1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
|
// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
/*
* Interface with the On Chip Controller,
* which enforces power and thermal management
*
* Copyright 2013-2019 IBM Corp.
*/
#include <skiboot.h>
#include <xscom.h>
#include <xscom-p8-regs.h>
#include <io.h>
#include <cpu.h>
#include <chip.h>
#include <mem_region.h>
#include <timebase.h>
#include <errorlog.h>
#include <opal-api.h>
#include <opal-msg.h>
#include <timer.h>
#include <i2c.h>
#include <powercap.h>
#include <psr.h>
#include <sensor.h>
#include <occ.h>
#include <psi.h>
/* OCC Communication Area for PStates */
#define P8_HOMER_OPAL_DATA_OFFSET 0x1F8000
#define P9_HOMER_OPAL_DATA_OFFSET 0x0E2000
#define OPAL_DYNAMIC_DATA_OFFSET 0x0B80
/* relative to HOMER_OPAL_DATA_OFFSET */
#define MAX_PSTATES 256
#define MAX_P8_CORES 12
#define MAX_P9_CORES 24
#define MAX_P10_CORES 32
#define MAX_OPAL_CMD_DATA_LENGTH 4090
#define MAX_OCC_RSP_DATA_LENGTH 8698
#define P8_PIR_CORE_MASK 0xFFF8
#define P9_PIR_QUAD_MASK 0xFFF0
#define P10_PIR_CHIP_MASK 0x0000
#define FREQ_MAX_IN_DOMAIN 0
#define FREQ_MOST_RECENTLY_SET 1
/**
* OCC-OPAL Shared Memory Region
*
* Reference document :
* https://github.com/open-power/docs/blob/master/occ/OCC_OpenPwr_FW_Interfaces.pdf
*
* Supported layout versions:
* - 0x01, 0x02 : P8
* https://github.com/open-power/occ/blob/master_p8/src/occ/proc/proc_pstate.h
*
* - 0x90 : P9
* https://github.com/open-power/occ/blob/master/src/occ_405/proc/proc_pstate.h
* In 0x90 the data is separated into :-
* -- Static Data (struct occ_pstate_table): Data is written once by OCC
* -- Dynamic Data (struct occ_dynamic_data): Data is updated at runtime
*
* struct occ_pstate_table - Pstate table layout
* @valid: Indicates if data is valid
* @version: Layout version [Major/Minor]
* @v2.throttle: Reason for limiting the max pstate
* @v9.occ_role: OCC role (Master/Slave)
* @v#.pstate_min: Minimum pstate ever allowed
* @v#.pstate_nom: Nominal pstate
* @v#.pstate_turbo: Maximum turbo pstate
* @v#.pstate_ultra_turbo: Maximum ultra turbo pstate and the maximum
* pstate ever allowed
* @v#.pstates: Pstate-id and frequency list from Pmax to Pmin
* @v#.pstates.id: Pstate-id
* @v#.pstates.flags: Pstate-flag(reserved)
* @v2.pstates.vdd: Voltage Identifier
* @v2.pstates.vcs: Voltage Identifier
* @v#.pstates.freq_khz: Frequency in KHz
* @v#.core_max[1..N]: Max pstate with N active cores
* @spare/reserved/pad: Unused data
*/
struct occ_pstate_table {
u8 valid;
u8 version;
union __packed {
struct __packed { /* Version 0x01 and 0x02 */
u8 throttle;
s8 pstate_min;
s8 pstate_nom;
s8 pstate_turbo;
s8 pstate_ultra_turbo;
u8 spare;
u64 reserved;
struct __packed {
s8 id;
u8 flags;
u8 vdd;
u8 vcs;
__be32 freq_khz;
} pstates[MAX_PSTATES];
s8 core_max[MAX_P8_CORES];
u8 pad[100];
} v2;
struct __packed { /* Version 0x90 */
u8 occ_role;
u8 pstate_min;
u8 pstate_nom;
u8 pstate_turbo;
u8 pstate_ultra_turbo;
u8 spare;
u64 reserved1;
u64 reserved2;
struct __packed {
u8 id;
u8 flags;
u16 reserved;
__be32 freq_khz;
} pstates[MAX_PSTATES];
u8 core_max[MAX_P9_CORES];
u8 pad[56];
} v9;
struct __packed { /* Version 0xA0 */
u8 occ_role;
u8 pstate_min;
u8 pstate_fixed_freq;
u8 pstate_base;
u8 pstate_ultra_turbo;
u8 pstate_fmax;
u8 minor;
u8 pstate_bottom_throttle;
u8 spare;
u8 spare1;
u32 reserved_32;
u64 reserved_64;
struct __packed {
u8 id;
u8 valid;
u16 reserved;
__be32 freq_khz;
} pstates[MAX_PSTATES];
u8 core_max[MAX_P10_CORES];
u8 pad[48];
} v10;
};
} __packed;
/**
* OPAL-OCC Command Response Interface
*
* OPAL-OCC Command Buffer
*
* ---------------------------------------------------------------------
* | OPAL | Cmd | OPAL | | Cmd Data | Cmd Data | OPAL |
* | Cmd | Request | OCC | Reserved | Length | Length | Cmd |
* | Flags | ID | Cmd | | (MSB) | (LSB) | Data... |
* ---------------------------------------------------------------------
* | ….OPAL Command Data up to max of Cmd Data Length 4090 bytes |
* | |
* ---------------------------------------------------------------------
*
* OPAL Command Flag
*
* -----------------------------------------------------------------
* | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
* | (msb) | | | | | | | (lsb) |
* -----------------------------------------------------------------
* |Cmd | | | | | | | |
* |Ready | | | | | | | |
* -----------------------------------------------------------------
*
* struct opal_command_buffer - Defines the layout of OPAL command buffer
* @flag: Provides general status of the command
* @request_id: Token to identify request
* @cmd: Command sent
* @data_size: Command data length
* @data: Command specific data
* @spare: Unused byte
*/
struct opal_command_buffer {
u8 flag;
u8 request_id;
u8 cmd;
u8 spare;
u16 data_size;
u8 data[MAX_OPAL_CMD_DATA_LENGTH];
} __packed;
/**
* OPAL-OCC Response Buffer
*
* ---------------------------------------------------------------------
* | OCC | Cmd | OPAL | Response | Rsp Data | Rsp Data | OPAL |
* | Rsp | Request | OCC | Status | Length | Length | Rsp |
* | Flags | ID | Cmd | | (MSB) | (LSB) | Data... |
* ---------------------------------------------------------------------
* | ….OPAL Response Data up to max of Rsp Data Length 8698 bytes |
* | |
* ---------------------------------------------------------------------
*
* OCC Response Flag
*
* -----------------------------------------------------------------
* | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
* | (msb) | | | | | | | (lsb) |
* -----------------------------------------------------------------
* | | | | | | |OCC in | Rsp |
* | | | | | | |progress|Ready |
* -----------------------------------------------------------------
*
* struct occ_response_buffer - Defines the layout of OCC response buffer
* @flag: Provides general status of the response
* @request_id: Token to identify request
* @cmd: Command requested
* @status: Indicates success/failure status of
* the command
* @data_size: Response data length
* @data: Response specific data
*/
struct occ_response_buffer {
u8 flag;
u8 request_id;
u8 cmd;
u8 status;
u16 data_size;
u8 data[MAX_OCC_RSP_DATA_LENGTH];
} __packed;
/**
* OCC-OPAL Shared Memory Interface Dynamic Data Vx90
*
* struct occ_dynamic_data - Contains runtime attributes
* @occ_state: Current state of OCC
* @major_version: Major version number
* @minor_version: Minor version number (backwards compatible)
* Version 1 indicates GPU presence populated
* @gpus_present: Bitmask of GPUs present (on systems where GPU
* presence is detected through APSS)
* @cpu_throttle: Reason for limiting the max pstate
* @mem_throttle: Reason for throttling memory
* @quick_pwr_drop: Indicates if QPD is asserted
* @pwr_shifting_ratio: Indicates the current percentage of power to
* take away from the CPU vs GPU when shifting
* power to maintain a power cap. Value of 100
* means take all power from CPU.
* @pwr_cap_type: Indicates type of power cap in effect
* @hard_min_pwr_cap: Hard minimum system power cap in Watts.
* Guaranteed unless hardware failure
* @max_pwr_cap: Maximum allowed system power cap in Watts
* @cur_pwr_cap: Current system power cap
* @soft_min_pwr_cap: Soft powercap minimum. OCC may or may not be
* able to maintain this
* @spare/reserved: Unused data
* @cmd: Opal Command Buffer
* @rsp: OCC Response Buffer
*/
struct occ_dynamic_data {
u8 occ_state;
u8 major_version;
u8 minor_version;
u8 gpus_present;
struct __packed { /* Version 0x90 */
u8 spare1;
} v9;
struct __packed { /* Version 0xA0 */
u8 wof_enabled;
} v10;
u8 cpu_throttle;
u8 mem_throttle;
u8 quick_pwr_drop;
u8 pwr_shifting_ratio;
u8 pwr_cap_type;
u16 hard_min_pwr_cap;
u16 max_pwr_cap;
u16 cur_pwr_cap;
u16 soft_min_pwr_cap;
u8 pad[110];
struct opal_command_buffer cmd;
struct occ_response_buffer rsp;
} __packed;
static bool occ_reset;
static struct lock occ_lock = LOCK_UNLOCKED;
static unsigned long homer_opal_data_offset;
DEFINE_LOG_ENTRY(OPAL_RC_OCC_PSTATE_INIT, OPAL_PLATFORM_ERR_EVT, OPAL_OCC,
OPAL_CEC_HARDWARE, OPAL_INFO,
OPAL_NA);
DEFINE_LOG_ENTRY(OPAL_RC_OCC_TIMEOUT, OPAL_PLATFORM_ERR_EVT, OPAL_OCC,
OPAL_CEC_HARDWARE, OPAL_UNRECOVERABLE_ERR_GENERAL,
OPAL_NA);
/*
* POWER9 and newer platforms have pstate values which are unsigned
* positive values. They are continuous set of unsigned integers
* [0 to +N] where Pmax is 0 and Pmin is N. The linear ordering of
* pstates for P9 has changed compared to P8. Where P8 has negative
* pstate values advertised as [0 to -N] where Pmax is 0 and
* Pmin is -N. The following routine helps to abstract pstate
* comparison with pmax and perform sanity checks on pstate limits.
