1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406
|
// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
/*
* PHB4: PCI Host Bridge 4, in POWER9
*
* Copyright 2013-2019 IBM Corp.
* Copyright 2018 Raptor Engineering, LLC
*/
/*
*
* FIXME:
* More stuff for EEH support:
* - PBCQ error reporting interrupt
* - I2C-based power management (replacing SHPC)
* - Directly detect fenced PHB through one dedicated HW reg
*/
/*
* This is a simplified view of the PHB4 reset and link training steps
*
* Step 1:
* - Check for hotplug status:
* o PHB_PCIE_HOTPLUG_STATUS bit PHB_PCIE_HPSTAT_PRESENCE
* o If not set -> Bail out (Slot is empty)
*
* Step 2:
* - Do complete PHB reset:
* o PHB/ETU reset procedure
*
* Step 3:
* - Drive PERST active (skip if already asserted. ie. after cold reboot)
* - Wait 250ms (for cards to reset)
* o powervm have used 250ms for a long time without any problems
*
* Step 4:
* - Drive PERST inactive
*
* Step 5:
* - Look for inband presence:
* o From PERST we have two stages to get inband presence detected
* 1) Devices must enter Detect state within 20 ms of the end of
* Fundamental Reset
* 2) Receiver detect pulse are every 12ms
* - Hence minimum wait time 20 + 12 = 32ms
* o Unfortunatey, we've seen cards take 440ms
* o Hence we are conservative and poll here for 1000ms (> 440ms)
* - If no inband presence after 100ms -> Bail out (Slot is broken)
* o PHB_PCIE_DLP_TRAIN_CTL bit PHB_PCIE_DLP_INBAND_PRESENCE
*
* Step 6:
* - Look for link training done:
* o PHB_PCIE_DLP_TRAIN_CTL bit PHB_PCIE_DLP_TL_LINKACT
* - If not set after 2000ms, Retry (3 times) -> Goto Step 2
* o phy lockup could link training failure, hence going back to a
* complete PHB reset on retry
* o not expect to happen very often
*
* Step 7:
* - Wait for 1 sec (before touching device config space):
* - From PCIe spec:
* Root Complex and/or system software must allow at least 1.0 s after
* a Conventional Reset of a device, before it may determine that a
* device which fails to return a Successful Completion status for a
* valid Configuration Request is a broken device.
*
* Step 8:
* - Sanity check for fence and link still up:
* o If fenced or link down, Retry (3 times) -> Goto Step 2
* o This is not nessary but takes no time and can be useful
* o Once we leave here, much harder to recover from errors
*
* Step 9:
* - Check for optimised link for directly attached devices:
* o Wait for CRS (so we can read device config space)
* o Check chip and device are in allowlist. if not, Goto Step 10
* o If trained link speed is degraded, retry -> Goto Step 2
* o If trained link width is degraded, retry -> Goto Step 2
* o If still degraded after 3 retries. Give up, Goto Step 10.
*
* Step 10:
* - PHB good, start probing config space.
* o core/pci.c: pci_reset_phb() -> pci_scan_phb()
*/
#undef NO_ASB
#undef LOG_CFG
#include <skiboot.h>
#include <io.h>
#include <timebase.h>
#include <pci.h>
#include <pci-cfg.h>
#include <pci-slot.h>
#include <vpd.h>
#include <interrupts.h>
#include <opal.h>
#include <cpu.h>
#include <device.h>
#include <ccan/str/str.h>
#include <ccan/array_size/array_size.h>
#include <xscom.h>
#include <affinity.h>
#include <phb4.h>
#include <phb4-regs.h>
#include <phb4-capp.h>
#include <capp.h>
#include <fsp.h>
#include <chip.h>
#include <chiptod.h>
#include <xive.h>
#include <xscom-p9-regs.h>
#include <phys-map.h>
#include <nvram.h>
/* Enable this to disable error interrupts for debug purposes */
#undef DISABLE_ERR_INTS
static void phb4_init_hw(struct phb4 *p);
#define PHBDBG(p, fmt, a...) prlog(PR_DEBUG, "PHB#%04x[%d:%d]: " fmt, \
(p)->phb.opal_id, (p)->chip_id, \
(p)->index, ## a)
#define PHBINF(p, fmt, a...) prlog(PR_INFO, "PHB#%04x[%d:%d]: " fmt, \
(p)->phb.opal_id, (p)->chip_id, \
(p)->index, ## a)
#define PHBNOTICE(p, fmt, a...) prlog(PR_NOTICE, "PHB#%04x[%d:%d]: " fmt, \
(p)->phb.opal_id, (p)->chip_id, \
(p)->index, ## a)
#define PHBERR(p, fmt, a...) prlog(PR_ERR, "PHB#%04x[%d:%d]: " fmt, \
(p)->phb.opal_id, (p)->chip_id, \
(p)->index, ## a)
#ifdef LOG_CFG
#define PHBLOGCFG(p, fmt, a...) PHBDBG(p, fmt, ## a)
#else
#define PHBLOGCFG(p, fmt, a...) do {} while (0)
#endif
static bool pci_eeh_mmio;
static bool pci_retry_all;
static int rx_err_max = PHB4_RX_ERR_MAX;
static inline bool is_phb4(void)
{
return (proc_gen == proc_gen_p9);
}
static inline bool is_phb5(void)
{
return (proc_gen == proc_gen_p10);
}
/* PQ offloading on the XIVE IC. */
static inline bool phb_pq_disable(struct phb4 *p __unused)
{
if (is_phb5())
return xive2_cap_phb_pq_disable();
return false;
}
/*
* Use the ESB page of the XIVE IC for event notification. Latency
* improvement.
*/
static inline bool phb_abt_mode(struct phb4 *p __unused)
{
if (is_phb5())
return xive2_cap_phb_abt();
return false;
}
static inline bool phb_can_store_eoi(struct phb4 *p)
{
if (is_phb5())
/* PQ offloading is required for StoreEOI */
return XIVE2_STORE_EOI_ENABLED && phb_pq_disable(p);
return XIVE_STORE_EOI_ENABLED;
}
/* Note: The "ASB" name is historical, practically this means access via
* the XSCOM backdoor
*/
static inline uint64_t phb4_read_reg_asb(struct phb4 *p, uint32_t offset)
{
#ifdef NO_ASB
return in_be64(p->regs + offset);
#else
int64_t rc;
uint64_t addr, val;
/* Address register: must use 4 bytes for built-in config space.
