1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
|
// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
/*
* Serial port hanging off LPC
*
* Copyright 2013-2019 IBM Corp.
*/
#include <skiboot.h>
#include <lpc.h>
#include <console.h>
#include <opal.h>
#include <device.h>
#include <interrupts.h>
#include <processor.h>
#include <errorlog.h>
#include <trace.h>
#include <timebase.h>
#include <cpu.h>
#include <chip.h>
#include <io.h>
#include <nvram.h>
DEFINE_LOG_ENTRY(OPAL_RC_UART_INIT, OPAL_PLATFORM_ERR_EVT, OPAL_UART,
OPAL_CEC_HARDWARE, OPAL_PREDICTIVE_ERR_GENERAL,
OPAL_NA);
/* UART reg defs */
#define REG_RBR 0
#define REG_THR 0
#define REG_DLL 0
#define REG_IER 1
#define REG_DLM 1
#define REG_FCR 2
#define REG_IIR 2
#define REG_LCR 3
#define REG_MCR 4
#define REG_LSR 5
#define REG_MSR 6
#define REG_SCR 7
#define LSR_DR 0x01 /* Data ready */
#define LSR_OE 0x02 /* Overrun */
#define LSR_PE 0x04 /* Parity error */
#define LSR_FE 0x08 /* Framing error */
#define LSR_BI 0x10 /* Break */
#define LSR_THRE 0x20 /* Xmit holding register empty */
#define LSR_TEMT 0x40 /* Xmitter empty */
#define LSR_ERR 0x80 /* Error */
#define LCR_DLAB 0x80 /* DLL access */
#define IER_RX 0x01
#define IER_THRE 0x02
#define IER_ALL 0x0f
static struct lock uart_lock = LOCK_UNLOCKED;
static struct dt_node *uart_node;
static uint32_t uart_base;
static uint64_t uart_tx_full_time;
static bool has_irq = false, irq_ok, rx_full, tx_full;
static uint8_t tx_room;
static uint8_t cached_ier;
static void *mmio_uart_base;
static int uart_console_policy = UART_CONSOLE_OPAL;
static int lpc_irq = -1;
void uart_set_console_policy(int policy)
{
uart_console_policy = policy;
}
static void uart_trace(u8 ctx, u8 cnt, u8 irq_state, u8 in_count)
{
union trace t;
t.uart.ctx = ctx;
t.uart.cnt = cnt;
t.uart.irq_state = irq_state;
t.uart.in_count = cpu_to_be16(in_count);
trace_add(&t, TRACE_UART, sizeof(struct trace_uart));
}
static inline uint8_t uart_read(unsigned int reg)
{
if (mmio_uart_base)
return in_8(mmio_uart_base + reg);
else
return lpc_inb(uart_base + reg);
}
static inline void uart_write(unsigned int reg, uint8_t val)
{
if (mmio_uart_base)
out_8(mmio_uart_base + reg, val);
else
lpc_outb(val, uart_base + reg);
}
static bool uart_check_tx_room(void)
{
if (tx_room)
return true;
if (uart_read(REG_LSR) & LSR_THRE) {
/* FIFO is 16 entries */
tx_room = 16;
tx_full = false;
return true;
}
return false;
}
/* Must be called with UART lock held */
static void uart_write_thr(uint8_t val)
{
uart_write(REG_THR, val);
tx_room--;
if (tx_room == 0) {
if (!uart_check_tx_room())
uart_tx_full_time = mftb();
}
}
static bool uart_timed_out(unsigned long msecs)
{
if (uart_check_tx_room())
return false;
if (chip_quirk(QUIRK_SLOW_SIM))
msecs *= 5;
if (tb_compare(mftb(), uart_tx_full_time + msecs_to_tb(msecs)) == TB_AAFTERB)
return true;
return false;
}
static bool uart_wait_tx_room(void)
{
if (uart_check_tx_room())
return true;
smt_lowest();
while (!uart_check_tx_room()) {
if (uart_timed_out(100)) {
smt_medium();
return false;
}
}
smt_medium();
return true;
}
static void uart_update_ier(void)
{
uint8_t ier = 0;
if (!has_irq)
return;
/* If we have never got an interrupt, enable them all,
* the first interrupt received will tell us if interrupts
* are functional (some boards are missing an EC or FPGA
* programming causing LPC interrupts not to work).
*/
if (!irq_ok)
ier = IER_ALL;
if (!rx_full)
ier |= IER_RX;
if (tx_full)
ier |= IER_THRE;
if (ier != cached_ier) {
uart_write(REG_IER, ier);
cached_ier = ier;
}
}
bool uart_enabled(void)
{
return mmio_uart_base || uart_base;
}
/*
* Internal console driver (output only)
*/
static size_t uart_con_write(const char *buf, size_t len)
{
size_t written = 0;
/* If LPC bus is bad, we just swallow data */
if (!lpc_ok() && !mmio_uart_base)
return len;
lock(&uart_lock);
while (written < len) {
if (!uart_wait_tx_room())
break;
uart_write_thr(buf[written++]);
}
if (!written && uart_timed_out(1000)) {
unlock(&uart_lock);
return len; /* swallow data */
}
unlock(&uart_lock);
return written;
}
static struct con_ops uart_con_driver = {
.write = uart_con_write,
};
/*
* OPAL console driver
*/
/*
* We implement a simple buffer to buffer input data as some bugs in
* Linux make it fail to read fast enough after we get an interrupt.
*
* We use it on non-interrupt operations as well while at it because
* it doesn't cost us much and might help in a few cases where Linux
* is calling opal_poll_events() but not actually reading.
*
* Most of the time I expect we'll flush it completely to Linux into
* it's tty flip buffers so I don't bother with a ring buffer.
*/
#define IN_BUF_SIZE 0x1000
static uint8_t *in_buf;
static uint32_t in_count;
/*
* We implement a ring buffer for output data as well to speed things
* up a bit. This allows us to have interrupt driven sends. This is only
* for the output data coming from the OPAL API, not the internal one
* which is already bufferred.
*/
#define OUT_BUF_SIZE 0x1000
static uint8_t *out_buf;
static uint32_t out_buf_prod;
static uint32_t out_buf_cons;
/* Asynchronous flush, uart_lock must be held */
static int64_t uart_con_flush(void)
{
bool tx_was_full = tx_full;
uint32_t out_buf_cons_initial = out_buf_cons;
while(out_buf_prod != out_buf_cons) {
if (tx_room == 0) {
/*
* If the interrupt is not functional,
* we force a full synchronous flush,
* otherwise the Linux console isn't
* usable (too slow).
*/
if (irq_ok)
uart_check_tx_room();
else
uart_wait_tx_room();
}
if (tx_room == 0) {
tx_full = true;
break;
}
uart_write_thr(out_buf[out_buf_cons++]);
out_buf_cons %= OUT_BUF_SIZE;
}
if (tx_full != tx_was_full)
uart_update_ier();
if (out_buf_prod != out_buf_cons) {
/* Return busy if nothing was flushed this call */
if (out_buf_cons == out_buf_cons_initial) {
if (uart_timed_out(1000))
return OPAL_TIMEOUT;
return OPAL_BUSY;
}
/* Return partial if there's more to flush */
return OPAL_PARTIAL;
}
return OPAL_SUCCESS;
}
static uint32_t uart_tx_buf_space(void)
{
return OUT_BUF_SIZE - 1 -
(out_buf_prod + OUT_BUF_SIZE - out_buf_cons) % OUT_BUF_SIZE;
}
static int64_t uart_opal_write(int64_t term_number, __be64 *__length,
const uint8_t *buffer)
{
size_t written = 0, len = be64_to_cpu(*__length);
int64_t ret = OPAL_SUCCESS;
if (term_number != 0)
return OPAL_PARAMETER;
lock(&uart_lock);
/* Copy data to out buffer */
while (uart_tx_buf_space() && len--) {
out_buf[out_buf_prod++] = *(buffer++);
out_buf_prod %= OUT_BUF_SIZE;
written++;
}
/* Flush out buffer again */
uart_con_flush();
if (!written && uart_timed_out(1000))
ret = OPAL_TIMEOUT;
unlock(&uart_lock);
*__length = cpu_to_be64(written);
return ret;
}
static int64_t uart_opal_write_buffer_space(int64_t term_number,
__be64 *__length)
{
int64_t ret = OPAL_SUCCESS;
int64_t tx_buf_len;
if (term_number != 0)
return OPAL_PARAMETER;
lock(&uart_lock);
tx_buf_len = uart_tx_buf_space();
if ((tx_buf_len < be64_to_cpu(*__length)) && uart_timed_out(1000))
ret = OPAL_TIMEOUT;
*__length = cpu_to_be64(tx_buf_len);
unlock(&uart_lock);
return ret;
}
/* Must be called with UART lock held */
static void uart_read_to_buffer(void)
{
/* As long as there is room in the buffer */
while(in_count < IN_BUF_SIZE) {
/* Read status register */
uint8_t lsr = uart_read(REG_LSR);
/* Nothing to read ... */
if ((lsr & LSR_DR) == 0)
break;
/* Read and add to buffer */
in_buf[in_count++] = uart_read(REG_RBR);
}
/* If the buffer is full disable the interrupt */
rx_full = (in_count == IN_BUF_SIZE);
uart_update_ier();
}
static void uart_adjust_opal_event(void)
{
if (in_count)
opal_update_pending_evt(OPAL_EVENT_CONSOLE_INPUT,
OPAL_EVENT_CONSOLE_INPUT);
else
opal_update_pending_evt(OPAL_EVENT_CONSOLE_INPUT, 0);
}
/* This is called with the console lock held */
static int64_t uart_opal_read(int64_t term_number, __be64 *__length,
uint8_t *buffer)
{
size_t req_count = be64_to_cpu(*__length), read_cnt = 0;
uint8_t lsr = 0;
if (term_number != 0)
return OPAL_PARAMETER;
if (!in_buf)
return OPAL_INTERNAL_ERROR;
lock(&uart_lock);
/* Read from buffer first */
if (in_count) {
read_cnt = in_count;
if (req_count < read_cnt)
read_cnt = req_count;
memcpy(buffer, in_buf, read_cnt);
req_count -= read_cnt;
if (in_count != read_cnt)
memmove(in_buf, in_buf + read_cnt, in_count - read_cnt);
in_count -= read_cnt;
}
/*
* If there's still room in the user buffer, read from the UART
* directly
*/
while(req_count) {
lsr = uart_read(REG_LSR);
if ((lsr & LSR_DR) == 0)
break;
buffer[read_cnt++] = uart_read(REG_RBR);
req_count--;
}
/* Finally, flush whatever's left in the UART into our buffer */
uart_read_to_buffer();
uart_trace(TRACE_UART_CTX_READ, read_cnt, tx_full, in_count);
unlock(&uart_lock);
/* Adjust the OPAL event */
uart_adjust_opal_event();
*__length = cpu_to_be64(read_cnt);
return OPAL_SUCCESS;
}
static int64_t uart_opal_flush(int64_t term_number)
{
int64_t rc;
if (term_number != 0)
return OPAL_PARAMETER;
lock(&uart_lock);
rc = uart_con_flush();
unlock(&uart_lock);
return rc;
}
static void __uart_do_poll(u8 trace_ctx)
{
if (!in_buf)
return;
lock(&uart_lock);
uart_read_to_buffer();
uart_con_flush();
uart_trace(trace_ctx, 0, tx_full, in_count);
unlock(&uart_lock);
uart_adjust_opal_event();
}
static void uart_console_poll(void *data __unused)
{
__uart_do_poll(TRACE_UART_CTX_POLL);
}
static void uart_irq(uint32_t chip_id __unused, uint32_t irq_mask __unused)
{
if (!irq_ok) {
prlog(PR_DEBUG, "UART: IRQ functional !\n");
irq_ok = true;
}
__uart_do_poll(TRACE_UART_CTX_IRQ);
}
/*
* Common setup/inits
*/
static void uart_setup_os_passthrough(void)
{
char *path;
static struct lpc_client uart_lpc_os_client = {
.reset = NULL,
.interrupt = NULL,
.interrupts = 0
};
dt_add_property_strings(uart_node, "status", "ok");
path = dt_get_path(uart_node);
dt_add_property_string(dt_chosen, "linux,stdout-path", path);
free(path);
/* Setup LPC client for OS interrupts */
if (lpc_irq >= 0) {
uint32_t chip_id = dt_get_chip_id(uart_node);
uart_lpc_os_client.interrupts = LPC_IRQ(lpc_irq);
lpc_register_client(chip_id, &uart_lpc_os_client,
IRQ_ATTR_TARGET_LINUX);
}
prlog(PR_DEBUG, "UART: Enabled as OS pass-through\n");
}
static void uart_setup_opal_console(void)
{
static struct lpc_client uart_lpc_opal_client = {
.interrupt = uart_irq,
};
/* Add the opal console node */
add_opal_console_node(0, "raw", OUT_BUF_SIZE);
dt_add_property_string(dt_chosen, "linux,stdout-path",
"/ibm,opal/consoles/serial@0");
/*
* We mark the UART as reserved since we don't want the
* kernel to start using it with its own 8250 driver
*/
dt_add_property_strings(uart_node, "status", "reserved");
/* Allocate an input buffer */
in_buf = zalloc(IN_BUF_SIZE);
out_buf = zalloc(OUT_BUF_SIZE);
/* Setup LPC client for OPAL interrupts */
if (lpc_irq >= 0) {
uint32_t chip_id = dt_get_chip_id(uart_node);
uart_lpc_opal_client.interrupts = LPC_IRQ(lpc_irq);
lpc_register_client(chip_id, &uart_lpc_opal_client,
IRQ_ATTR_TARGET_OPAL);
has_irq = true;
}
/*
* If the interrupt is enabled, turn on RX interrupts (and
* only these for now
*/
tx_full = rx_full = false;
uart_update_ier();
/* Start console poller */
opal_add_poller(uart_console_poll, NULL);
}
static void uart_init_opal_console(void)
{
const char *nv_policy;
/* Update the policy if the corresponding nvram variable
* is present
*/
nv_policy = nvram_query_dangerous("uart-con-policy");
if (nv_policy) {
if (!strcmp(nv_policy, "opal"))
uart_console_policy = UART_CONSOLE_OPAL;
else if (!strcmp(nv_policy, "os"))
uart_console_policy = UART_CONSOLE_OS;
else
prlog(PR_WARNING,
"UART: Unknown console policy in NVRAM: %s\n",
nv_policy);
}
if (uart_console_policy == UART_CONSOLE_OPAL)
uart_setup_opal_console();
else
uart_setup_os_passthrough();
}
struct opal_con_ops uart_opal_con = {
.name = "OPAL UART console",
.init = uart_init_opal_console,
.read = uart_opal_read,
.write = uart_opal_write,
.space = uart_opal_write_buffer_space,
.flush = uart_opal_flush,
};
static bool uart_init_hw(unsigned int speed, unsigned int clock)
{
unsigned int dll = (clock / 16) / speed;
/* Clear line control */
uart_write(REG_LCR, 0x00);
/* Check if the UART responds */
uart_write(REG_IER, 0x01);
if (uart_read(REG_IER) != 0x01)
goto detect_fail;
uart_write(REG_IER, 0x00);
if (uart_read(REG_IER) != 0x00)
goto detect_fail;
uart_write(REG_LCR, LCR_DLAB);
uart_write(REG_DLL, dll & 0xff);
uart_write(REG_DLM, dll >> 8);
uart_write(REG_LCR, 0x03); /* 8N1 */
uart_write(REG_MCR, 0x03); /* RTS/DTR */
uart_write(REG_FCR, 0x07); /* clear & en. fifos */
/*
* On some UART implementations[1], we have observed that characters
* written to the UART during early boot (where no RX path is used,
* so we don't read from RBR) can cause a character timeout interrupt
* once we eventually enable interrupts through the IER. This
* interrupt can only be cleared by reading from RBR (even though we've
* cleared the RX FIFO!).
*
* Unfortunately though, the LCR[DR] bit does *not* indicate that there
* are characters to be read from RBR, so we may never read it, so the
* interrupt continuously fires.
*
* So, manually clear the timeout interrupt by reading the RBR here.
* We discard the read data, but that shouldn't matter as we've just
* reset the FIFO anyway.
*
* 1: seen on the AST2500 SUART. I assume this applies to 2400 too.
*/
uart_read(REG_RBR);
return true;
detect_fail:
prerror("UART: Presence detect failed !\n");
return false;
}
/*
* early_uart_init() is similar to uart_init() in that it configures skiboot
* console log to output via a UART. The main differences are that the early
* version only works with MMIO UARTs and will not setup interrupts or locks.
*/
void early_uart_init(void)
{
struct dt_node *uart_node;
u32 clk, baud;
uart_node = dt_find_compatible_node(dt_root, NULL, "ns16550");
if (!uart_node)
return;
/* Try translate the address, if this fails then it's not a MMIO UART */
mmio_uart_base = (void *) dt_translate_address(uart_node, 0, NULL);
if (!mmio_uart_base)
return;
clk = dt_prop_get_u32(uart_node, "clock-frequency");
baud = dt_prop_get_u32(uart_node, "current-speed");
if (uart_init_hw(baud, clk)) {
set_console(&uart_con_driver);
prlog(PR_DEBUG, "UART: Using UART at %p\n", mmio_uart_base);
} else {
prerror("UART: Early init failed!");
mmio_uart_base = NULL;
}
}
void uart_init(void)
{
const struct dt_property *prop;
struct dt_node *n;
char *path __unused;
const be32 *irqp;
/* Clean up after early_uart_init() */
mmio_uart_base = NULL;
/* UART lock is in the console path and thus must block
* printf re-entrancy
*/
uart_lock.in_con_path = true;
/* We support only one */
uart_node = n = dt_find_compatible_node(dt_root, NULL, "ns16550");
if (!n)
return;
/* Read the interrupts property if any */
irqp = dt_prop_get_def(n, "interrupts", NULL);
/* Now check if the UART is on the root bus. This is the case of
* directly mapped UARTs in simulation environments
*/
if (n->parent == dt_root) {
printf("UART: Found at root !\n");
mmio_uart_base = (void *)dt_translate_address(n, 0, NULL);
if (!mmio_uart_base) {
printf("UART: Failed to translate address !\n");
return;
}
/* If it has an interrupt properly, we consider this to be
* a direct XICS/XIVE interrupt
*/
if (irqp)
has_irq = true;
} else {
if (!lpc_present())
return;
/* Get IO base */
prop = dt_find_property(n, "reg");
if (!prop) {
log_simple_error(&e_info(OPAL_RC_UART_INIT),
"UART: Can't find reg property\n");
return;
}
if (dt_property_get_cell(prop, 0) != OPAL_LPC_IO) {
log_simple_error(&e_info(OPAL_RC_UART_INIT),
"UART: Only supports IO addresses\n");
return;
}
uart_base = dt_property_get_cell(prop, 1);
if (irqp) {
lpc_irq = be32_to_cpu(*irqp);
prlog(PR_DEBUG, "UART: Using LPC IRQ %d\n", lpc_irq);
}
}
if (!uart_init_hw(dt_prop_get_u32(n, "current-speed"),
dt_prop_get_u32(n, "clock-frequency"))) {
prerror("UART: Initialization failed\n");
dt_add_property_strings(n, "status", "bad");
return;
}
/*
* Mark LPC used by the console (will mark the relevant
* locks to avoid deadlocks when flushing the console)
*/
lpc_used_by_console();
/* Install console backend for printf() */
set_console(&uart_con_driver);
}
|