*/
/**
* cmp_pstates: Compares the given two pstates and determines which
* among them is associated with a higher pstate.
*
* @a,@b: The pstate ids of the pstates being compared.
*
* Returns: -1 : If pstate associated with @a is smaller than
* the pstate associated with @b.
* 0 : If pstates associated with @a and @b are equal.
* 1 : If pstate associated with @a is greater than
* the pstate associated with @b.
*/
static int cmp_pstates(int a, int b)
{
/* P8 has 0 to -N (pmax to pmin), P9 has 0 to +N (pmax to pmin) */
if (a > b)
return (proc_gen == proc_gen_p8)? 1 : -1;
else if (a < b)
return (proc_gen == proc_gen_p8)? -1 : 1;
return 0;
}
static inline
struct occ_pstate_table *get_occ_pstate_table(struct proc_chip *chip)
{
return (struct occ_pstate_table *)
(chip->homer_base + homer_opal_data_offset);
}
static inline
struct occ_dynamic_data *get_occ_dynamic_data(struct proc_chip *chip)
{
return (struct occ_dynamic_data *)
(chip->homer_base + homer_opal_data_offset +
OPAL_DYNAMIC_DATA_OFFSET);
}
/*
* On Chips which have at least one active EX unit, check the
* HOMER area for pstate-table valid bit on versions 0x1 and 0x2, or
* HOMER dynamic area occ_state on version 0x90.
*/
static bool wait_for_all_occ_init(void)
{
struct proc_chip *chip;
struct dt_node *xn;
struct occ_pstate_table *occ_data;
struct occ_dynamic_data *occ_dyn_data;
int tries;
uint64_t start_time, end_time;
uint32_t timeout = 0;
if (platform.occ_timeout)
timeout = platform.occ_timeout();
start_time = mftb();
for_each_chip(chip) {
u8 version;
/*
* If the chip doesn't any EX unit present, then OCC
* will not update the pstate-table. So, skip the
* check.
*/
if (!chip->ex_present) {
prlog(PR_DEBUG, "OCC: Chip %02x has no active EX units. Skipping check\n",
chip->id);
continue;
}
/* Check for valid homer address */
if (!chip->homer_base) {
/**
* @fwts-label OCCInvalidHomerBase
* @fwts-advice The HOMER base address for a chip
* was not valid. This means that OCC (On Chip
* Controller) will be non-functional and CPU
* frequency scaling will not be functional. CPU may
* be set to a safe, low frequency. Power savings in
* CPU idle or CPU hotplug may be impacted.
*/
prlog(PR_ERR,"OCC: Chip: %x homer_base is not valid\n",
chip->id);
return false;
}
/* Get PState table address */
occ_data = get_occ_pstate_table(chip);
/*
* Wait for the OCC to set an appropriate version bit.
* The wait is needed since on some platforms (such P8
* Tuletta), OCC is not loaded before OPAL boot. Hence
* initialization can take a while.
*
* Note: Checking for occ_data->version == (0x01/0x02/0x90/0xA0)
* is ok because we clear all of
* homer_base+size before passing memory to host
* services. This ensures occ_data->version == 0x0
* before OCC load.
*/
tries = timeout * 10;
while (tries--) {
version = occ_data->version;
if (version == 0x01 || version == 0x02 ||
version == 0x90 || version == 0xA0)
break;
time_wait_ms(100);
}
version = occ_data->version;
switch (version) {
case 0x1:
case 0x2:
/*
* OCC-OPAL interface version 0x1 and 0x2 do not have
* the dynamic data. Hence the the only way to figure out
* if the OCC is up or not is to check the valid-bit
* in the pstate table.
*/
if (occ_data->valid != 1) {
/**
* @fwts-label OCCInvalidPStateTable
* @fwts-advice The pstate table for a chip
* was not valid. This means that OCC (On Chip
* Controller) will be non-functional and CPU
* frequency scaling will not be functional. CPU may
* be set to a low, safe frequency. This means
* that CPU idle states and CPU frequency scaling
* may not be functional.
*/
prlog(PR_ERR, "OCC: Chip: %x PState table is not valid\n",
chip->id);
return false;
}
break;
case 0x90:
/*
* OCC-OPAL interface version 0x90 has a
* dynamic data section. This has an
* occ_state field whose values inform about
* the state of the OCC.
*
* 0x00 = OCC not running. No communication
* allowed.
*
* 0x01 = Standby. No communication allowed.
*
* 0x02 = Observation State. Communication
* allowed and is command dependent.
*
* 0x03 = Active State. Communication allowed
* and is command dependent.
*
* 0x04 = Safe State. No communication
* allowed. Just like CPU throttle
* status, some failures will not allow
* for OCC to update state to safe.
*
* 0x05 = Characterization State.
* Communication allowed and is command
* dependent.
*
* We will error out if OCC is not in the
* Active State.
*
* XXX : Should we error out only if no
* communication is allowed with the
* OCC ?
*/
occ_dyn_data = get_occ_dynamic_data(chip);
if (occ_dyn_data->occ_state != 0x3) {
/**
* @fwts-label OCCInactive
* @fwts-advice The OCC for a chip was not active.
* This means that CPU frequency scaling will
* not be functional. CPU may be set to a low,
* safe frequency. This means that CPU idle
* states and CPU frequency scaling may not be
* functional.
*/
prlog(PR_ERR, "OCC: Chip: %x: OCC not active\n",
chip->id);
return false;
}
break;
case 0xA0:
/*
* OCC-OPAL interface version 0x90 has a
* dynamic data section. This has an
* occ_state field whose values inform about
* the state of the OCC.
*
* 0x00 = OCC not running. No communication
* allowed.
*
* 0x01 = Standby. No communication allowed.
*
* 0x02 = Observation State. Communication
* allowed and is command dependent.
*
* 0x03 = Active State. Communication allowed
* and is command dependent.
*
* 0x04 = Safe State. No communication
* allowed. Just like CPU throttle
* status, some failures will not allow
* for OCC to update state to safe.
*
* 0x05 = Characterization State.
* Communication allowed and is command
* dependent.
*
* We will error out if OCC is not in the
* Active State.
*
* XXX : Should we error out only if no
* communication is allowed with the
* OCC ?
*/
occ_dyn_data = get_occ_dynamic_data(chip);
if (occ_dyn_data->occ_state != 0x3) {
/**
* @fwts-label OCCInactive
* @fwts-advice The OCC for a chip was not active.
* This means that CPU frequency scaling will
* not be functional. CPU may be set to a low,
* safe frequency. This means that CPU idle
* states and CPU frequency scaling may not be
* functional.
*/
prlog(PR_ERR, "OCC: Chip: %x: OCC not active\n",
chip->id);
return false;
}
break;
default:
prlog(PR_ERR, "OCC: Unknown OCC-OPAL interface version.\n");
return false;
}
if (!chip->occ_functional)
chip->occ_functional = true;
prlog(PR_DEBUG, "OCC: Chip %02x Data (%016llx) = %016llx\n",
chip->id, (uint64_t)occ_data, be64_to_cpu(*(__be64 *)occ_data));
if (version == 0x90 || version == 0xA0) {
occ_dyn_data = get_occ_dynamic_data(chip);
prlog(PR_DEBUG, "OCC: Chip %02x Dynamic Data (%016llx) = %016llx\n",
chip->id, (uint64_t)occ_dyn_data,
be64_to_cpu(*(__be64 *)occ_dyn_data));
}
}
end_time = mftb();
prlog(PR_NOTICE, "OCC: All Chip Rdy after %lu ms\n",
tb_to_msecs(end_time - start_time));
dt_for_each_compatible(dt_root, xn, "ibm,xscom") {
const struct dt_property *p;
p = dt_find_property(xn, "ibm,occ-functional-state");
if (!p)
dt_add_property_cells(xn, "ibm,occ-functional-state",
0x1);
}
return true;
}
/*
* OCC provides pstate table entries in continuous descending order.
* Parse the pstate table to skip pstate_ids that are greater
* than Pmax. If a pstate_id is equal to Pmin then add it to
* the list and break from the loop as this is the last valid
* element in the pstate table.