*
* This path isn't usable for outbound configuration space
*/
if (((offset & 0xfffffffc) == PHB_CONFIG_DATA) && (offset & 3)) {
PHBERR(p, "XSCOM unaligned access to CONFIG_DATA unsupported\n");
return -1ull;
}
addr = XETU_HV_IND_ADDR_VALID | offset;
if ((offset >= 0x1000 && offset < 0x1800) || (offset == PHB_CONFIG_DATA))
addr |= XETU_HV_IND_ADDR_4B;
rc = xscom_write(p->chip_id, p->etu_xscom + XETU_HV_IND_ADDRESS, addr);
if (rc != 0) {
PHBERR(p, "XSCOM error addressing register 0x%x\n", offset);
return -1ull;
}
rc = xscom_read(p->chip_id, p->etu_xscom + XETU_HV_IND_DATA, &val);
if (rc != 0) {
PHBERR(p, "XSCOM error reading register 0x%x\n", offset);
return -1ull;
}
return val;
#endif
}
static inline void phb4_write_reg_asb(struct phb4 *p,
uint32_t offset, uint64_t val)
{
#ifdef NO_ASB
out_be64(p->regs + offset, val);
#else
int64_t rc;
uint64_t addr;
/* Address register: must use 4 bytes for built-in config space.
*
* This path isn't usable for outbound configuration space
*/
if (((offset & 0xfffffffc) == PHB_CONFIG_DATA) && (offset & 3)) {
PHBERR(p, "XSCOM access to CONFIG_DATA unsupported\n");
return;
}
addr = XETU_HV_IND_ADDR_VALID | offset;
if ((offset >= 0x1000 && offset < 0x1800) || (offset == PHB_CONFIG_DATA))
addr |= XETU_HV_IND_ADDR_4B;
rc = xscom_write(p->chip_id, p->etu_xscom + XETU_HV_IND_ADDRESS, addr);
if (rc != 0) {
PHBERR(p, "XSCOM error addressing register 0x%x\n", offset);
return;
}
rc = xscom_write(p->chip_id, p->etu_xscom + XETU_HV_IND_DATA, val);
if (rc != 0) {
PHBERR(p, "XSCOM error writing register 0x%x\n", offset);
return;
}
#endif
}
static uint64_t phb4_read_reg(struct phb4 *p, uint32_t offset)
{
/* No register accesses are permitted while in reset */
if (p->flags & PHB4_ETU_IN_RESET)
return -1ull;
if (p->flags & PHB4_CFG_USE_ASB)
return phb4_read_reg_asb(p, offset);
else
return in_be64(p->regs + offset);
}
static void phb4_write_reg(struct phb4 *p, uint32_t offset, uint64_t val)
{
/* No register accesses are permitted while in reset */
if (p->flags & PHB4_ETU_IN_RESET)
return;
if (p->flags & PHB4_CFG_USE_ASB)
phb4_write_reg_asb(p, offset, val);
else
return out_be64(p->regs + offset, val);
}
/* Helper to select an IODA table entry */
static inline void phb4_ioda_sel(struct phb4 *p, uint32_t table,
uint32_t addr, bool autoinc)
{
phb4_write_reg(p, PHB_IODA_ADDR,
(autoinc ? PHB_IODA_AD_AUTOINC : 0) |
SETFIELD(PHB_IODA_AD_TSEL, 0ul, table) |
SETFIELD(PHB_IODA_AD_TADR, 0ul, addr));
}
/*
* Configuration space access
*
* The PHB lock is assumed to be already held
*/
static int64_t phb4_pcicfg_check(struct phb4 *p, uint32_t bdfn,
uint32_t offset, uint32_t size,
uint16_t *pe)
{
uint32_t sm = size - 1;
if (offset > 0xfff || bdfn > 0xffff)
return OPAL_PARAMETER;
if (offset & sm)
return OPAL_PARAMETER;
/* The root bus only has a device at 0 and we get into an
* error state if we try to probe beyond that, so let's
* avoid that and just return an error to Linux
*/
if (PCI_BUS_NUM(bdfn) == 0 && (bdfn & 0xff))
return OPAL_HARDWARE;
/* Check PHB state */
if (p->broken)
return OPAL_HARDWARE;
/* Fetch the PE# from cache */
*pe = be16_to_cpu(p->tbl_rtt[bdfn]);
return OPAL_SUCCESS;
}
static int64_t phb4_rc_read(struct phb4 *p, uint32_t offset, uint8_t sz,
void *data, bool use_asb)
{
uint32_t reg = offset & ~3;
uint32_t oval;
/* Some registers are handled locally */
switch (reg) {
/* Bridge base/limit registers are cached here as HW
* doesn't implement them (it hard codes values that
* will confuse a proper PCI implementation).
*/
case PCI_CFG_MEM_BASE: /* Includes PCI_CFG_MEM_LIMIT */
oval = p->rc_cache[(reg - 0x20) >> 2] & 0xfff0fff0;
break;
case PCI_CFG_PREF_MEM_BASE: /* Includes PCI_CFG_PREF_MEM_LIMIT */
oval = p->rc_cache[(reg - 0x20) >> 2] & 0xfff0fff0;
oval |= 0x00010001;
break;
case PCI_CFG_IO_BASE_U16: /* Includes PCI_CFG_IO_LIMIT_U16 */
oval = 0;
break;
case PCI_CFG_PREF_MEM_BASE_U32:
case PCI_CFG_PREF_MEM_LIMIT_U32:
oval = p->rc_cache[(reg - 0x20) >> 2];
break;
default:
oval = 0xffffffff; /* default if offset too big */
if (reg < PHB_RC_CONFIG_SIZE) {
if (use_asb)
oval = bswap_32(phb4_read_reg_asb(p, PHB_RC_CONFIG_BASE
+ reg));
else
oval = in_le32(p->regs + PHB_RC_CONFIG_BASE + reg);
}
}
/* Apply any post-read fixups */
switch (reg) {
case PCI_CFG_IO_BASE:
oval |= 0x01f1; /* Set IO base < limit to disable the window */
break;
}
switch (sz) {
case 1:
offset &= 3;
*((uint8_t *)data) = (oval >> (offset << 3)) & 0xff;
PHBLOGCFG(p, "000 CFG08 Rd %02x=%02x\n",
offset, *((uint8_t *)data));
break;
case 2:
offset &= 2;
*((uint16_t *)data) = (oval >> (offset << 3)) & 0xffff;
PHBLOGCFG(p, "000 CFG16 Rd %02x=%04x\n",
offset, *((uint16_t *)data));
break;
case 4:
*((uint32_t *)data) = oval;
PHBLOGCFG(p, "000 CFG32 Rd %02x=%08x\n",
offset, *((uint32_t *)data));
break;
default:
assert(false);
}
return OPAL_SUCCESS;
}
static int64_t phb4_rc_write(struct phb4 *p, uint32_t offset, uint8_t sz,
uint32_t val, bool use_asb)
{
uint32_t reg = offset & ~3;
uint32_t old, mask, shift, oldold;
int64_t rc;
if (reg > PHB_RC_CONFIG_SIZE)
return OPAL_SUCCESS;
/* If size isn't 4-bytes, do a RMW cycle */
if (sz < 4) {
rc = phb4_rc_read(p, reg, 4, &old, use_asb);
if (rc != OPAL_SUCCESS)
return rc;
/*
* Since we have to Read-Modify-Write here, we need to filter
* out registers that have write-1-to-clear bits to prevent
* clearing stuff we shouldn't be. So for any register this
* applies to, mask out those bits.
