + PHB_PCIE_UTL_ERRLOG3,	   0xffffffffffffffffUL);
	out_be64(p->regs + PHB_PCIE_UTL_ERRLOG4,	   0xffffffffffffffffUL);
	out_be64(p->regs + PHB_PCIE_DLP_ERRLOG1,	   0xffffffffffffffffUL);
	out_be64(p->regs + PHB_PCIE_DLP_ERRLOG2,	   0xffffffffffffffffUL);

	/* Init_48: Wait for DLP core to be out of reset */
	if (!p7ioc_phb_wait_dlp_reset(p))
		goto failed;

	/* Init_49 - Clear port status */
	out_be64(p->regs + UTL_PCIE_PORT_STATUS,	   0xffffffffffffffffUL);

	/* Init_50..81: Init root complex config space */
	if (!p7ioc_phb_init_rc_cfg(p))
		goto failed;

	/* Init_82..94 : Init UTL */
	p7ioc_phb_init_utl(p);

	/* Init_95: PCI-E Reset, deassert reset for internal error macros */
	out_be64(p->regs + PHB_RESET,			   0xe000000000000000UL);

	/* Init_96: PHB Control register. Various PHB settings:
	 *
	 * - Enable ECC for various internal RAMs
	 * - Enable all TCAM entries
	 * - Set failed DMA read requests to return Completer Abort on error
	 */
	out_be64(p->regs + PHB_CONTROL, 	       	   0x7f38000000000000UL);

	/* Init_97: Legacy Control register
	 *
	 * The spec sets bit 0 to enable DKill to flush the TCEs. We do not
	 * use that mechanism however, we require the OS to directly access
	 * the TCE Kill register, so we leave that bit set to 0
	 */
	out_be64(p->regs + PHB_LEGACY_CTRL,		   0x0000000000000000);

	/* Init_98..138  : Setup error registers */
	p7ioc_phb_init_errors(p);

	/* Init_139: Read error summary */
	val = in_be64(p->regs + PHB_ETU_ERR_SUMMARY);
	if (val) {
		PHBERR(p, "Errors detected during PHB init: 0x%16llx\n", val);
		goto failed;
	}

	/* Steps Init_140..142 have been removed from the spec. */

	/* Init_143..144: Enable IO, MMIO, Bus master etc... and clear
	 * status bits
	 */
	p7ioc_pcicfg_write16(&p->phb, 0, PCI_CFG_STAT,
			     PCI_CFG_STAT_SENT_TABORT	|
			     PCI_CFG_STAT_RECV_TABORT	|
			     PCI_CFG_STAT_RECV_MABORT	|
			     PCI_CFG_STAT_SENT_SERR	|
			     PCI_CFG_STAT_RECV_PERR);
	p7ioc_pcicfg_write16(&p->phb, 0, PCI_CFG_CMD,
			     PCI_CFG_CMD_SERR_EN	|
			     PCI_CFG_CMD_PERR_RESP	|
			     PCI_CFG_CMD_BUS_MASTER_EN	|
			     PCI_CFG_CMD_MEM_EN		|
			     PCI_CFG_CMD_IO_EN);

	/* At this point, the spec suggests doing a bus walk. However we
	 * haven't powered up the slots with the SHCP controller. We'll
	 * deal with that and link training issues later, for now, let's
	 * enable the full range of error detection
	 */

	/* Init_145..149: Enable error interrupts and LEM */
	out_be64(p->regs + PHB_ERR_IRQ_ENABLE,		   0x0000000061c00000UL);
	out_be64(p->regs + PHB_OUT_ERR_IRQ_ENABLE,	   0x0000430803000000UL);
	out_be64(p->regs + PHB_INA_ERR_IRQ_ENABLE,	   0xc00003ff01006000UL);
	out_be64(p->regs + PHB_INB_ERR_IRQ_ENABLE,	   0x0000000000000000UL);
	out_be64(p->regs + PHB_LEM_ERROR_MASK,		   0x1249a1147f500f2cUL);

	/* Init_150: Enable DMA read/write TLP address speculation */
	out_be64(p->regs + PHB_TCE_PREFETCH,		   0x0000c00000000000UL);

	/* Init_151..152: Set various timeouts */
	out_be64(p->regs + PHB_TIMEOUT_CTRL1,		   0x1611112010200000UL);
	out_be64(p->regs + PHB_TIMEOUT_CTRL2,		   0x0000561300000000UL);

	/* Mark the PHB as functional which enables all the various sequences */
	p->state = P7IOC_PHB_STATE_FUNCTIONAL;

	return OPAL_SUCCESS;

 failed:
	PHBERR(p, "Initialization failed\n");
	p->state = P7IOC_PHB_STATE_BROKEN;

	return OPAL_HARDWARE;
}

void p7ioc_phb_reset(struct phb *phb)
{
	struct p7ioc_phb *p = phb_to_p7ioc_phb(phb);
	struct p7ioc *ioc = p->ioc;
	uint64_t ci_idx, rreg;
	unsigned int i;
	bool fenced;

	/* Check our fence status. The fence bits we care about are
	 * two bits per PHB at IBM bit location 14 and 15 + 4*phb
	 */
	fenced = p7ioc_phb_fenced(p);

	PHBDBG(p, "PHB reset... (fenced: %d)\n", (int)fenced);

	/*
	 * If not fenced and already functional, let's do an IODA reset
	 * to clear pending DMAs and wait a bit for thing to settle. It's
	 * notable that the IODA table cache won't be emptied so that we
	 * can restore them during error recovery.
	 */
	if (p->state == P7IOC_PHB_STATE_FUNCTIONAL && !fenced) {
		PHBDBG(p, "  ioda reset ...\n");
		p7ioc_ioda_reset(&p->phb, false);
		time_wait_ms(100);
	}

	/* CI port index */
	ci_idx = p->index + 2;

	/* Reset register bits for this PHB */
	rreg =  0;/*PPC_BIT(8 + ci_idx * 2);*/	/* CI port config reset */
	rreg |= PPC_BIT(9 + ci_idx * 2);	/* CI port func reset */
	rreg |= PPC_BIT(32 + p->index);		/* PHBn config reset */

	/* Mask various errors during reset and clear pending errors */
	out_be64(ioc->regs + P7IOC_CIn_LEM_ERR_MASK(ci_idx),
		 0xa4f4000000000000ul);
	out_be64(p->regs_asb + PHB_LEM_ERROR_MASK, 0xadb650c9808dd051ul);
	out_be64(ioc->regs + P7IOC_CIn_LEM_FIR(ci_idx), 0);

	/* We need to retry in case the fence doesn't lift due to a
	 * problem with lost credits (HW guys). How many times ?
	 */
#define MAX_PHB_RESET_RETRIES	5
	for (i = 0; i < MAX_PHB_RESET_RETRIES; i++) {
		PHBDBG(p, "  reset try %d...\n", i);
		/* Apply reset */
		out_be64(ioc->regs + P7IOC_CCRR, rreg);
		time_wait_ms(1);
		out_be64(ioc->regs + P7IOC_CCRR, 0);

		/* Check if fence lifed */
		fenced = p7ioc_phb_fenced(p);
		PHBDBG(p, "  fenced: %d...\n", (int)fenced);
		if (!fenced)
			break;
	}

	/* Reset failed, not much to do, maybe add an error return */
	if (fenced) {
		PHBERR(p, "Reset failed, fence still set !\n");
		p->state = P7IOC_PHB_STATE_BROKEN;
		return;
	}

	/* Wait a bit */
	time_wait_ms(100);

	/* Re-initialize the PHB */
	p7ioc_phb_init(p);

	/* Restore the CI error mask */
	out_be64(ioc->regs + P7IOC_CIn_LEM_ERR_MASK_AND(ci_idx), 0);
}