*/
static void parse_pstates_v2(struct occ_pstate_table *data, __be32 *dt_id,
__be32 *dt_freq, int nr_pstates, int pmax, int pmin)
{
int i, j;
for (i = 0, j = 0; i < MAX_PSTATES && j < nr_pstates; i++) {
if (cmp_pstates(data->v2.pstates[i].id, pmax) > 0)
continue;
dt_id[j] = cpu_to_be32(data->v2.pstates[i].id);
dt_freq[j] = cpu_to_be32(be32_to_cpu(data->v2.pstates[i].freq_khz) / 1000);
j++;
if (data->v2.pstates[i].id == pmin)
break;
}
if (j != nr_pstates)
prerror("OCC: Expected pstates(%d) is not equal to parsed pstates(%d)\n",
nr_pstates, j);
}
static void parse_pstates_v9(struct occ_pstate_table *data, __be32 *dt_id,
__be32 *dt_freq, int nr_pstates, int pmax, int pmin)
{
int i, j;
for (i = 0, j = 0; i < MAX_PSTATES && j < nr_pstates; i++) {
if (cmp_pstates(data->v9.pstates[i].id, pmax) > 0)
continue;
dt_id[j] = cpu_to_be32(data->v9.pstates[i].id);
dt_freq[j] = cpu_to_be32(be32_to_cpu(data->v9.pstates[i].freq_khz) / 1000);
j++;
if (data->v9.pstates[i].id == pmin)
break;
}
if (j != nr_pstates)
prerror("OCC: Expected pstates(%d) is not equal to parsed pstates(%d)\n",
nr_pstates, j);
}
static void parse_pstates_v10(struct occ_pstate_table *data, __be32 *dt_id,
__be32 *dt_freq, int nr_pstates, int pmax, int pmin)
{
int i, j;
int invalid = 0;
for (i = 0, j = 0; i < MAX_PSTATES && j < nr_pstates; i++) {
if (cmp_pstates(data->v10.pstates[i].id, pmax) > 0)
continue;
if (!data->v10.pstates[i].valid) {
prlog(PR_WARNING, "OCC: Found Invalid pstate with index %d. Skipping it.\n", i);
invalid++;
continue;
}
dt_id[j] = cpu_to_be32(data->v10.pstates[i].id);
dt_freq[j] = cpu_to_be32(be32_to_cpu(data->v10.pstates[i].freq_khz) / 1000);
j++;
if (data->v10.pstates[i].id == pmin)
break;
}
if ((j + invalid) != nr_pstates) {
prerror("OCC: Expected pstates(%d) not equal to (Parsed pstates(%d) + Invalid Pstates (%d))\n",
nr_pstates, j, invalid);
}
}
static void parse_vid(struct occ_pstate_table *occ_data,
struct dt_node *node, u8 nr_pstates,
int pmax, int pmin)
{
u8 *dt_vdd, *dt_vcs;
int i, j;
dt_vdd = malloc(nr_pstates);
assert(dt_vdd);
dt_vcs = malloc(nr_pstates);
assert(dt_vcs);
for (i = 0, j = 0; i < MAX_PSTATES && j < nr_pstates; i++) {
if (cmp_pstates(occ_data->v2.pstates[i].id, pmax) > 0)
continue;
dt_vdd[j] = occ_data->v2.pstates[i].vdd;
dt_vcs[j] = occ_data->v2.pstates[i].vcs;
j++;
if (occ_data->v2.pstates[i].id == pmin)
break;
}
dt_add_property(node, "ibm,pstate-vdds", dt_vdd, nr_pstates);
dt_add_property(node, "ibm,pstate-vcss", dt_vcs, nr_pstates);
free(dt_vdd);
free(dt_vcs);
}
/* Add device tree properties to describe pstates states */
/* Return nominal pstate to set in each core */
static bool add_cpu_pstate_properties(struct dt_node *power_mgt,
int *pstate_nom)
{
struct proc_chip *chip;
uint64_t occ_data_area;
struct occ_pstate_table *occ_data = NULL;
struct occ_dynamic_data *occ_dyn_data;
/* Arrays for device tree */
__be32 *dt_id, *dt_freq;
int pmax, pmin, pnom;
u8 nr_pstates;
bool ultra_turbo_supported;
int i, major, minor;
prlog(PR_DEBUG, "OCC: CPU pstate state device tree init\n");
/*
* Find first chip with an OCC which has as a valid
* pstate-table
*/
for_each_chip(chip) {
occ_data = get_occ_pstate_table(chip);
/* Dump first 16 bytes of PState table */
occ_data_area = (uint64_t)occ_data;
prlog(PR_DEBUG, "OCC: Chip %02d :Data (%16llx) = %16llx %16llx\n",
chip->id, occ_data_area,
be64_to_cpu(*(__be64 *)occ_data_area),
be64_to_cpu(*(__be64 *)(occ_data_area + 8)));
if (occ_data->valid)
break;
/*
* XXX : Error out if !occ_data->valid but Chip has at
* least one EX Unit?
*/
}
assert(occ_data);
if (!occ_data->valid) {
/**
* @fwts-label OCCInvalidPStateTableDT
* @fwts-advice The pstate tables for none of the chips
* are valid. This means that OCC (On Chip
* Controller) will be non-functional. This means
* that CPU idle states and CPU frequency scaling
* will not be functional as OPAL doesn't populate
* the device tree with pstates in this case.
*/
prlog(PR_ERR, "OCC: PState table is not valid\n");
return false;
}
/*
* Workload-Optimized-Frequency(WOF) or Ultra-Turbo is supported
* from version 0x02 onwards. If WOF is disabled then, the max
* ultra_turbo pstate will be equal to max turbo pstate.
*/
ultra_turbo_supported = true;
major = occ_data->version >> 4;
minor = occ_data->version & 0xF;
/* Parse Pmax, Pmin and Pnominal */
switch (major) {
case 0:
if (proc_gen >= proc_gen_p9) {
/**
* @fwts-label OCCInvalidVersion02
* @fwts-advice The PState table layout version is not
* supported in P9. So OPAL will not parse the PState
* table. CPU frequency scaling will not be functional
* as frequency and pstate-ids are not added to DT.
*/
prerror("OCC: Version %x is not supported in P9\n",
occ_data->version);
return false;
}
if (minor == 0x1)
ultra_turbo_supported = false;
pmin = occ_data->v2.pstate_min;
pnom = occ_data->v2.pstate_nom;
if (ultra_turbo_supported)
pmax = occ_data->v2.pstate_ultra_turbo;
else
pmax = occ_data->v2.pstate_turbo;
break;
case 0x9:
if (proc_gen == proc_gen_p8) {
/**
* @fwts-label OCCInvalidVersion90
* @fwts-advice The PState table layout version is not
* supported in P8. So OPAL will not parse the PState
* table. CPU frequency scaling will not be functional
* as frequency and pstate-ids are not added to DT.
*/
prerror("OCC: Version %x is not supported in P8\n",
occ_data->version);
return false;
}
pmin = occ_data->v9.pstate_min;
pnom = occ_data->v9.pstate_nom;
pmax = occ_data->v9.pstate_ultra_turbo;
break;
case 0xA:
pmin = occ_data->v10.pstate_min;
pnom = occ_data->v10.pstate_fixed_freq;
occ_dyn_data = get_occ_dynamic_data(chip);
if (occ_dyn_data->v10.wof_enabled)
pmax = occ_data->v10.pstate_ultra_turbo;
else
pmax = occ_data->v10.pstate_fmax;
break;
default:
/**
* @fwts-label OCCUnsupportedVersion
* @fwts-advice The PState table layout version is not
* supported. So OPAL will not parse the PState table.
* CPU frequency scaling will not be functional as OPAL
* doesn't populate the device tree with pstates.
*/
prerror("OCC: Unsupported pstate table layout version %d\n",
occ_data->version);
return false;
}
/* Sanity check for pstate limits */
if (cmp_pstates(pmin, pmax) > 0) {
/**
* @fwts-label OCCInvalidPStateLimits
* @fwts-advice The min pstate is greater than the
* max pstate, this could be due to corrupted/invalid
* data in OCC-OPAL shared memory region. So OPAL has
* not added pstates to device tree. This means that
* CPU Frequency management will not be functional in
* the host.
*/
prerror("OCC: Invalid pstate limits. Pmin(%d) > Pmax (%d)\n",
pmin, pmax);
return false;
}
if (cmp_pstates(pnom, pmax) > 0) {
/**
* @fwts-label OCCInvalidNominalPState
* @fwts-advice The nominal pstate is greater than the
* max pstate, this could be due to corrupted/invalid
* data in OCC-OPAL shared memory region. So OPAL has
* limited the nominal pstate to max pstate.
*/
prerror("OCC: Clipping nominal pstate(%d) to Pmax(%d)\n",
pnom, pmax);
pnom = pmax;
}
nr_pstates = labs(pmax - pmin) + 1;
prlog(PR_DEBUG, "OCC: Version %x Min %d Nom %d Max %d Nr States %d\n",
occ_data->version, pmin, pnom, pmax, nr_pstates);
if (((major == 0x9 || major == 0xA) && nr_pstates <= 1) ||
(major == 0 && (nr_pstates <= 1 || nr_pstates > 128))) {
/**
* @fwts-label OCCInvalidPStateRange
* @fwts-advice The number of pstates is outside the valid
* range (currently <=1 or > 128 on p8, >255 on P9), so OPAL
* has not added pstates to the device tree. This means that
* OCC (On Chip Controller) will be non-functional. This means
* that CPU idle states and CPU frequency scaling
* will not be functional.
*/
prerror("OCC: OCC range is not valid; No of pstates = %d\n",
nr_pstates);
return false;
}
dt_id = malloc(nr_pstates * sizeof(__be32));
assert(dt_id);
dt_freq = malloc(nr_pstates * sizeof(__be32));
assert(dt_freq);
switch (major) {
case 0:
parse_pstates_v2(occ_data, dt_id, dt_freq, nr_pstates,
pmax, pmin);
break;
case 0x9:
parse_pstates_v9(occ_data, dt_id, dt_freq, nr_pstates,
pmax, pmin);
break;
case 0xA:
parse_pstates_v10(occ_data, dt_id, dt_freq, nr_pstates,
pmax, pmin);
break;
default:
return false;
}
/* Add the device-tree entries */
dt_add_property(power_mgt, "ibm,pstate-ids", dt_id,
nr_pstates * sizeof(__be32));
dt_add_property(power_mgt, "ibm,pstate-frequencies-mhz", dt_freq,
nr_pstates * sizeof(__be32));
dt_add_property_cells(power_mgt, "ibm,pstate-min", pmin);
dt_add_property_cells(power_mgt, "ibm,pstate-nominal", pnom);
dt_add_property_cells(power_mgt, "ibm,pstate-max", pmax);
free(dt_freq);
free(dt_id);
/*
* Parse and add WOF properties: turbo, ultra-turbo and core_max array.