*/
oldold = old;
switch(reg) {
case 0x1C: /* Secondary status */
old &= 0x00ffffff; /* mask out 24-31 */
break;
case 0x50: /* EC - Device status */
old &= 0xfff0ffff; /* mask out 16-19 */
break;
case 0x58: /* EC - Link status */
old &= 0x3fffffff; /* mask out 30-31 */
break;
case 0x78: /* EC - Link status 2 */
old &= 0xf000ffff; /* mask out 16-27 */
break;
/* These registers *only* have write-1-to-clear bits */
case 0x104: /* AER - Uncorr. error status */
case 0x110: /* AER - Corr. error status */
case 0x130: /* AER - Root error status */
case 0x180: /* P16 - status */
case 0x184: /* P16 - LDPM status */
case 0x188: /* P16 - FRDPM status */
case 0x18C: /* P16 - SRDPM status */
old &= 0x00000000;
break;
}
if (old != oldold) {
PHBLOGCFG(p, "Rewrote %x to %x for reg %x for W1C\n",
oldold, old, reg);
}
if (sz == 1) {
shift = (offset & 3) << 3;
mask = 0xff << shift;
val = (old & ~mask) | ((val & 0xff) << shift);
} else {
shift = (offset & 2) << 3;
mask = 0xffff << shift;
val = (old & ~mask) | ((val & 0xffff) << shift);
}
}
/* Some registers are handled locally */
switch (reg) {
/* See comment in phb4_rc_read() */
case PCI_CFG_MEM_BASE: /* Includes PCI_CFG_MEM_LIMIT */
case PCI_CFG_PREF_MEM_BASE: /* Includes PCI_CFG_PREF_MEM_LIMIT */
case PCI_CFG_PREF_MEM_BASE_U32:
case PCI_CFG_PREF_MEM_LIMIT_U32:
p->rc_cache[(reg - 0x20) >> 2] = val;
break;
case PCI_CFG_IO_BASE_U16: /* Includes PCI_CFG_IO_LIMIT_U16 */
break;
default:
/* Workaround PHB config space enable */
PHBLOGCFG(p, "000 CFG%02d Wr %02x=%08x\n", 8 * sz, reg, val);
if (use_asb)
phb4_write_reg_asb(p, PHB_RC_CONFIG_BASE + reg, val);
else
out_le32(p->regs + PHB_RC_CONFIG_BASE + reg, val);
}
return OPAL_SUCCESS;
}
static int64_t phb4_pcicfg_read(struct phb4 *p, uint32_t bdfn,
uint32_t offset, uint32_t size,
void *data)
{
uint64_t addr, val64;
int64_t rc;
uint16_t pe;
bool use_asb = false;
rc = phb4_pcicfg_check(p, bdfn, offset, size, &pe);
if (rc)
return rc;
if (p->flags & PHB4_AIB_FENCED) {
if (!(p->flags & PHB4_CFG_USE_ASB))
return OPAL_HARDWARE;
if (bdfn != 0)
return OPAL_HARDWARE;
use_asb = true;
} else if ((p->flags & PHB4_CFG_BLOCKED) && bdfn != 0) {
return OPAL_HARDWARE;
}
/* Handle per-device filters */
rc = pci_handle_cfg_filters(&p->phb, bdfn, offset, size,
(uint32_t *)data, false);
if (rc != OPAL_PARTIAL)
return rc;
/* Handle root complex MMIO based config space */
if (bdfn == 0)
return phb4_rc_read(p, offset, size, data, use_asb);
addr = PHB_CA_ENABLE;
addr = SETFIELD(PHB_CA_BDFN, addr, bdfn);
addr = SETFIELD(PHB_CA_REG, addr, offset & ~3u);
addr = SETFIELD(PHB_CA_PE, addr, pe);
if (use_asb) {
phb4_write_reg_asb(p, PHB_CONFIG_ADDRESS, addr);
sync();
val64 = bswap_64(phb4_read_reg_asb(p, PHB_CONFIG_DATA));
switch(size) {
case 1:
*((uint8_t *)data) = val64 >> (8 * (offset & 3));
break;
case 2:
*((uint16_t *)data) = val64 >> (8 * (offset & 2));
break;
case 4:
*((uint32_t *)data) = val64;
break;
default:
return OPAL_PARAMETER;
}
} else {
out_be64(p->regs + PHB_CONFIG_ADDRESS, addr);
switch(size) {
case 1:
*((uint8_t *)data) =
in_8(p->regs + PHB_CONFIG_DATA + (offset & 3));
PHBLOGCFG(p, "%03x CFG08 Rd %02x=%02x\n",
bdfn, offset, *((uint8_t *)data));
break;
case 2:
*((uint16_t *)data) =
in_le16(p->regs + PHB_CONFIG_DATA + (offset & 2));
PHBLOGCFG(p, "%03x CFG16 Rd %02x=%04x\n",
bdfn, offset, *((uint16_t *)data));
break;
case 4:
*((uint32_t *)data) = in_le32(p->regs + PHB_CONFIG_DATA);
PHBLOGCFG(p, "%03x CFG32 Rd %02x=%08x\n",
bdfn, offset, *((uint32_t *)data));
break;
default:
return OPAL_PARAMETER;
}
}
return OPAL_SUCCESS;
}
#define PHB4_PCI_CFG_READ(size, type) \
static int64_t phb4_pcicfg_read##size(struct phb *phb, uint32_t bdfn, \
uint32_t offset, type *data) \
{ \
struct phb4 *p = phb_to_phb4(phb); \
\
/* Initialize data in case of error */ \
*data = (type)0xffffffff; \
return phb4_pcicfg_read(p, bdfn, offset, sizeof(type), data); \
}
static int64_t phb4_pcicfg_write(struct phb4 *p, uint32_t bdfn,
uint32_t offset, uint32_t size,
uint32_t data)
{
uint64_t addr;
int64_t rc;
uint16_t pe;
bool use_asb = false;
rc = phb4_pcicfg_check(p, bdfn, offset, size, &pe);
if (rc)
return rc;
if (p->flags & PHB4_AIB_FENCED) {
if (!(p->flags & PHB4_CFG_USE_ASB))
return OPAL_HARDWARE;
if (bdfn != 0)
return OPAL_HARDWARE;
use_asb = true;
} else if ((p->flags & PHB4_CFG_BLOCKED) && bdfn != 0) {
return OPAL_HARDWARE;
}
/* Handle per-device filters */
rc = pci_handle_cfg_filters(&p->phb, bdfn, offset, size,
(uint32_t *)&data, true);
if (rc != OPAL_PARTIAL)
return rc;
/* Handle root complex MMIO based config space */
if (bdfn == 0)
return phb4_rc_write(p, offset, size, data, use_asb);
addr = PHB_CA_ENABLE;
addr = SETFIELD(PHB_CA_BDFN, addr, bdfn);
addr = SETFIELD(PHB_CA_REG, addr, offset & ~3u);
addr = SETFIELD(PHB_CA_PE, addr, pe);
if (use_asb) {
/* We don't support ASB config space writes */
return OPAL_UNSUPPORTED;
} else {
out_be64(p->regs + PHB_CONFIG_ADDRESS, addr);
switch(size) {
case 1:
out_8(p->regs + PHB_CONFIG_DATA + (offset & 3), data);
break;
case 2:
out_le16(p->regs + PHB_CONFIG_DATA + (offset & 2), data);
break;
case 4:
out_le32(p->regs + PHB_CONFIG_DATA, data);
break;
default:
return OPAL_PARAMETER;
}
}
PHBLOGCFG(p, "%03x CFG%d Wr %02x=%08x\n", bdfn, 8 * size, offset, data);
return OPAL_SUCCESS;
}
#define PHB4_PCI_CFG_WRITE(size, type) \
static int64_t phb4_pcicfg_write##size(struct phb *phb, uint32_t bdfn, \
uint32_t offset, type data) \
{ \
struct phb4 *p = phb_to_phb4(phb); \
\
return phb4_pcicfg_write(p, bdfn, offset, sizeof(type), data); \
}
PHB4_PCI_CFG_READ(8, u8)
PHB4_PCI_CFG_READ(16, u16)
PHB4_PCI_CFG_READ(32, u32)
PHB4_PCI_CFG_WRITE(8, u8)
PHB4_PCI_CFG_WRITE(16, u16)
PHB4_PCI_CFG_WRITE(32, u32)
static int64_t phb4_get_reserved_pe_number(struct phb *phb)
{
struct phb4 *p = phb_to_phb4(phb);
return PHB4_RESERVED_PE_NUM(p);
}
static void phb4_root_port_init(struct phb *phb, struct pci_device *dev,
int ecap, int aercap)
{
struct phb4 *p = phb_to_phb4(phb);
struct pci_slot *slot = dev->slot;
uint16_t bdfn = dev->bdfn;
uint16_t val16;
uint32_t val32;
/*
* Use the PHB's callback so that UTL events will be masked or
* unmasked when the link is down or up.
*/
if (dev->slot && dev->slot->ops.prepare_link_change &&
phb->slot && phb->slot->ops.prepare_link_change)
dev->slot->ops.prepare_link_change =
phb->slot->ops.prepare_link_change;
// FIXME: check recommended init values for phb4
/*
* Enable the bridge slot capability in the root port's config
* space. This should probably be done *before* we start
* scanning config space, but we need a pci_device struct to
* exist before we do a slot lookup so *faaaaaaaaaaaaaart*
*/
if (slot && slot->pluggable && slot->power_limit) {
uint64_t val;
val = in_be64(p->regs + PHB_PCIE_SCR);
val |= PHB_PCIE_SCR_SLOT_CAP;
out_be64(p->regs + PHB_PCIE_SCR, val);
/* update the cached slotcap */
pci_cfg_read32(phb, bdfn, ecap + PCICAP_EXP_SLOTCAP,
&slot->slot_cap);
}
/* Enable SERR and parity checking */
pci_cfg_read16(phb, bdfn, PCI_CFG_CMD, &val16);
val16 |= (PCI_CFG_CMD_SERR_EN | PCI_CFG_CMD_PERR_RESP |
PCI_CFG_CMD_MEM_EN);
pci_cfg_write16(phb, bdfn, PCI_CFG_CMD, val16);
/* Enable reporting various errors */
if (!ecap) return;
pci_cfg_read16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, &val16);
val16 |= (PCICAP_EXP_DEVCTL_CE_REPORT |
PCICAP_EXP_DEVCTL_NFE_REPORT |
PCICAP_EXP_DEVCTL_FE_REPORT |
PCICAP_EXP_DEVCTL_UR_REPORT);
pci_cfg_write16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, val16);
if (!aercap) return;
/* Mask various unrecoverable errors */
pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_UE_MASK, &val32);
val32 |= (PCIECAP_AER_UE_MASK_POISON_TLP |
PCIECAP_AER_UE_MASK_COMPL_TIMEOUT |
PCIECAP_AER_UE_MASK_COMPL_ABORT |
PCIECAP_AER_UE_MASK_ECRC);
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_UE_MASK, val32);
/* Report various unrecoverable errors as fatal errors */
pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_UE_SEVERITY, &val32);
val32 |= (PCIECAP_AER_UE_SEVERITY_DLLP |
PCIECAP_AER_UE_SEVERITY_SURPRISE_DOWN |
PCIECAP_AER_UE_SEVERITY_FLOW_CTL_PROT |
PCIECAP_AER_UE_SEVERITY_UNEXP_COMPL |
PCIECAP_AER_UE_SEVERITY_RECV_OVFLOW |
PCIECAP_AER_UE_SEVERITY_MALFORMED_TLP);
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_UE_SEVERITY, val32);
/* Mask various recoverable errors */
pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_CE_MASK, &val32);
val32 |= PCIECAP_AER_CE_MASK_ADV_NONFATAL;
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CE_MASK, val32);
/* Enable ECRC check */
pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, &val32);
val32 |= (PCIECAP_AER_CAPCTL_ECRCG_EN |
PCIECAP_AER_CAPCTL_ECRCC_EN);
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, val32);
/* Enable all error reporting */
pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_RERR_CMD, &val32);
val32 |= (PCIECAP_AER_RERR_CMD_FE |
PCIECAP_AER_RERR_CMD_NFE |
PCIECAP_AER_RERR_CMD_CE);
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_RERR_CMD, val32);
}
static void phb4_switch_port_init(struct phb *phb,
struct pci_device *dev,
int ecap, int aercap)
{
uint16_t bdfn = dev->bdfn;
uint16_t val16;
uint32_t val32;
// FIXME: update AER settings for phb4
/* Enable SERR and parity checking and disable INTx */
pci_cfg_read16(phb, bdfn, PCI_CFG_CMD, &val16);
val16 |= (PCI_CFG_CMD_PERR_RESP |
PCI_CFG_CMD_SERR_EN |
PCI_CFG_CMD_INTx_DIS);
pci_cfg_write16(phb, bdfn, PCI_CFG_CMD, val16);
/* Disable partity error and enable system error */
pci_cfg_read16(phb, bdfn, PCI_CFG_BRCTL, &val16);
val16 &= ~PCI_CFG_BRCTL_PERR_RESP_EN;
val16 |= PCI_CFG_BRCTL_SERR_EN;
pci_cfg_write16(phb, bdfn, PCI_CFG_BRCTL, val16);
/* Enable reporting various errors */
if (!ecap) return;
pci_cfg_read16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, &val16);
val16 |= (PCICAP_EXP_DEVCTL_CE_REPORT |
PCICAP_EXP_DEVCTL_NFE_REPORT |
PCICAP_EXP_DEVCTL_FE_REPORT);
/* HW279570 - Disable reporting of correctable errors */
val16 &= ~PCICAP_EXP_DEVCTL_CE_REPORT;
pci_cfg_write16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, val16);
/* Unmask all unrecoverable errors */
if (!aercap) return;
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_UE_MASK, 0x0);
/* Severity of unrecoverable errors */
if (dev->dev_type == PCIE_TYPE_SWITCH_UPPORT)
val32 = (PCIECAP_AER_UE_SEVERITY_DLLP |
PCIECAP_AER_UE_SEVERITY_SURPRISE_DOWN |
PCIECAP_AER_UE_SEVERITY_FLOW_CTL_PROT |
PCIECAP_AER_UE_SEVERITY_RECV_OVFLOW |
PCIECAP_AER_UE_SEVERITY_MALFORMED_TLP |
PCIECAP_AER_UE_SEVERITY_INTERNAL);
else
val32 = (PCIECAP_AER_UE_SEVERITY_FLOW_CTL_PROT |
PCIECAP_AER_UE_SEVERITY_INTERNAL);
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_UE_SEVERITY, val32);
/*
* Mask various correctable errors
*/
val32 = PCIECAP_AER_CE_MASK_ADV_NONFATAL;
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CE_MASK, val32);
/* Enable ECRC generation and disable ECRC check */
pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, &val32);
val32 |= PCIECAP_AER_CAPCTL_ECRCG_EN;
val32 &= ~PCIECAP_AER_CAPCTL_ECRCC_EN;
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, val32);
}
static void phb4_endpoint_init(struct phb *phb,
struct pci_device *dev,
int ecap, int aercap)
{
uint16_t bdfn = dev->bdfn;
uint16_t val16;
uint32_t val32;
/* Enable SERR and parity checking */
pci_cfg_read16(phb, bdfn, PCI_CFG_CMD, &val16);
val16 |= (PCI_CFG_CMD_PERR_RESP |
PCI_CFG_CMD_SERR_EN);
pci_cfg_write16(phb, bdfn, PCI_CFG_CMD, val16);
/* Enable reporting various errors */
if (!ecap) return;
pci_cfg_read16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, &val16);
val16 &= ~PCICAP_EXP_DEVCTL_CE_REPORT;
val16 |= (PCICAP_EXP_DEVCTL_NFE_REPORT |
PCICAP_EXP_DEVCTL_FE_REPORT |
PCICAP_EXP_DEVCTL_UR_REPORT);
pci_cfg_write16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, val16);
/* Enable ECRC generation and check */
if (!aercap)
return;
pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, &val32);
val32 |= (PCIECAP_AER_CAPCTL_ECRCG_EN |
PCIECAP_AER_CAPCTL_ECRCC_EN);
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, val32);
}
static int64_t phb4_pcicfg_no_dstate(void *dev __unused,
struct pci_cfg_reg_filter *pcrf,
uint32_t offset, uint32_t len __unused,
uint32_t *data __unused, bool write)
{
uint32_t loff = offset - pcrf->start;
/* Disable D-state change on children of the PHB. For now we
* simply block all writes to the PM control/status
*/
if (write && loff >= 4 && loff < 6)
return OPAL_SUCCESS;
return OPAL_PARTIAL;
}
void phb4_pec2_dma_engine_realloc(struct phb4 *p)
{
uint64_t reg;
/*
* Allocate 16 extra dma read engines to stack 0, to boost dma
* performance for devices on stack 0 of PEC2, i.e PHB3.
* It comes at a price of reduced read engine allocation for
* devices on stack 1 and 2. The engine allocation becomes
* 48/8/8 instead of the default 32/16/16.
*
* The reallocation magic value should be 0xffff0000ff008000,
* but per the PCI designers, dma engine 32 (bit 0) has a
* quirk, and 0x7fff80007F008000 has the same effect (engine
* 32 goes to PHB4).
*/
if (p->index != 3) /* shared slot on PEC2 */
return;
PHBINF(p, "Allocating an extra 16 dma read engines on PEC2 stack0\n");
reg = 0x7fff80007F008000ULL;
xscom_write(p->chip_id,
p->pci_xscom + XPEC_PCI_PRDSTKOVR, reg);
xscom_write(p->chip_id,
p->pe_xscom + XPEC_NEST_READ_STACK_OVERRIDE, reg);
}
static void phb4_check_device_quirks(struct pci_device *dev)
{
/* Some special adapter tweaks for devices directly under the PHB */
if (dev->primary_bus != 1)
return;
/* PM quirk */
if (!pci_has_cap(dev, PCI_CFG_CAP_ID_PM, false))
return;
pci_add_cfg_reg_filter(dev,
pci_cap(dev, PCI_CFG_CAP_ID_PM, false), 8,
PCI_REG_FLAG_WRITE,
phb4_pcicfg_no_dstate);
}
static int phb4_device_init(struct phb *phb, struct pci_device *dev,
void *data __unused)
{
int ecap, aercap;
/* Setup special device quirks */
phb4_check_device_quirks(dev);
/* Common initialization for the device */
pci_device_init(phb, dev);
ecap = pci_cap(dev, PCI_CFG_CAP_ID_EXP, false);
aercap = pci_cap(dev, PCIECAP_ID_AER, true);
if (dev->dev_type == PCIE_TYPE_ROOT_PORT)
phb4_root_port_init(phb, dev, ecap, aercap);
else if (dev->dev_type == PCIE_TYPE_SWITCH_UPPORT ||
dev->dev_type == PCIE_TYPE_SWITCH_DNPORT)
phb4_switch_port_init(phb, dev, ecap, aercap);
else
phb4_endpoint_init(phb, dev, ecap, aercap);
return 0;
}
static int64_t phb4_pci_reinit(struct phb *phb, uint64_t scope, uint64_t data)
{
struct pci_device *pd;
uint16_t bdfn = data;
int ret;
if (scope != OPAL_REINIT_PCI_DEV)
return OPAL_PARAMETER;
pd = pci_find_dev(phb, bdfn);
if (!pd)
return OPAL_PARAMETER;
ret = phb4_device_init(phb, pd, NULL);
if (ret)
return OPAL_HARDWARE;
return OPAL_SUCCESS;
}
/* Default value for MBT0, see comments in init_ioda_cache() */
static uint64_t phb4_default_mbt0(struct phb4 *p, unsigned int bar_idx)
{
uint64_t mbt0;
switch (p->mbt_size - bar_idx - 1) {
case 0:
mbt0 = SETFIELD(IODA3_MBT0_MODE, 0ull, IODA3_MBT0_MODE_MDT);
mbt0 = SETFIELD(IODA3_MBT0_MDT_COLUMN, mbt0, 3);
break;
case 1:
mbt0 = SETFIELD(IODA3_MBT0_MODE, 0ull, IODA3_MBT0_MODE_MDT);
mbt0 = SETFIELD(IODA3_MBT0_MDT_COLUMN, mbt0, 2);
break;
case 2:
mbt0 = SETFIELD(IODA3_MBT0_MODE, 0ull, IODA3_MBT0_MODE_MDT);
mbt0 = SETFIELD(IODA3_MBT0_MDT_COLUMN, mbt0, 1);
break;
default:
mbt0 = SETFIELD(IODA3_MBT0_MODE, 0ull, IODA3_MBT0_MODE_PE_SEG);
}
return mbt0;
}
/*
* Clear the saved (cached) IODA state.
*
* The caches here are used to save the configuration of the IODA tables
* done by the OS. When the PHB is reset it loses all of its internal state
* so we need to keep a copy to restore from. This function re-initialises
* the saved state to sane defaults.
*/
static void phb4_init_ioda_cache(struct phb4 *p)
{
uint32_t i;
/*
* The RTT entries (RTE) are supposed to be initialised to
* 0xFF which indicates an invalid PE# for that RTT index
* (the bdfn). However, we set them to 0x00 since Linux
* needs to find the devices first by scanning config space
* and this occurs before PEs have been assigned.
*/
for (i = 0; i < RTT_TABLE_ENTRIES; i++)
p->tbl_rtt[i] = cpu_to_be16(PHB4_RESERVED_PE_NUM(p));
memset(p->tbl_peltv, 0x0, p->tbl_peltv_size);
memset(p->tve_cache, 0x0, sizeof(p->tve_cache));
/* XXX Should we mask them ? */
memset(p->mist_cache, 0x0, sizeof(p->mist_cache));
/* Configure MBT entries 1...N */
/* Column 0 is left 0 and will be used fo M32 and configured
* by the OS. We use MDT column 1..3 for the last 3 BARs, thus
* allowing Linux to remap those, and setup all the other ones
* for now in mode 00 (segment# == PE#). By default those
* columns are set to map the same way.
*/
for (i = 0; i < p->max_num_pes; i++) {
p->mdt_cache[i] = SETFIELD(IODA3_MDT_PE_B, 0ull, i);
p->mdt_cache[i] |= SETFIELD(IODA3_MDT_PE_C, 0ull, i);
p->mdt_cache[i] |= SETFIELD(IODA3_MDT_PE_D, 0ull, i);
}
/* Initialize MBT entries for BARs 1...N */
for (i = 1; i < p->mbt_size; i++) {
p->mbt_cache[i][0] = phb4_default_mbt0(p, i);
p->mbt_cache[i][1] = 0;
}
/* Initialize M32 bar using MBT entry 0, MDT colunm A */
p->mbt_cache[0][0] = SETFIELD(IODA3_MBT0_MODE, 0ull, IODA3_MBT0_MODE_MDT);
p->mbt_cache[0][0] |= SETFIELD(IODA3_MBT0_MDT_COLUMN, 0ull, 0);
p->mbt_cache[0][0] |= IODA3_MBT0_TYPE_M32 | (p->mm1_base & IODA3_MBT0_BASE_ADDR);
p->mbt_cache[0][1] = IODA3_MBT1_ENABLE | ((~(M32_PCI_SIZE - 1)) & IODA3_MBT1_MASK);
}
static int64_t phb4_wait_bit(struct phb4 *p, uint32_t reg,
uint64_t mask, uint64_t want_val)
{
uint64_t val;
/* Wait for all pending TCE kills to complete
*
* XXX Add timeout...
*/
/* XXX SIMICS is nasty... */
if ((reg == PHB_TCE_KILL || reg == PHB_DMA_READ_WRITE_SYNC) &&
chip_quirk(QUIRK_SIMICS))
return OPAL_SUCCESS;
for (;;) {
val = in_be64(p->regs + reg);
if (val == 0xffffffffffffffffull) {
/* XXX Fenced ? */
return OPAL_HARDWARE;
}
if ((val & mask) == want_val)
break;
}
return OPAL_SUCCESS;
}
static int64_t phb4_tce_kill(struct phb *phb, uint32_t kill_type,
uint64_t pe_number, uint32_t tce_size,
uint64_t dma_addr, uint32_t npages)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t val;
int64_t rc;
/*
* HW560152: a page-level kill can be dropped if the
* processing queue is backed-up, which can cause data
* integrity issues
*/
if (kill_type == OPAL_PCI_TCE_KILL_PAGES)
kill_type = OPAL_PCI_TCE_KILL_PE;
sync();
switch(kill_type) {
case OPAL_PCI_TCE_KILL_PAGES:
while (npages--) {
/* Wait for a slot in the HW kill queue */
rc = phb4_wait_bit(p, PHB_TCE_KILL,
PHB_TCE_KILL_ALL |
PHB_TCE_KILL_PE |
PHB_TCE_KILL_ONE, 0);
if (rc)
return rc;
val = SETFIELD(PHB_TCE_KILL_PENUM, dma_addr, pe_number);
/* Set appropriate page size */
switch(tce_size) {
case 0x1000:
if (dma_addr & 0xf000000000000fffull)
return OPAL_PARAMETER;
break;
case 0x10000:
if (dma_addr & 0xf00000000000ffffull)
return OPAL_PARAMETER;
val |= PHB_TCE_KILL_PSEL | PHB_TCE_KILL_64K;
break;
case 0x200000:
if (dma_addr & 0xf0000000001fffffull)
return OPAL_PARAMETER;
val |= PHB_TCE_KILL_PSEL | PHB_TCE_KILL_2M;
break;
case 0x40000000:
if (dma_addr & 0xf00000003fffffffull)
return OPAL_PARAMETER;
val |= PHB_TCE_KILL_PSEL | PHB_TCE_KILL_1G;
break;
default:
return OPAL_PARAMETER;
}
/* Perform kill */
out_be64(p->regs + PHB_TCE_KILL, PHB_TCE_KILL_ONE | val);
/* Next page */
dma_addr += tce_size;
}
break;
case OPAL_PCI_TCE_KILL_PE:
/* Wait for a slot in the HW kill queue */
rc = phb4_wait_bit(p, PHB_TCE_KILL,
PHB_TCE_KILL_ALL |
PHB_TCE_KILL_PE |
PHB_TCE_KILL_ONE, 0);
if (rc)
return rc;
/* Perform kill */
out_be64(p->regs + PHB_TCE_KILL, PHB_TCE_KILL_PE |
SETFIELD(PHB_TCE_KILL_PENUM, 0ull, pe_number));
break;
case OPAL_PCI_TCE_KILL_ALL:
/* Wait for a slot in the HW kill queue */
rc = phb4_wait_bit(p, PHB_TCE_KILL,
PHB_TCE_KILL_ALL |
PHB_TCE_KILL_PE |
PHB_TCE_KILL_ONE, 0);
if (rc)
return rc;
/* Perform kill */
out_be64(p->regs + PHB_TCE_KILL, PHB_TCE_KILL_ALL);
break;
default:
return OPAL_PARAMETER;
}
/* Start DMA sync process */
if (is_phb5()){
val = in_be64(p->regs + PHB_DMA_READ_WRITE_SYNC) &
(PHB_DMA_READ_SYNC_COMPLETE |
PHB_DMA_WRITE_SYNC_COMPLETE);
out_be64(p->regs + PHB_DMA_READ_WRITE_SYNC,
val | PHB_DMA_READ_SYNC_START);
} else {
out_be64(p->regs + PHB_DMA_READ_WRITE_SYNC,
PHB_DMA_READ_SYNC_START);
}
/* Wait for kill to complete */
rc = phb4_wait_bit(p, PHB_Q_DMA_R, PHB_Q_DMA_R_TCE_KILL_STATUS, 0);
if (rc)
return rc;
/* Wait for DMA sync to complete */
return phb4_wait_bit(p, PHB_DMA_READ_WRITE_SYNC,
PHB_DMA_READ_SYNC_COMPLETE,
PHB_DMA_READ_SYNC_COMPLETE);
}
/* phb4_ioda_reset - Reset the IODA tables
*
* @purge: If true, the cache is cleared and the cleared values
* are applied to HW. If false, the cached values are
* applied to HW
*
* This reset the IODA tables in the PHB. It is called at
* initialization time, on PHB reset, and can be called
* explicitly from OPAL
*/
static int64_t phb4_ioda_reset(struct phb *phb, bool purge)
{
struct phb4 *p = phb_to_phb4(phb);
uint32_t i;
uint64_t val;
if (purge) {
PHBDBG(p, "Purging all IODA tables...\n");
if (phb->slot)
phb->slot->link_retries = PHB4_LINK_LINK_RETRIES;
phb4_init_ioda_cache(p);
}
/* Init_30..31 - Errata workaround, clear PESTA entry 0 */
phb4_ioda_sel(p, IODA3_TBL_PESTA, 0, false);
out_be64(p->regs + PHB_IODA_DATA0, 0);
/* Init_32..33 - MIST */
phb4_ioda_sel(p, IODA3_TBL_MIST, 0, true);
val = in_be64(p->regs + PHB_IODA_ADDR);
val = SETFIELD(PHB_IODA_AD_MIST_PWV, val, 0xf);
out_be64(p->regs + PHB_IODA_ADDR, val);
for (i = 0; i < (p->num_irqs/4); i++)
out_be64(p->regs + PHB_IODA_DATA0, p->mist_cache[i]);
/* Init_34..35 - MRT */
phb4_ioda_sel(p, IODA3_TBL_MRT, 0, true);
for (i = 0; i < p->mrt_size; i++)
out_be64(p->regs + PHB_IODA_DATA0, 0);
/* Init_36..37 - TVT */
phb4_ioda_sel(p, IODA3_TBL_TVT, 0, true);
for (i = 0; i < p->tvt_size; i++)
out_be64(p->regs + PHB_IODA_DATA0, p->tve_cache[i]);
/* Init_38..39 - MBT */
phb4_ioda_sel(p, IODA3_TBL_MBT, 0, true);
for (i = 0; i < p->mbt_size; i++) {
out_be64(p->regs + PHB_IODA_DATA0, p->mbt_cache[i][0]);
out_be64(p->regs + PHB_IODA_DATA0, p->mbt_cache[i][1]);
}
/* Init_40..41 - MDT */
phb4_ioda_sel(p, IODA3_TBL_MDT, 0, true);
for (i = 0; i < p->max_num_pes; i++)
out_be64(p->regs + PHB_IODA_DATA0, p->mdt_cache[i]);
/* Additional OPAL specific inits */
/* Clear PEST & PEEV */
for (i = 0; i < p->max_num_pes; i++) {
phb4_ioda_sel(p, IODA3_TBL_PESTA, i, false);
out_be64(p->regs + PHB_IODA_DATA0, 0);
phb4_ioda_sel(p, IODA3_TBL_PESTB, i, false);
out_be64(p->regs + PHB_IODA_DATA0, 0);
}
phb4_ioda_sel(p, IODA3_TBL_PEEV, 0, true);
for (i = 0; i < p->max_num_pes/64; i++)
out_be64(p->regs + PHB_IODA_DATA0, 0);
/* Invalidate RTE, TCE cache */
out_be64(p->regs + PHB_RTC_INVALIDATE, PHB_RTC_INVALIDATE_ALL);
return phb4_tce_kill(&p->phb, OPAL_PCI_TCE_KILL_ALL, 0, 0, 0, 0);
}
/*
* Clear anything we have in PAPR Error Injection registers. Though
* the spec says the PAPR error injection should be one-shot without
* the "sticky" bit. However, that's false according to the experiments
* I had. So we have to clear it at appropriate point in kernel to
* avoid endless frozen PE.
*/
static int64_t phb4_papr_errinjct_reset(struct phb *phb)
{
struct phb4 *p = phb_to_phb4(phb);
out_be64(p->regs + PHB_PAPR_ERR_INJ_CTL, 0x0ul);
out_be64(p->regs + PHB_PAPR_ERR_INJ_ADDR, 0x0ul);
out_be64(p->regs + PHB_PAPR_ERR_INJ_MASK, 0x0ul);
return OPAL_SUCCESS;
}
static int64_t phb4_set_phb_mem_window(struct phb *phb,
uint16_t window_type,
uint16_t window_num,
uint64_t addr,
uint64_t pci_addr __unused,
uint64_t size)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t mbt0, mbt1;
/*
* We have a unified MBT for all BARs on PHB4.
*
* So we use it as follow:
*
* - M32 is hard wired to be MBT[0] and uses MDT column 0
* for remapping.
*
* - MBT[1..n] are available to the OS, currently only as
* fully segmented or single PE (we don't yet expose the
* new segmentation modes).
*
* - We configure the 3 last BARs to columnt 1..3 initially
* set to segment# == PE#. We will need to provide some
* extensions to the existing APIs to enable remapping of
* segments on those BARs (and only those) as the current
* API forces single segment mode.
*/
switch (window_type) {
case OPAL_IO_WINDOW_TYPE:
case OPAL_M32_WINDOW_TYPE:
return OPAL_UNSUPPORTED;
case OPAL_M64_WINDOW_TYPE:
if (window_num == 0 || window_num >= p->mbt_size) {
PHBERR(p, "%s: Invalid window %d\n",
__func__, window_num);
return OPAL_PARAMETER;
}
mbt0 = p->mbt_cache[window_num][0];
mbt1 = p->mbt_cache[window_num][1];
/* XXX For now we assume the 4K minimum alignment,
* todo: check with the HW folks what the exact limits
* are based on the segmentation model.
*/
if ((addr & 0xFFFul) || (size & 0xFFFul)) {
PHBERR(p, "%s: Bad addr/size alignment %llx/%llx\n",
__func__, addr, size);
return OPAL_PARAMETER;
}
/* size should be 2^N */
if (!size || size & (size-1)) {
PHBERR(p, "%s: size not a power of 2: %llx\n",
__func__, size);
return OPAL_PARAMETER;
}
/* address should be size aligned */
if (addr & (size - 1)) {
PHBERR(p, "%s: addr not size aligned %llx/%llx\n",
__func__, addr, size);
return OPAL_PARAMETER;
}
break;
default:
return OPAL_PARAMETER;
}
/* The BAR shouldn't be enabled yet */
if (mbt0 & IODA3_MBT0_ENABLE)
return OPAL_PARTIAL;
/* Apply the settings */
mbt0 = SETFIELD(IODA3_MBT0_BASE_ADDR, mbt0, addr >> 12);
mbt1 = SETFIELD(IODA3_MBT1_MASK, mbt1, ~((size >> 12) -1));
p->mbt_cache[window_num][0] = mbt0;
p->mbt_cache[window_num][1] = mbt1;
return OPAL_SUCCESS;
}
/*
* For one specific M64 BAR, it can be shared by all PEs,
* or owned by single PE exclusively.
*/
static int64_t phb4_phb_mmio_enable(struct phb __unused *phb,
uint16_t window_type,
uint16_t window_num,
uint16_t enable)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t mbt0, mbt1, base, mask;
/*
* By design, PHB4 doesn't support IODT any more.
* Besides, we can't enable M32 BAR as well. So
* the function is used to do M64 mapping and each
* BAR is supposed to be shared by all PEs.
*
* TODO: Add support for some of the new PHB4 split modes
*/
switch (window_type) {
case OPAL_IO_WINDOW_TYPE:
case OPAL_M32_WINDOW_TYPE:
return OPAL_UNSUPPORTED;
case OPAL_M64_WINDOW_TYPE:
/* Window 0 is reserved for M32 */
if (window_num == 0 || window_num >= p->mbt_size ||
enable > OPAL_ENABLE_M64_NON_SPLIT) {
PHBDBG(p,
"phb4_phb_mmio_enable wrong args (window %d enable %d)\n",
window_num, enable);
return OPAL_PARAMETER;
}
break;
default:
return OPAL_PARAMETER;
}
/*
* We need check the base/mask while enabling
* the M64 BAR. Otherwise, invalid base/mask
* might cause fenced AIB unintentionally
*/
mbt0 = p->mbt_cache[window_num][0];
mbt1 = p->mbt_cache[window_num][1];
if (enable == OPAL_DISABLE_M64) {
/* Reset the window to disabled & default mode */
mbt0 = phb4_default_mbt0(p, window_num);
mbt1 = 0;
} else {
/* Verify that the mode is valid and consistent */
if (enable == OPAL_ENABLE_M64_SPLIT) {
uint64_t mode = GETFIELD(IODA3_MBT0_MODE, mbt0);
if (mode != IODA3_MBT0_MODE_PE_SEG &&
mode != IODA3_MBT0_MODE_MDT)
return OPAL_PARAMETER;
} else if (enable == OPAL_ENABLE_M64_NON_SPLIT) {
if (GETFIELD(IODA3_MBT0_MODE, mbt0) !=
IODA3_MBT0_MODE_SINGLE_PE)
return OPAL_PARAMETER;
} else
return OPAL_PARAMETER;
base = GETFIELD(IODA3_MBT0_BASE_ADDR, mbt0);
base = (base << 12);
mask = GETFIELD(IODA3_MBT1_MASK, mbt1);
if (base < p->mm0_base || !mask)
return OPAL_PARTIAL;
mbt0 |= IODA3_MBT0_ENABLE;
mbt1 |= IODA3_MBT1_ENABLE;
}
/* Update HW and cache */
p->mbt_cache[window_num][0] = mbt0;
p->mbt_cache[window_num][1] = mbt1;
phb4_ioda_sel(p, IODA3_TBL_MBT, window_num << 1, true);
out_be64(p->regs + PHB_IODA_DATA0, mbt0);
out_be64(p->regs + PHB_IODA_DATA0, mbt1);
return OPAL_SUCCESS;
}
static int64_t phb4_map_pe_mmio_window(struct phb *phb,
uint64_t pe_number,
uint16_t window_type,
uint16_t window_num,
uint16_t segment_num)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t mbt0, mbt1, mdt0;
if (pe_number >= p->num_pes)
return OPAL_PARAMETER;
/*
* We support a combined MDT that has 4 columns. We let the OS
* use kernel 0 for M32.
*
* We configure the 3 last BARs to map column 3..1 which by default
* are set to map segment# == pe#, but can be remapped here if we
* extend this function.
*
* The problem is that the current API was "hijacked" so that an
* attempt at remapping any segment of an M64 has the effect of
* turning it into a single-PE mode BAR. So if we want to support
* remapping we'll have to play around this for example by creating
* a new API or a new window type...
*/
switch(window_type) {
case OPAL_IO_WINDOW_TYPE:
return OPAL_UNSUPPORTED;
case OPAL_M32_WINDOW_TYPE:
if (window_num != 0 || segment_num >= p->num_pes)
return OPAL_PARAMETER;
mdt0 = p->mdt_cache[segment_num];
mdt0 = SETFIELD(IODA3_MDT_PE_A, mdt0, pe_number);
phb4_ioda_sel(p, IODA3_TBL_MDT, segment_num, false);
out_be64(p->regs + PHB_IODA_DATA0, mdt0);
break;
case OPAL_M64_WINDOW_TYPE:
if (window_num == 0 || window_num >= p->mbt_size)
return OPAL_PARAMETER;
mbt0 = p->mbt_cache[window_num][0];
mbt1 = p->mbt_cache[window_num][1];
/* The BAR shouldn't be enabled yet */
if (mbt0 & IODA3_MBT0_ENABLE)
return OPAL_PARTIAL;
/* Set to single PE mode and configure the PE */
mbt0 = SETFIELD(IODA3_MBT0_MODE, mbt0,
IODA3_MBT0_MODE_SINGLE_PE);
mbt1 = SETFIELD(IODA3_MBT1_SINGLE_PE_NUM, mbt1, pe_number);
p->mbt_cache[window_num][0] = mbt0;
p->mbt_cache[window_num][1] = mbt1;
break;
default:
return OPAL_PARAMETER;
}
return OPAL_SUCCESS;
}
static int64_t phb4_map_pe_dma_window(struct phb *phb,
uint64_t pe_number,
uint16_t window_id,
uint16_t tce_levels,
uint64_t tce_table_addr,
uint64_t tce_table_size,
uint64_t tce_page_size)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t tts_encoded;
uint64_t data64 = 0;
/*
* We configure the PHB in 2 TVE per PE mode to match phb3.
* Current Linux implementation *requires* the two windows per
* PE.
*
* Note: On DD2.0 this is the normal mode of operation.
*/
/*
* Sanity check. We currently only support "2 window per PE" mode
* ie, only bit 59 of the PCI address is used to select the window
*/
if (pe_number >= p->num_pes || (window_id >> 1) != pe_number)
return OPAL_PARAMETER;
/*
* tce_table_size == 0 is used to disable an entry, in this case
* we ignore other arguments
*/
if (tce_table_size == 0) {
phb4_ioda_sel(p, IODA3_TBL_TVT, window_id, false);
out_be64(p->regs + PHB_IODA_DATA0, 0);
p->tve_cache[window_id] = 0;
return OPAL_SUCCESS;
}
/* Additional arguments validation */
if (tce_levels < 1 || tce_levels > 5 ||
!is_pow2(tce_table_size) ||
tce_table_size < 0x1000)
return OPAL_PARAMETER;
/* Encode TCE table size */
data64 = SETFIELD(IODA3_TVT_TABLE_ADDR, 0ul, tce_table_addr >> 12);
tts_encoded = ilog2(tce_table_size) - 11;
if (tts_encoded > 31)
return OPAL_PARAMETER;
data64 = SETFIELD(IODA3_TVT_TCE_TABLE_SIZE, data64, tts_encoded);
/* