1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
|
// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
/*
* Note about accesses to the AST2400 internal memory map:
*
* There are two ways to genrate accesses to the AHB bus of the AST2400
* from the host. The LPC->AHB bridge and the iLPC->AHB bridge.
*
* LPC->AHB bridge
* ---------------
*
* This bridge directly converts memory or firmware accesses using
* a set of registers for establishing a remapping window. We prefer
* using FW space as normal memory space is limited to byte accesses
* to a fixed 256M window, while FW space allows us to use different
* access sizes and to control the IDSEL bits which essentially enable
* a full 4G address space.
*
* The way FW accesses map onto AHB is controlled via two registers
* in the BMC's LPC host controller:
*
* HICR7 at 0x1e789088 [31:16] : ADRBASE
* [15:00] : HWMBASE
*
* HICR8 at 0x1e78908c [31:16] : ADRMASK
* [15:00] : HWNCARE
*
* All decoding/remapping happens on the top 16 bits of the LPC address
* named LPC_ADDR as follow:
*
* - For decoding, LPC_ADDR bits are compared with HWMBASE if the
* corresponding bit in HWNCARE is 0.
*
* - For remapping, the AHB address is constructed by taking bits
* from LPC_ADDR if the corresponding bit in ADRMASK is 0 or in
* ADRBASE if the corresponding bit in ADRMASK is 1
*
* Example of 2MB SPI flash, LPC 0xFCE00000~0xFCFFFFFF onto
* AHB 0x30000000~0x301FFFFF (SPI flash)
*
* ADRBASE=0x3000 HWMBASE=0xFCE0
* ADRMASK=0xFFE0 HWNCARE=0x001F
*
* This comes pre-configured by the BMC or HostBoot to access the PNOR
* flash from IDSEL 0 as follow:
*
* ADRBASE=0x3000 HWMBASE=0x0e00 for 32MB
* ADRMASK=0xfe00 HWNCARE=0x01ff
*
* Which means mapping of LPC 0x0e000000..0x0fffffff onto
* AHB 0x30000000..0x31ffffff
*
* iLPC->AHB bridge
* ---------------
*
* This bridge is hosted in the SuperIO part of the BMC and is
* controlled by a series of byte-sized registers accessed indirectly
* via IO ports 0x2e and 0x2f.
*
* Via these, byte by byte, we can construct an AHB address and
* fill a data buffer to trigger a write cycle, or we can do a
* read cycle and read back the data, byte after byte.
*
* This is fairly convoluted and slow but works regardless of what
* mapping was established in the LPC->AHB bridge.
*
* For the time being, we use the iLPC->AHB for everything except
* pnor accesses. In the long run, we will reconfigure the LPC->AHB
* to provide more direct access to all of the BMC address space but
* we'll only do that after the boot script/program on the BMC is
* updated to restore the bridge to a state compatible with the SBE
* expectations on boot.
*
* Copyright 2013-2019 IBM Corp.
*/
#include <skiboot.h>
#include <lpc.h>
#include <lock.h>
#include <device.h>
#include "ast.h"
#define BMC_SIO_SCR28 0x28
#define BOOT_FLAGS_VERSION 0x42
/*
* SIO Register 0x29: Boot Flags (normal bit ordering)
*
* [7:6] Hostboot Boot mode:
* 00 : Normal
* 01 : Terminate on first error
* 10 : istep mode
* 11 : reserved
* [5:4] Boot options
* 00 : reserved
* 01 : Memboot
* 10 : Clear gard
* 11 : reserved
* [ 3 ] BMC mbox PNOR driver
* [2:0] Hostboot Log level:
* 000 : Normal
* 001 : Enable Scan trace
* xxx : reserved
*/
#define BMC_SIO_SCR29 0x29
#define BMC_SIO_SCR29_MBOX 0x08
#define BMC_SIO_SCR29_MEMBOOT 0x10
/*
* SIO Register 0x2d: Platform Flags (normal bit ordering)
*
* [ 7 ] Hostboot configures SUART
* [ 6 ] Hostboot configures VUART
* [5:1] Reserved
* [ 0 ] Isolate Service Processor
*/
#define BMC_SIO_PLAT_FLAGS 0x2d
#define BMC_SIO_PLAT_ISOLATE_SP 0x01
enum {
BMC_SIO_DEV_NONE = -1,
BMC_SIO_DEV_UART1 = 2,
BMC_SIO_DEV_UART2 = 3,
BMC_SIO_DEV_SWC = 4,
BMC_SIO_DEV_KBC = 5,
BMC_SIO_DEV_P80 = 7,
BMC_SIO_DEV_UART3 = 0xb,
BMC_SIO_DEV_UART4 = 0xc,
BMC_SIO_DEV_LPC2AHB = 0xd,
BMC_SIO_DEV_MBOX = 0xe,
};
static struct lock bmc_sio_lock = LOCK_UNLOCKED;
static int bmc_sio_cur_dev = BMC_SIO_DEV_NONE;
/*
* SuperIO indirect accesses
*/
static void bmc_sio_outb(uint8_t val, uint8_t reg)
{
lpc_outb(reg, 0x2e);
lpc_outb(val, 0x2f);
}
static uint8_t bmc_sio_inb(uint8_t reg)
{
lpc_outb(reg, 0x2e);
return lpc_inb(0x2f);
}
static void bmc_sio_get(int dev)
{
lock(&bmc_sio_lock);
if (bmc_sio_cur_dev == dev || dev < 0)
return;
if (bmc_sio_cur_dev == BMC_SIO_DEV_NONE) {
/* Send SuperIO password */
lpc_outb(0xa5, 0x2e);
lpc_outb(0xa5, 0x2e);
}
/* Select logical dev */
bmc_sio_outb(dev, 0x07);
bmc_sio_cur_dev = dev;
}
static void bmc_sio_put(bool lock_sio)
{
if (lock_sio) {
/* Re-lock SuperIO */
lpc_outb(0xaa, 0x2e);
bmc_sio_cur_dev = BMC_SIO_DEV_NONE;
}
unlock(&bmc_sio_lock);
}
/*
* AHB accesses via iLPC->AHB in SuperIO. Works on byteswapped
* values (ie. Little Endian registers)
*/
static void bmc_sio_ahb_prep(uint32_t reg, uint8_t type)
{
/* Enable iLPC->AHB */
bmc_sio_outb(0x01, 0x30);
/* Address */
bmc_sio_outb((reg >> 24) & 0xff, 0xf0);
bmc_sio_outb((reg >> 16) & 0xff, 0xf1);
bmc_sio_outb((reg >> 8) & 0xff, 0xf2);
bmc_sio_outb((reg ) & 0xff, 0xf3);
/* bytes cycle type */
bmc_sio_outb(type, 0xf8);
}
static void bmc_sio_ahb_writel(uint32_t val, uint32_t reg)
{
bmc_sio_get(BMC_SIO_DEV_LPC2AHB);
bmc_sio_ahb_prep(reg, 2);
/* Write data */
bmc_sio_outb(val >> 24, 0xf4);
bmc_sio_outb(val >> 16, 0xf5);
bmc_sio_outb(val >> 8, 0xf6);
bmc_sio_outb(val , 0xf7);
/* Trigger */
bmc_sio_outb(0xcf, 0xfe);
bmc_sio_put(false);
}
static uint32_t bmc_sio_ahb_readl(uint32_t reg)
{
uint32_t val = 0;
bmc_sio_get(BMC_SIO_DEV_LPC2AHB);
bmc_sio_ahb_prep(reg, 2);
/* Trigger */
bmc_sio_inb(0xfe);
/* Read results */
val = (val << 8) | bmc_sio_inb(0xf4);
val = (val << 8) | bmc_sio_inb(0xf5);
val = (val << 8) | bmc_sio_inb(0xf6);
val = (val << 8) | bmc_sio_inb(0xf7);
bmc_sio_put(false);
return val;
}
/*
* External API
*
* We only support 4-byte accesses to all of AHB. We additionally
* support 1-byte accesses to the flash area only.
*
* We could support all access sizes via iLPC but we don't need
* that for now.
*/
void ast_ahb_writel(uint32_t val, uint32_t reg)
{
/* For now, always use iLPC->AHB, it will byteswap */
bmc_sio_ahb_writel(val, reg);
}
uint32_t ast_ahb_readl(uint32_t reg)
{
/* For now, always use iLPC->AHB, it will byteswap */
return bmc_sio_ahb_readl(reg);
}
static void ast_setup_sio_irq_polarity(void)
{
/* Select logical dev 2 */
bmc_sio_get(BMC_SIO_DEV_UART1);
bmc_sio_outb(0x01, 0x71); /* level low */
bmc_sio_put(false);
/* Select logical dev 3 */
bmc_sio_get(BMC_SIO_DEV_UART2);
bmc_sio_outb(0x01, 0x71); /* irq level low */
bmc_sio_put(false);
/* Select logical dev 4 */
bmc_sio_get(BMC_SIO_DEV_SWC);
bmc_sio_outb(0x01, 0x71); /* irq level low */
bmc_sio_put(false);
/* Select logical dev 5 */
bmc_sio_get(BMC_SIO_DEV_KBC);
bmc_sio_outb(0x01, 0x71); /* irq level low */
bmc_sio_outb(0x01, 0x73); /* irq level low */
bmc_sio_put(false);
/* Select logical dev 7 */
bmc_sio_get(BMC_SIO_DEV_P80);
bmc_sio_outb(0x01, 0x71); /* irq level low */
bmc_sio_put(false);
/* Select logical dev d */
bmc_sio_get(BMC_SIO_DEV_UART3);
bmc_sio_outb(0x01, 0x71); /* irq level low */
bmc_sio_put(false);
/* Select logical dev c */
bmc_sio_get(BMC_SIO_DEV_UART4);
bmc_sio_outb(0x01, 0x71); /* irq level low */
bmc_sio_put(false);
/* Select logical dev d */
bmc_sio_get(BMC_SIO_DEV_LPC2AHB);
bmc_sio_outb(0x01, 0x71); /* irq level low */
bmc_sio_put(false);
/* Select logical dev e */
bmc_sio_get(BMC_SIO_DEV_MBOX);
bmc_sio_outb(0x01, 0x71); /* irq level low */
bmc_sio_put(true);
}
bool ast_sio_is_enabled(void)
{
bool enabled;
int64_t rc;
lock(&bmc_sio_lock);
/*
* Probe by attempting to lock the SIO device, this way the
* post-condition is that the SIO device is locked or not able to be
* unlocked. This turns out neater than trying to use the unlock code.
*/
rc = lpc_probe_write(OPAL_LPC_IO, 0x2e, 0xaa, 1);
if (rc) {
enabled = false;
/* If we can't lock it, then we can't unlock it either */
goto out;
}
/*
* Now that we know that is locked and able to be unlocked, unlock it
* if skiboot's recorded device state indicates it was previously
* unlocked.
*/
if (bmc_sio_cur_dev != BMC_SIO_DEV_NONE) {
/* Send SuperIO password */
lpc_outb(0xa5, 0x2e);
lpc_outb(0xa5, 0x2e);
/* Ensure the previously selected logical dev is selected */
bmc_sio_outb(bmc_sio_cur_dev, 0x07);
}
enabled = true;
out:
unlock(&bmc_sio_lock);
return enabled;
}
bool ast_sio_init(void)
{
bool enabled = ast_sio_is_enabled();
/* Configure all AIO interrupts to level low */
if (enabled)
ast_setup_sio_irq_polarity();
return enabled;
}
bool ast_io_is_rw(void)
{
return !(ast_ahb_readl(LPC_HICRB) & LPC_HICRB_ILPC_DISABLE);
}
bool ast_io_init(void)
{
return ast_io_is_rw();
}
bool ast_lpc_fw_ipmi_hiomap(void)
{
return platform.bmc->sw->ipmi_oem_hiomap_cmd != 0;
}
bool ast_lpc_fw_mbox_hiomap(void)
{
struct dt_node *n;
n = dt_find_compatible_node(dt_root, NULL, "mbox");
return n != NULL;
}
bool ast_lpc_fw_maps_flash(void)
{
uint8_t boot_version;
uint8_t boot_flags;
boot_version = bmc_sio_inb(BMC_SIO_SCR28);
if (boot_version != BOOT_FLAGS_VERSION)
return true;
boot_flags = bmc_sio_inb(BMC_SIO_SCR29);
return !(boot_flags & BMC_SIO_SCR29_MEMBOOT);
}
bool ast_scratch_reg_is_mbox(void)
{
uint8_t boot_version;
uint8_t boot_flags;
boot_version = bmc_sio_inb(BMC_SIO_SCR28);
if (boot_version != BOOT_FLAGS_VERSION)
return false;
boot_flags = bmc_sio_inb(BMC_SIO_SCR29);
return boot_flags & BMC_SIO_SCR29_MBOX;
}
void ast_setup_ibt(uint16_t io_base, uint8_t irq)
{
uint32_t v;
v = bmc_sio_ahb_readl(LPC_iBTCR0);
v = v & ~(0xfffffc00u);
v = v | (((uint32_t)io_base) << 16);
v = v | (((uint32_t)irq) << 12);
bmc_sio_ahb_writel(v, LPC_iBTCR0);
}
bool ast_is_vuart1_enabled(void)
{
uint32_t v;
v = bmc_sio_ahb_readl(VUART1_GCTRLA);
return !!(v & 1);
}
void ast_setup_vuart1(uint16_t io_base, uint8_t irq)
{
uint32_t v;
/* IRQ level low */
v = bmc_sio_ahb_readl(VUART1_GCTRLA);
v = v & ~2u;
bmc_sio_ahb_writel(v, VUART1_GCTRLA);
v = bmc_sio_ahb_readl(VUART1_GCTRLA);
/* IRQ number */
v = bmc_sio_ahb_readl(VUART1_GCTRLB);
v = (v & ~0xf0u) | (irq << 4);
bmc_sio_ahb_writel(v, VUART1_GCTRLB);
/* Address */
bmc_sio_ahb_writel(io_base & 0xff, VUART1_ADDRL);
bmc_sio_ahb_writel(io_base >> 8, VUART1_ADDRH);
}
/* Setup SuperIO UART 1 */
void ast_setup_sio_uart1(uint16_t io_base, uint8_t irq)
{
bmc_sio_get(BMC_SIO_DEV_UART1);
/* Disable UART1 for configuration */
bmc_sio_outb(0x00, 0x30);
/* Configure base and interrupt */
bmc_sio_outb(io_base >> 8, 0x60);
bmc_sio_outb(io_base & 0xff, 0x61);
bmc_sio_outb(irq, 0x70);
bmc_sio_outb(0x01, 0x71); /* level low */
/* Enable UART1 */
bmc_sio_outb(0x01, 0x30);
bmc_sio_put(true);
}
void ast_disable_sio_uart1(void)
{
bmc_sio_get(BMC_SIO_DEV_UART1);
/* Disable UART1 */
bmc_sio_outb(0x00, 0x30);
bmc_sio_put(true);
}
void ast_setup_sio_mbox(uint16_t io_base, uint8_t irq)
{
bmc_sio_get(BMC_SIO_DEV_MBOX);
/* Disable for configuration */
bmc_sio_outb(0x00, 0x30);
bmc_sio_outb(io_base >> 8, 0x60);
bmc_sio_outb(io_base & 0xff, 0x61);
bmc_sio_outb(irq, 0x70);
bmc_sio_outb(0x01, 0x71); /* level low */
/* Enable MailBox */
bmc_sio_outb(0x01, 0x30);
bmc_sio_put(true);
}
|