* core_max[1..n] array provides the max sustainable pstate that can be
* achieved with i active cores in the chip.
*/
if (ultra_turbo_supported) {
int pturbo, pultra_turbo;
u8 nr_cores = get_available_nr_cores_in_chip(chip->id);
__be32 *dt_cmax;
dt_cmax = malloc(nr_cores * sizeof(u32));
assert(dt_cmax);
switch (major) {
case 0:
pturbo = occ_data->v2.pstate_turbo;
pultra_turbo = occ_data->v2.pstate_ultra_turbo;
for (i = 0; i < nr_cores; i++)
dt_cmax[i] = cpu_to_be32(occ_data->v2.core_max[i]);
break;
case 0x9:
pturbo = occ_data->v9.pstate_turbo;
pultra_turbo = occ_data->v9.pstate_ultra_turbo;
for (i = 0; i < nr_cores; i++)
dt_cmax[i] = cpu_to_be32(occ_data->v9.core_max[i]);
break;
case 0xA:
pturbo = occ_data->v10.pstate_base;
pultra_turbo = occ_data->v10.pstate_ultra_turbo;
for (i = 0; i < nr_cores; i++)
dt_cmax[i] = cpu_to_be32(occ_data->v10.core_max[i]);
break;
default:
return false;
}
if (cmp_pstates(pturbo, pmax) > 0) {
prerror("OCC: Clipping turbo pstate(%d) to Pmax(%d)\n",
pturbo, pmax);
dt_add_property_cells(power_mgt, "ibm,pstate-turbo",
pmax);
} else {
dt_add_property_cells(power_mgt, "ibm,pstate-turbo",
pturbo);
}
dt_add_property_cells(power_mgt, "ibm,pstate-ultra-turbo",
pultra_turbo);
dt_add_property(power_mgt, "ibm,pstate-core-max", dt_cmax,
nr_cores * sizeof(u32));
dt_add_property_cells(power_mgt, "ibm,pstate-base", pturbo);
free(dt_cmax);
}
if (major == 0x9 || major == 0xA)
goto out;
dt_add_property_cells(power_mgt, "#address-cells", 2);
dt_add_property_cells(power_mgt, "#size-cells", 1);
/* Add chip specific pstate properties */
for_each_chip(chip) {
struct dt_node *occ_node;
occ_data = get_occ_pstate_table(chip);
occ_node = dt_new_addr(power_mgt, "occ", (uint64_t)occ_data);
if (!occ_node) {
/**
* @fwts-label OCCDTFailedNodeCreation
* @fwts-advice Failed to create
* /ibm,opal/power-mgt/occ. Per-chip pstate properties
* are not added to Device Tree.
*/
prerror("OCC: Failed to create /ibm,opal/power-mgt/occ@%llx\n",
(uint64_t)occ_data);
return false;
}
dt_add_property_cells(occ_node, "reg",
hi32((uint64_t)occ_data),
lo32((uint64_t)occ_data),
OPAL_DYNAMIC_DATA_OFFSET +
sizeof(struct occ_dynamic_data));
dt_add_property_cells(occ_node, "ibm,chip-id", chip->id);
/*
* Parse and add pstate Voltage Identifiers (VID) to DT which
* are provided by OCC in version 0x01 and 0x02
*/
parse_vid(occ_data, occ_node, nr_pstates, pmax, pmin);
}
out:
/* Return pstate to set for each core */
*pstate_nom = pnom;
return true;
}
/*
* Prepare chip for pstate transitions
*/
static bool cpu_pstates_prepare_core(struct proc_chip *chip,
struct cpu_thread *c,
int pstate_nom)
{
uint32_t core = pir_to_core_id(c->pir);
uint64_t tmp, pstate;
int rc;
/*
* Currently Fastsleep init clears EX_PM_SPR_OVERRIDE_EN.
* Need to ensure only relevant bits are inited
*/
/* Init PM GP1 for SCOM based PSTATE control to set nominal freq
*
* Use the OR SCOM to set the required bits in PM_GP1 register
* since the OCC might be mainpulating the PM_GP1 register as well.
*/
rc = xscom_write(chip->id, XSCOM_ADDR_P8_EX_SLAVE(core, EX_PM_SET_GP1),
EX_PM_SETUP_GP1_PM_SPR_OVERRIDE_EN);
if (rc) {
log_simple_error(&e_info(OPAL_RC_OCC_PSTATE_INIT),
"OCC: Failed to write PM_GP1 in pstates init\n");
return false;
}
/* Set new pstate to core */
rc = xscom_read(chip->id, XSCOM_ADDR_P8_EX_SLAVE(core, EX_PM_PPMCR), &tmp);
if (rc) {
log_simple_error(&e_info(OPAL_RC_OCC_PSTATE_INIT),
"OCC: Failed to read PM_PPMCR from OCC in pstates init\n");
return false;
}
tmp = tmp & ~0xFFFF000000000000ULL;
pstate = ((uint64_t) pstate_nom) & 0xFF;
tmp = tmp | (pstate << 56) | (pstate << 48);
rc = xscom_write(chip->id, XSCOM_ADDR_P8_EX_SLAVE(core, EX_PM_PPMCR), tmp);
if (rc) {
log_simple_error(&e_info(OPAL_RC_OCC_PSTATE_INIT),
"OCC: Failed to write PM_PPMCR in pstates init\n");
return false;
}
time_wait_ms(1); /* Wait for PState to change */
/*
* Init PM GP1 for SPR based PSTATE control.
* Once OCC is active EX_PM_SETUP_GP1_DPLL_FREQ_OVERRIDE_EN will be
* cleared by OCC. Sapphire need not clear.
* However wait for DVFS state machine to become idle after min->nominal
* transition initiated above. If not switch over to SPR control could fail.
*
* Use the AND SCOM to clear the required bits in PM_GP1 register
* since the OCC might be mainpulating the PM_GP1 register as well.
*/
tmp = ~EX_PM_SETUP_GP1_PM_SPR_OVERRIDE_EN;
rc = xscom_write(chip->id, XSCOM_ADDR_P8_EX_SLAVE(core, EX_PM_CLEAR_GP1),
tmp);
if (rc) {
log_simple_error(&e_info(OPAL_RC_OCC_PSTATE_INIT),
"OCC: Failed to write PM_GP1 in pstates init\n");
return false;
}
/* Just debug */
rc = xscom_read(chip->id, XSCOM_ADDR_P8_EX_SLAVE(core, EX_PM_PPMSR), &tmp);
if (rc) {
log_simple_error(&e_info(OPAL_RC_OCC_PSTATE_INIT),
"OCC: Failed to read PM_PPMSR from OCC"
"in pstates init\n");
return false;
}
prlog(PR_DEBUG, "OCC: Chip %x Core %x PPMSR %016llx\n",
chip->id, core, tmp);
/*
* If PMSR is still in transition at this point due to PState change
* initiated above, then the switchover to SPR may not work.
* ToDo: Check for DVFS state machine idle before change.
*/
return true;
}
static bool occ_opal_msg_outstanding = false;
static void occ_msg_consumed(void *data __unused, int status __unused)
{
lock(&occ_lock);
occ_opal_msg_outstanding = false;
unlock(&occ_lock);
}
static inline u8 get_cpu_throttle(struct proc_chip *chip)
{
struct occ_pstate_table *pdata = get_occ_pstate_table(chip);
struct occ_dynamic_data *data;
switch (pdata->version >> 4) {
case 0:
return pdata->v2.throttle;
case 0x9:
case 0xA:
data = get_occ_dynamic_data(chip);
return data->cpu_throttle;
default:
return 0;
};
}
bool is_occ_reset(void)
{
return occ_reset;
}
static void occ_throttle_poll(void *data __unused)
{
struct proc_chip *chip;
struct occ_pstate_table *occ_data;
struct opal_occ_msg occ_msg;
int rc;
if (!try_lock(&occ_lock))
return;
if (occ_reset) {
int inactive = 0;
for_each_chip(chip) {
occ_data = get_occ_pstate_table(chip);
if (occ_data->valid != 1) {
inactive = 1;
break;
}
}
if (!inactive) {
/*
* Queue OCC_THROTTLE with throttle status as 0 to
* indicate all OCCs are active after a reset.
*/
occ_msg.type = cpu_to_be64(OCC_THROTTLE);
occ_msg.chip = 0;
occ_msg.throttle_status = 0;
rc = _opal_queue_msg(OPAL_MSG_OCC, NULL, NULL,
sizeof(struct opal_occ_msg),
&occ_msg);
if (!rc)
occ_reset = false;
}
} else {
if (occ_opal_msg_outstanding)
goto done;
for_each_chip(chip) {
u8 throttle;
occ_data = get_occ_pstate_table(chip);
throttle = get_cpu_throttle(chip);
if ((occ_data->valid == 1) &&
(chip->throttle != throttle) &&
(throttle <= OCC_MAX_THROTTLE_STATUS)) {
occ_msg.type = cpu_to_be64(OCC_THROTTLE);
occ_msg.chip = cpu_to_be64(chip->id);
occ_msg.throttle_status = cpu_to_be64(throttle);
rc = _opal_queue_msg(OPAL_MSG_OCC, NULL,
occ_msg_consumed,
sizeof(struct opal_occ_msg),
&occ_msg);
if (!rc) {
chip->throttle = throttle;
occ_opal_msg_outstanding = true;
break;
}
}
}
}
done:
unlock(&occ_lock);
}
/* OPAL-OCC Command/Response Interface */
enum occ_state {
OCC_STATE_NOT_RUNNING = 0x00,
OCC_STATE_STANDBY = 0x01,
OCC_STATE_OBSERVATION = 0x02,
OCC_STATE_ACTIVE = 0x03,
OCC_STATE_SAFE = 0x04,
OCC_STATE_CHARACTERIZATION = 0x05,
};
enum occ_role {
OCC_ROLE_SLAVE = 0x0,
OCC_ROLE_MASTER = 0x1,
};
enum occ_cmd {
OCC_CMD_CLEAR_SENSOR_DATA,
OCC_CMD_SET_POWER_CAP,
OCC_CMD_SET_POWER_SHIFTING_RATIO,
OCC_CMD_SELECT_SENSOR_GROUP,
};
struct opal_occ_cmd_info {
enum occ_cmd cmd;
u8 cmd_value;
u16 cmd_size;
u16 rsp_size;
int timeout_ms;
u16 state_mask;
u8 role_mask;
};
static struct opal_occ_cmd_info occ_cmds[] = {
{ OCC_CMD_CLEAR_SENSOR_DATA,
0xD0, 4, 4, 1000,
PPC_BIT16(OCC_STATE_OBSERVATION) |
PPC_BIT16(OCC_STATE_ACTIVE) |
PPC_BIT16(OCC_STATE_CHARACTERIZATION),
PPC_BIT8(OCC_ROLE_MASTER) | PPC_BIT8(OCC_ROLE_SLAVE)
},
{ OCC_CMD_SET_POWER_CAP,
0xD1, 2, 2, 1000,
PPC_BIT16(OCC_STATE_OBSERVATION) |
PPC_BIT16(OCC_STATE_ACTIVE) |
PPC_BIT16(OCC_STATE_CHARACTERIZATION),
PPC_BIT8(OCC_ROLE_MASTER)
},
{ OCC_CMD_SET_POWER_SHIFTING_RATIO,
0xD2, 1, 1, 1000,
PPC_BIT16(OCC_STATE_OBSERVATION) |
PPC_BIT16(OCC_STATE_ACTIVE) |
PPC_BIT16(OCC_STATE_CHARACTERIZATION),
PPC_BIT8(OCC_ROLE_MASTER) | PPC_BIT8(OCC_ROLE_SLAVE)
},
{ OCC_CMD_SELECT_SENSOR_GROUP,
0xD3, 2, 2, 1000,
PPC_BIT16(OCC_STATE_OBSERVATION) |
PPC_BIT16(OCC_STATE_ACTIVE) |
PPC_BIT16(OCC_STATE_CHARACTERIZATION),
PPC_BIT8(OCC_ROLE_MASTER) | PPC_BIT8(OCC_ROLE_SLAVE)
},
};
enum occ_response_status {
OCC_RSP_SUCCESS = 0x00,
OCC_RSP_INVALID_COMMAND = 0x11,
OCC_RSP_INVALID_CMD_DATA_LENGTH = 0x12,
OCC_RSP_INVALID_DATA = 0x13,
OCC_RSP_INTERNAL_ERROR = 0x15,
};
#define OCC_FLAG_RSP_READY 0x01
#define OCC_FLAG_CMD_IN_PROGRESS 0x02
#define OPAL_FLAG_CMD_READY 0x80
struct opal_occ_cmd_data {
u8 *data;
enum occ_cmd cmd;
};
static struct cmd_interface {
struct lock queue_lock;
struct timer timeout;
struct opal_occ_cmd_data *cdata;
struct opal_command_buffer *cmd;
struct occ_response_buffer *rsp;
u8 *occ_state;
u8 *valid;
u32 chip_id;
u32 token;
u16 enabled_sensor_mask;
u8 occ_role;
u8 request_id;
bool cmd_in_progress;
bool retry;
} *chips;
static int nr_occs;
static inline struct cmd_interface *get_chip_cmd_interface(int chip_id)
{
int i;
for (i = 0; i < nr_occs; i++)
if (chips[i].chip_id == chip_id)
return &chips[i];
return NULL;
}
static inline bool occ_in_progress(struct cmd_interface *chip)
{
return (chip->rsp->flag == OCC_FLAG_CMD_IN_PROGRESS);
}
static int write_occ_cmd(struct cmd_interface *chip)
{
struct opal_command_buffer *cmd = chip->cmd;
enum occ_cmd ocmd = chip->cdata->cmd;
if (!chip->retry && occ_in_progress(chip)) {
chip->cmd_in_progress = false;
return OPAL_BUSY;
}
cmd->flag = chip->rsp->flag = 0;
cmd->cmd = occ_cmds[ocmd].cmd_value;
cmd->request_id = chip->request_id++;
cmd->data_size = occ_cmds[ocmd].cmd_size;
memcpy(&cmd->data, chip->cdata->data, cmd->data_size);
cmd->flag = OPAL_FLAG_CMD_READY;
schedule_timer(&chip->timeout,
msecs_to_tb(occ_cmds[ocmd].timeout_ms));
return OPAL_ASYNC_COMPLETION;
}
static int64_t opal_occ_command(struct cmd_interface *chip, int token,
struct opal_occ_cmd_data *cdata)
{
int rc;
if (!(*chip->valid) ||
(!(PPC_BIT16(*chip->occ_state) & occ_cmds[cdata->cmd].state_mask)))
return OPAL_HARDWARE;
if (!(PPC_BIT8(chip->occ_role) & occ_cmds[cdata->cmd].role_mask))
return OPAL_PERMISSION;
lock(&chip->queue_lock);
if (chip->cmd_in_progress) {
rc = OPAL_BUSY;
goto out;
}
chip->cdata = cdata;
chip->token = token;
chip->cmd_in_progress = true;
chip->retry = false;
rc = write_occ_cmd(chip);
out:
unlock(&chip->queue_lock);
return rc;
}
static inline bool sanity_check_opal_cmd(struct opal_command_buffer *cmd,
struct cmd_interface *chip)
{
return ((cmd->cmd == occ_cmds[chip->cdata->cmd].cmd_value) &&
(cmd->request_id == chip->request_id - 1) &&
(cmd->data_size == occ_cmds[chip->cdata->cmd].cmd_size));
}
static inline bool check_occ_rsp(struct opal_command_buffer *cmd,
struct occ_response_buffer *rsp)
{
if (cmd->cmd != rsp->cmd) {
prlog(PR_DEBUG, "OCC: Command value mismatch in OCC response"
"rsp->cmd = %d cmd->cmd = %d\n", rsp->cmd, cmd->cmd);
return false;
}
if (cmd->request_id != rsp->request_id) {
prlog(PR_DEBUG, "OCC: Request ID mismatch in OCC response"
"rsp->request_id = %d cmd->request_id = %d\n",
rsp->request_id, cmd->request_id);
return false;
}
return true;
}
static inline void queue_occ_rsp_msg(int token, int rc)
{
int ret;
ret = opal_queue_msg(OPAL_MSG_ASYNC_COMP, NULL, NULL,
cpu_to_be64(token),
cpu_to_be64(rc));
if (ret)
prerror("OCC: Failed to queue OCC response status message\n");
}
static void occ_cmd_timeout_handler(struct timer *t __unused, void *data,
uint64_t now __unused)
{
struct cmd_interface *chip = data;
lock(&chip->queue_lock);
if (!chip->cmd_in_progress)
goto exit;
if (!chip->retry) {
prlog(PR_DEBUG, "OCC: Command timeout, retrying\n");
chip->retry = true;
write_occ_cmd(chip);
} else {
chip->cmd_in_progress = false;
queue_occ_rsp_msg(chip->token, OPAL_TIMEOUT);
prlog(PR_DEBUG, "OCC: Command timeout after retry\n");
}
exit:
unlock(&chip->queue_lock);
}
static int read_occ_rsp(struct occ_response_buffer *rsp)
{
switch (rsp->status) {
case OCC_RSP_SUCCESS:
return OPAL_SUCCESS;
case OCC_RSP_INVALID_COMMAND:
prlog(PR_DEBUG, "OCC: Rsp status: Invalid command\n");
break;
case OCC_RSP_INVALID_CMD_DATA_LENGTH:
prlog(PR_DEBUG, "OCC: Rsp status: Invalid command data length\n");
break;
case OCC_RSP_INVALID_DATA:
prlog(PR_DEBUG, "OCC: Rsp status: Invalid command data\n");
break;
case OCC_RSP_INTERNAL_ERROR:
prlog(PR_DEBUG, "OCC: Rsp status: OCC internal error\n");
break;
default:
break;
}
/* Clear the OCC response flag */
rsp->flag = 0;
return OPAL_INTERNAL_ERROR;
}
static void handle_occ_rsp(uint32_t chip_id)
{
struct cmd_interface *chip;
struct opal_command_buffer *cmd;
struct occ_response_buffer *rsp;
chip = get_chip_cmd_interface(chip_id);
if (!chip)
return;
cmd = chip->cmd;
rsp = chip->rsp;
/*Read rsp*/
if (rsp->flag != OCC_FLAG_RSP_READY)
return;
lock(&chip->queue_lock);
if (!chip->cmd_in_progress)
goto exit;
cancel_timer(&chip->timeout);
if (!sanity_check_opal_cmd(cmd, chip) ||
!check_occ_rsp(cmd, rsp)) {
if (!chip->retry) {
prlog(PR_DEBUG, "OCC: Command-response mismatch, retrying\n");
chip->retry = true;
write_occ_cmd(chip);
} else {
chip->cmd_in_progress = false;
queue_occ_rsp_msg(chip->token, OPAL_INTERNAL_ERROR);
prlog(PR_DEBUG, "OCC: Command-response mismatch\n");
}
goto exit;
}
if (rsp->cmd == occ_cmds[OCC_CMD_SELECT_SENSOR_GROUP].cmd_value &&
rsp->status == OCC_RSP_SUCCESS)
chip->enabled_sensor_mask = *(u16 *)chip->cdata->data;
chip->cmd_in_progress = false;
queue_occ_rsp_msg(chip->token, read_occ_rsp(chip->rsp));
exit:
unlock(&chip->queue_lock);
}
bool occ_get_gpu_presence(struct proc_chip *chip, int gpu_num)
{
struct occ_dynamic_data *ddata;
static int max_retries = 20;
static bool found = false;
assert(gpu_num <= 2);
ddata = get_occ_dynamic_data(chip);
while (!found && max_retries) {
if (ddata->major_version == 0 && ddata->minor_version >= 1) {
found = true;
break;
}
time_wait_ms(100);
max_retries--;
ddata = get_occ_dynamic_data(chip);
}
if (!found) {
prlog(PR_INFO, "OCC: No GPU slot presence, assuming GPU present\n");
return true;
}
return (bool)(ddata->gpus_present & 1 << gpu_num);
}
static void occ_add_powercap_sensors(struct dt_node *power_mgt);
static void occ_add_psr_sensors(struct dt_node *power_mgt);
static void occ_cmd_interface_init(void)
{
struct occ_dynamic_data *data;
struct occ_pstate_table *pdata;
struct dt_node *power_mgt;
struct proc_chip *chip;
int i = 0, major;
/* Check if the OCC data is valid */
for_each_chip(chip) {
pdata = get_occ_pstate_table(chip);
if (!pdata->valid)
return;
}
chip = next_chip(NULL);
pdata = get_occ_pstate_table(chip);
major = pdata->version >> 4;
if (major != 0x9 || major != 0xA)
return;
for_each_chip(chip)
nr_occs++;
chips = malloc(sizeof(*chips) * nr_occs);
assert(chips);
for_each_chip(chip) {
pdata = get_occ_pstate_table(chip);
data = get_occ_dynamic_data(chip);
chips[i].chip_id = chip->id;
chips[i].occ_state = &data->occ_state;
chips[i].valid = &pdata->valid;
chips[i].cmd = &data->cmd;
chips[i].rsp = &data->rsp;
switch (major) {
case 0x9:
chips[i].occ_role = pdata->v9.occ_role;
break;
case 0xA:
chips[i].occ_role = pdata->v10.occ_role;
break;
}
init_lock(&chips[i].queue_lock);
chips[i].cmd_in_progress = false;
chips[i].request_id = 0;
chips[i].enabled_sensor_mask = OCC_ENABLED_SENSOR_MASK;
init_timer(&chips[i].timeout, occ_cmd_timeout_handler,
&chips[i]);
i++;
}
power_mgt = dt_find_by_path(dt_root, "/ibm,opal/power-mgt");
if (!power_mgt) {
prerror("OCC: dt node /ibm,opal/power-mgt not found\n");
return;
}
/* Add powercap sensors to DT */
occ_add_powercap_sensors(power_mgt);
/* Add power-shifting-ratio CPU-GPU sensors to DT */
occ_add_psr_sensors(power_mgt);
}
/* Powercap interface */
enum sensor_powercap_occ_attr {
POWERCAP_OCC_SOFT_MIN,
POWERCAP_OCC_MAX,
POWERCAP_OCC_CUR,
POWERCAP_OCC_HARD_MIN,
};
static void occ_add_powercap_sensors(struct dt_node *power_mgt)
{
struct dt_node *pcap, *node;
u32 handle;
pcap = dt_new(power_mgt, "powercap");
if (!pcap) {
prerror("OCC: Failed to create powercap node\n");
return;
}
dt_add_property_string(pcap, "compatible", "ibm,opal-powercap");
node = dt_new(pcap, "system-powercap");
if (!node) {
prerror("OCC: Failed to create system powercap node\n");
return;
}
handle = powercap_make_handle(POWERCAP_CLASS_OCC, POWERCAP_OCC_CUR);
dt_add_property_cells(node, "powercap-current", handle);
handle = powercap_make_handle(POWERCAP_CLASS_OCC,
POWERCAP_OCC_SOFT_MIN);
dt_add_property_cells(node, "powercap-min", handle);
handle = powercap_make_handle(POWERCAP_CLASS_OCC, POWERCAP_OCC_MAX);
dt_add_property_cells(node, "powercap-max", handle);
handle = powercap_make_handle(POWERCAP_CLASS_OCC,
POWERCAP_OCC_HARD_MIN);
dt_add_property_cells(node, "powercap-hard-min", handle);
}
int occ_get_powercap(u32 handle, u32 *pcap)
{
struct occ_pstate_table *pdata;
struct occ_dynamic_data *ddata;
struct proc_chip *chip;
chip = next_chip(NULL);
pdata = get_occ_pstate_table(chip);
ddata = get_occ_dynamic_data(chip);
if (!pdata->valid)
return OPAL_HARDWARE;
switch (powercap_get_attr(handle)) {
case POWERCAP_OCC_SOFT_MIN:
*pcap = ddata->soft_min_pwr_cap;
break;
case POWERCAP_OCC_MAX:
*pcap = ddata->max_pwr_cap;
break;
case POWERCAP_OCC_CUR:
*pcap = ddata->cur_pwr_cap;
break;
case POWERCAP_OCC_HARD_MIN:
*pcap = ddata->hard_min_pwr_cap;
break;
default:
*pcap = 0;
return OPAL_UNSUPPORTED;
}
return OPAL_SUCCESS;
}
static u16 pcap_cdata;
static struct opal_occ_cmd_data pcap_data = {
.data = (u8 *)&pcap_cdata,
.cmd = OCC_CMD_SET_POWER_CAP,
};
int __attribute__((__const__)) occ_set_powercap(u32 handle, int token, u32 pcap)
{
struct occ_dynamic_data *ddata;
struct proc_chip *chip;
int i;
if (powercap_get_attr(handle) != POWERCAP_OCC_CUR)
return OPAL_PERMISSION;
if (!chips)
return OPAL_HARDWARE;
for (i = 0; i < nr_occs; i++)
if (chips[i].occ_role == OCC_ROLE_MASTER)
break;
if (!(*chips[i].valid))
return OPAL_HARDWARE;
chip = get_chip(chips[i].chip_id);
ddata = get_occ_dynamic_data(chip);
if (pcap == ddata->cur_pwr_cap)
return OPAL_SUCCESS;
if (pcap && (pcap > ddata->max_pwr_cap ||
pcap < ddata->soft_min_pwr_cap))
return OPAL_PARAMETER;
pcap_cdata = pcap;
return opal_occ_command(&chips[i], token, &pcap_data);
};
/* Power-Shifting Ratio */
enum psr_type {
PSR_TYPE_CPU_TO_GPU, /* 0% Cap GPU first, 100% Cap CPU first */
};
int occ_get_psr(u32 handle, u32 *ratio)
{
struct occ_dynamic_data *ddata;
struct proc_chip *chip;
u8 i = psr_get_rid(handle);
if (psr_get_type(handle) != PSR_TYPE_CPU_TO_GPU)
return OPAL_UNSUPPORTED;
if (i > nr_occs)
return OPAL_UNSUPPORTED;
if (!(*chips[i].valid))
return OPAL_HARDWARE;
chip = get_chip(chips[i].chip_id);
ddata = get_occ_dynamic_data(chip);
*ratio = ddata->pwr_shifting_ratio;
return OPAL_SUCCESS;
}
static u8 psr_cdata;
static struct opal_occ_cmd_data psr_data = {
.data = &psr_cdata,
.cmd = OCC_CMD_SET_POWER_SHIFTING_RATIO,
};
int occ_set_psr(u32 handle, int token, u32 ratio)
{
struct occ_dynamic_data *ddata;
struct proc_chip *chip;
u8 i = psr_get_rid(handle);
if (psr_get_type(handle) != PSR_TYPE_CPU_TO_GPU)
return OPAL_UNSUPPORTED;
if (ratio > 100)
return OPAL_PARAMETER;
if (i > nr_occs)
return OPAL_UNSUPPORTED;
if (!(*chips[i].valid))
return OPAL_HARDWARE;
chip = get_chip(chips[i].chip_id);
ddata = get_occ_dynamic_data(chip);
if (ratio == ddata->pwr_shifting_ratio)
return OPAL_SUCCESS;
psr_cdata = ratio;
return opal_occ_command(&chips[i], token, &psr_data);
}
static void occ_add_psr_sensors(struct dt_node *power_mgt)
{
struct dt_node *node;
int i;
node = dt_new(power_mgt, "psr");
if (!node) {
prerror("OCC: Failed to create power-shifting-ratio node\n");
return;
}
dt_add_property_string(node, "compatible",
"ibm,opal-power-shift-ratio");
dt_add_property_cells(node, "#address-cells", 1);
dt_add_property_cells(node, "#size-cells", 0);
for (i = 0; i < nr_occs; i++) {
struct dt_node *cnode;
char name[20];
u32 handle = psr_make_handle(PSR_CLASS_OCC, i,
PSR_TYPE_CPU_TO_GPU);
cnode = dt_new_addr(node, "cpu-to-gpu", handle);
if (!cnode) {
prerror("OCC: Failed to create power-shifting-ratio node\n");
return;
}
snprintf(name, 20, "cpu_to_gpu_%d", chips[i].chip_id);
dt_add_property_string(cnode, "label", name);
dt_add_property_cells(cnode, "handle", handle);
dt_add_property_cells(cnode, "reg", chips[i].chip_id);
}
}
/* OCC clear sensor limits CSM/Profiler/Job-scheduler */
enum occ_sensor_limit_group {
OCC_SENSOR_LIMIT_GROUP_CSM = 0x10,
OCC_SENSOR_LIMIT_GROUP_PROFILER = 0x20,
OCC_SENSOR_LIMIT_GROUP_JOB_SCHED = 0x40,
};
static u32 sensor_limit;
static struct opal_occ_cmd_data slimit_data = {
.data = (u8 *)&sensor_limit,
.cmd = OCC_CMD_CLEAR_SENSOR_DATA,
};
int occ_sensor_group_clear(u32 group_hndl, int token)
{
u32 limit = sensor_get_rid(group_hndl);
u8 i = sensor_get_attr(group_hndl);
if (i > nr_occs)
return OPAL_UNSUPPORTED;
switch (limit) {
case OCC_SENSOR_LIMIT_GROUP_CSM:
case OCC_SENSOR_LIMIT_GROUP_PROFILER:
case OCC_SENSOR_LIMIT_GROUP_JOB_SCHED:
break;
default:
return OPAL_UNSUPPORTED;
}
if (!(*chips[i].valid))
return OPAL_HARDWARE;
sensor_limit = limit << 24;
return opal_occ_command(&chips[i], token, &slimit_data);
}
static u16 sensor_enable;
static struct opal_occ_cmd_data sensor_mask_data = {
.data = (u8 *)&sensor_enable,
.cmd = OCC_CMD_SELECT_SENSOR_GROUP,
};
int occ_sensor_group_enable(u32 group_hndl, int token, bool enable)
{
u16 type = sensor_get_rid(group_hndl);
u8 i = sensor_get_attr(group_hndl);
if (i > nr_occs)
return OPAL_UNSUPPORTED;
switch (type) {
case OCC_SENSOR_TYPE_GENERIC:
case OCC_SENSOR_TYPE_CURRENT:
case OCC_SENSOR_TYPE_VOLTAGE:
case OCC_SENSOR_TYPE_TEMPERATURE:
case OCC_SENSOR_TYPE_UTILIZATION:
case OCC_SENSOR_TYPE_TIME:
case OCC_SENSOR_TYPE_FREQUENCY:
case OCC_SENSOR_TYPE_POWER:
case OCC_SENSOR_TYPE_PERFORMANCE:
break;
default:
return OPAL_UNSUPPORTED;
}
if (!(*chips[i].valid))
return OPAL_HARDWARE;
if (enable && (type & chips[i].enabled_sensor_mask))
return OPAL_SUCCESS;
else if (!enable && !(type & chips[i].enabled_sensor_mask))
return OPAL_SUCCESS;
sensor_enable = enable ? type | chips[i].enabled_sensor_mask :
~type & chips[i].enabled_sensor_mask;
return opal_occ_command(&chips[i], token, &sensor_mask_data);
}
void occ_add_sensor_groups(struct dt_node *sg, __be32 *phandles, u32 *ptype,
int nr_phandles, int chipid)
{
struct group_info {
int type;
const char *str;
u32 ops;
} groups[] = {
{ OCC_SENSOR_LIMIT_GROUP_CSM, "csm",
OPAL_SENSOR_GROUP_CLEAR
},
{ OCC_SENSOR_LIMIT_GROUP_PROFILER, "profiler",
OPAL_SENSOR_GROUP_CLEAR
},
{ OCC_SENSOR_LIMIT_GROUP_JOB_SCHED, "js",
OPAL_SENSOR_GROUP_CLEAR
},
{ OCC_SENSOR_TYPE_GENERIC, "generic",
OPAL_SENSOR_GROUP_ENABLE
},
{ OCC_SENSOR_TYPE_CURRENT, "curr",
OPAL_SENSOR_GROUP_ENABLE
},
{ OCC_SENSOR_TYPE_VOLTAGE, "in",
OPAL_SENSOR_GROUP_ENABLE
},
{ OCC_SENSOR_TYPE_TEMPERATURE, "temp",
OPAL_SENSOR_GROUP_ENABLE
},
{ OCC_SENSOR_TYPE_UTILIZATION, "utilization",
OPAL_SENSOR_GROUP_ENABLE
},
{ OCC_SENSOR_TYPE_TIME, "time",
OPAL_SENSOR_GROUP_ENABLE
},
{ OCC_SENSOR_TYPE_FREQUENCY, "frequency",
OPAL_SENSOR_GROUP_ENABLE
},
{ OCC_SENSOR_TYPE_POWER, "power",
OPAL_SENSOR_GROUP_ENABLE
},
{ OCC_SENSOR_TYPE_PERFORMANCE, "performance",
OPAL_SENSOR_GROUP_ENABLE
},
};
int i, j;
/*
* Dont add sensor groups if cmd-interface is not intialized
*/
if (!chips)
return;
for (i = 0; i < nr_occs; i++)
if (chips[i].chip_id == chipid)
break;
for (j = 0; j < ARRAY_SIZE(groups); j++) {
struct dt_node *node;
char name[20];
u32 handle;
snprintf(name, 20, "occ-%s", groups[j].str);
handle = sensor_make_handler(SENSOR_OCC, 0,
groups[j].type, i);
node = dt_new_addr(sg, name, handle);
if (!node) {
prerror("Failed to create sensor group nodes\n");
return;
}
dt_add_property_cells(node, "sensor-group-id", handle);
dt_add_property_string(node, "type", groups[j].str);
if (groups[j].type == OCC_SENSOR_TYPE_CURRENT ||
groups[j].type == OCC_SENSOR_TYPE_VOLTAGE ||
groups[j].type == OCC_SENSOR_TYPE_TEMPERATURE ||
groups[j].type == OCC_SENSOR_TYPE_POWER) {
dt_add_property_string(node, "sensor-type",
groups[j].str);
dt_add_property_string(node, "compatible",
"ibm,opal-sensor");
}
dt_add_property_cells(node, "ibm,chip-id", chipid);
dt_add_property_cells(node, "reg", handle);
if (groups[j].ops == OPAL_SENSOR_GROUP_ENABLE) {
__be32 *_phandles;
int k, pcount = 0;
_phandles = malloc(sizeof(u32) * nr_phandles);
assert(_phandles);
for (k = 0; k < nr_phandles; k++)
if (ptype[k] == groups[j].type)
_phandles[pcount++] = phandles[k];
if (pcount)
dt_add_property(node, "sensors", _phandles,
pcount * sizeof(u32));
free(_phandles);
} else {
dt_add_property(node, "sensors", phandles,
nr_phandles * sizeof(u32));
}
dt_add_property_cells(node, "ops", groups[j].ops);
}
}
/* CPU-OCC PState init */
/* Called after OCC init on P8 and P9 */
void occ_pstates_init(void)
{
struct proc_chip *chip;
struct cpu_thread *c;
struct dt_node *power_mgt;
int pstate_nom;
u32 freq_domain_mask;
u8 domain_runs_at;
static bool occ_pstates_initialized;
power_mgt = dt_find_by_path(dt_root, "/ibm,opal/power-mgt");
if (!power_mgt) {
/**
* @fwts-label OCCDTNodeNotFound
* @fwts-advice Device tree node /ibm,opal/power-mgt not
* found. OPAL didn't add pstate information to device tree.
* Probably a firmware bug.
*/
prlog(PR_ERR, "OCC: dt node /ibm,opal/power-mgt not found\n");
return;
}
/* Handle fast reboots */
if (occ_pstates_initialized) {
struct dt_node *child;
int i;
const char *props[] = {
"ibm,pstate-core-max",
"ibm,pstate-frequencies-mhz",
"ibm,pstate-ids",
"ibm,pstate-max",
"ibm,pstate-min",
"ibm,pstate-nominal",
"ibm,pstate-turbo",
"ibm,pstate-ultra-turbo",
"ibm,pstate-base",
"#address-cells",
"#size-cells",
};
for (i = 0; i < ARRAY_SIZE(props); i++)
dt_check_del_prop(power_mgt, props[i]);
dt_for_each_child(power_mgt, child)
if (!strncmp(child->name, "occ", 3))
dt_free(child);
}
switch (proc_gen) {
case proc_gen_p8:
homer_opal_data_offset = P8_HOMER_OPAL_DATA_OFFSET;
break;
case proc_gen_p9:
case proc_gen_p10:
homer_opal_data_offset = P9_HOMER_OPAL_DATA_OFFSET;
break;
default:
return;
}
chip = next_chip(NULL);
if (!chip->homer_base) {
log_simple_error(&e_info(OPAL_RC_OCC_PSTATE_INIT),
"OCC: No HOMER detected, assuming no pstates\n");
return;
}
/* Wait for all OCC to boot up */
if(!wait_for_all_occ_init()) {
log_simple_error(&e_info(OPAL_RC_OCC_TIMEOUT),
"OCC: Initialization on all chips did not complete"
"(timed out)\n");
return;
}
/*
* Check boundary conditions and add device tree nodes
* and return nominal pstate to set for the core
*/
if (!add_cpu_pstate_properties(power_mgt, &pstate_nom)) {
log_simple_error(&e_info(OPAL_RC_OCC_PSTATE_INIT),
"Skiping core cpufreq init due to OCC error\n");
} else if (proc_gen == proc_gen_p8) {
/*
* Setup host based pstates and set nominal frequency only in
* P8.
*/
for_each_chip(chip)
for_each_available_core_in_chip(c, chip->id)
cpu_pstates_prepare_core(chip, c, pstate_nom);
}
if (occ_pstates_initialized)
return;
/* Add opal_poller to poll OCC throttle status of each chip */
for_each_chip(chip)
chip->throttle = 0;
opal_add_poller(occ_throttle_poll, NULL);
occ_pstates_initialized = true;
/* Init OPAL-OCC command-response interface */
occ_cmd_interface_init();
/* TODO Firmware plumbing required so as to have two modes to set
* PMCR based on max in domain or most recently used. As of today,
* it is always max in domain for P9.
*/
domain_runs_at = 0;
freq_domain_mask = 0;
if (proc_gen == proc_gen_p8) {
freq_domain_mask = P8_PIR_CORE_MASK;
domain_runs_at = FREQ_MOST_RECENTLY_SET;
} else if (proc_gen == proc_gen_p9) {
freq_domain_mask = P9_PIR_QUAD_MASK;
domain_runs_at = FREQ_MAX_IN_DOMAIN;
} else if (proc_gen == proc_gen_p10) {
freq_domain_mask = P10_PIR_CHIP_MASK;
domain_runs_at = FREQ_MAX_IN_DOMAIN;
} else {
assert(0);
}
dt_add_property_cells(power_mgt, "freq-domain-mask", freq_domain_mask);
dt_add_property_cells(power_mgt, "domain-runs-at", domain_runs_at);
}
int find_master_and_slave_occ(uint64_t **master, uint64_t **slave,
int *nr_masters, int *nr_slaves)
{
struct proc_chip *chip;
int nr_chips = 0, i;
uint64_t chipids[MAX_CHIPS];
for_each_chip(chip) {
chipids[nr_chips++] = chip->id;
}
chip = next_chip(NULL);
/*
* Proc0 is the master OCC for Tuleta/Alpine boxes.
* Hostboot expects the pair of chips for MURANO, so pass the sibling
* chip id along with proc0 to hostboot.
*/
*nr_masters = (chip->type == PROC_CHIP_P8_MURANO) ? 2 : 1;
*master = (uint64_t *)malloc(*nr_masters * sizeof(uint64_t));
if (!*master) {
printf("OCC: master array alloc failure\n");
return -ENOMEM;
}
if (nr_chips - *nr_masters > 0) {
*nr_slaves = nr_chips - *nr_masters;
*slave = (uint64_t *)malloc(*nr_slaves * sizeof(uint64_t));
if (!*slave) {
printf("OCC: slave array alloc failure\n");
return -ENOMEM;
}
}
for (i = 0; i < nr_chips; i++) {
if (i < *nr_masters) {
*(*master + i) = chipids[i];
continue;
}
*(*slave + i - *nr_masters) = chipids[i];
}
return 0;
}
int occ_msg_queue_occ_reset(void)
{
struct opal_occ_msg occ_msg = { CPU_TO_BE64(OCC_RESET), 0, 0 };
struct proc_chip *chip;
int rc;
lock(&occ_lock);
rc = _opal_queue_msg(OPAL_MSG_OCC, NULL, NULL,
sizeof(struct opal_occ_msg), &occ_msg);
if (rc) {
prlog(PR_INFO, "OCC: Failed to queue OCC_RESET message\n");
goto out;
}
/*
* Set 'valid' byte of occ_pstate_table to 0 since OCC
* may not clear this byte on a reset.
* OCC will set the 'valid' byte to 1 when it becomes
* active again.
*/
for_each_chip(chip) {
struct occ_pstate_table *occ_data;
occ_data = get_occ_pstate_table(chip);
occ_data->valid = 0;
chip->throttle = 0;
}
occ_reset = true;
out:
unlock(&occ_lock);
return rc;
}
#define PV_OCC_GP0 0x01000000
#define PV_OCC_GP0_AND 0x01000004
#define PV_OCC_GP0_OR 0x01000005
#define PV_OCC_GP0_PNOR_OWNER PPC_BIT(18) /* 1 = OCC / Host, 0 = BMC */
static void occ_pnor_set_one_owner(uint32_t chip_id, enum pnor_owner owner)
{
uint64_t reg, mask;
if (owner == PNOR_OWNER_HOST) {
reg = PV_OCC_GP0_OR;
mask = PV_OCC_GP0_PNOR_OWNER;
} else {
reg = PV_OCC_GP0_AND;
mask = ~PV_OCC_GP0_PNOR_OWNER;
}
xscom_write(chip_id, reg, mask);
}
void occ_pnor_set_owner(enum pnor_owner owner)
{
struct proc_chip *chip;
for_each_chip(chip)
occ_pnor_set_one_owner(chip->id, owner);
}
#define P8_OCB_OCI_OCCMISC 0x6a020
#define P8_OCB_OCI_OCCMISC_AND 0x6a021
#define P8_OCB_OCI_OCCMISC_OR 0x6a022
#define P9_OCB_OCI_OCCMISC 0x6c080
#define P9_OCB_OCI_OCCMISC_CLEAR 0x6c081
#define P9_OCB_OCI_OCCMISC_OR 0x6c082
#define OCB_OCI_OCIMISC_IRQ PPC_BIT(0)
#define OCB_OCI_OCIMISC_IRQ_TMGT PPC_BIT(1)
#define OCB_OCI_OCIMISC_IRQ_SLW_TMR PPC_BIT(14)
#define OCB_OCI_OCIMISC_IRQ_OPAL_DUMMY PPC_BIT(15)
#define P8_OCB_OCI_OCIMISC_MASK (OCB_OCI_OCIMISC_IRQ_TMGT | \
OCB_OCI_OCIMISC_IRQ_OPAL_DUMMY | \
OCB_OCI_OCIMISC_IRQ_SLW_TMR)
#define OCB_OCI_OCIMISC_IRQ_I2C PPC_BIT(2)
#define OCB_OCI_OCIMISC_IRQ_SHMEM PPC_BIT(3)
#define P9_OCB_OCI_OCIMISC_MASK (OCB_OCI_OCIMISC_IRQ_TMGT | \
OCB_OCI_OCIMISC_IRQ_I2C | \
OCB_OCI_OCIMISC_IRQ_SHMEM | \
OCB_OCI_OCIMISC_IRQ_OPAL_DUMMY)
void occ_send_dummy_interrupt(void)
{
struct psi *psi;
struct proc_chip *chip = get_chip(this_cpu()->chip_id);
/* Emulators don't do this */
if (chip_quirk(QUIRK_NO_OCC_IRQ))
return;
/* Find a functional PSI. This ensures an interrupt even if
* the psihb on the current chip is not configured */
if (chip->psi)
psi = chip->psi;
else
psi = psi_find_functional_chip();
if (!psi) {
prlog_once(PR_WARNING, "PSI: no functional PSI HB found, "
"no self interrupts delivered\n");
return;
}
switch (proc_gen) {
case proc_gen_p8:
xscom_write(psi->chip_id, P8_OCB_OCI_OCCMISC_OR,
OCB_OCI_OCIMISC_IRQ |
OCB_OCI_OCIMISC_IRQ_OPAL_DUMMY);
break;
case proc_gen_p9:
xscom_write(psi->chip_id, P9_OCB_OCI_OCCMISC_OR,
OCB_OCI_OCIMISC_IRQ |
OCB_OCI_OCIMISC_IRQ_OPAL_DUMMY);
break;
case proc_gen_p10:
xscom_write(psi->chip_id, P9_OCB_OCI_OCCMISC_OR,
OCB_OCI_OCIMISC_IRQ |
OCB_OCI_OCIMISC_IRQ_OPAL_DUMMY);
break;
default:
break;
}
}
void occ_p8_interrupt(uint32_t chip_id)
{
uint64_t ireg;
int64_t rc;
/* The OCC interrupt is used to mux up to 15 different sources */
rc = xscom_read(chip_id, P8_OCB_OCI_OCCMISC, &ireg);
if (rc) {
prerror("OCC: Failed to read interrupt status !\n");
/* Should we mask it in the XIVR ? */
return;
}
prlog(PR_TRACE, "OCC: IRQ received: %04llx\n", ireg >> 48);
/* Clear the bits */
xscom_write(chip_id, P8_OCB_OCI_OCCMISC_AND, ~ireg);
/* Dispatch */
if (ireg & OCB_OCI_OCIMISC_IRQ_TMGT)
prd_tmgt_interrupt(chip_id);
if (ireg & OCB_OCI_OCIMISC_IRQ_SLW_TMR)
check_timers(true);
/* We may have masked-out OCB_OCI_OCIMISC_IRQ in the previous
* OCCMISC_AND write. Check if there are any new source bits set,
* and trigger another interrupt if so.
*/
rc = xscom_read(chip_id, P8_OCB_OCI_OCCMISC, &ireg);
if (!rc && (ireg & P8_OCB_OCI_OCIMISC_MASK))
xscom_write(chip_id, P8_OCB_OCI_OCCMISC_OR,
OCB_OCI_OCIMISC_IRQ);
}
void occ_p9_interrupt(uint32_t chip_id)
{
u64 ireg;
s64 rc;
/* The OCC interrupt is used to mux up to 15 different sources */
rc = xscom_read(chip_id, P9_OCB_OCI_OCCMISC, &ireg);
if (rc) {
prerror("OCC: Failed to read interrupt status !\n");
return;
}
prlog(PR_TRACE, "OCC: IRQ received: %04llx\n", ireg >> 48);
/* Clear the bits */
xscom_write(chip_id, P9_OCB_OCI_OCCMISC_CLEAR, ireg);
/* Dispatch */
if (ireg & OCB_OCI_OCIMISC_IRQ_TMGT)
prd_tmgt_interrupt(chip_id);
if (ireg & OCB_OCI_OCIMISC_IRQ_SHMEM) {
occ_throttle_poll(NULL);
handle_occ_rsp(chip_id);
}
if (ireg & OCB_OCI_OCIMISC_IRQ_I2C)
p9_i2c_bus_owner_change(chip_id);
/* We may have masked-out OCB_OCI_OCIMISC_IRQ in the previous
* OCCMISC_AND write. Check if there are any new source bits set,
* and trigger another interrupt if so.
*/
rc = xscom_read(chip_id, P9_OCB_OCI_OCCMISC, &ireg);
if (!rc && (ireg & P9_OCB_OCI_OCIMISC_MASK))
xscom_write(chip_id, P9_OCB_OCI_OCCMISC_OR,
OCB_OCI_OCIMISC_IRQ);
}
|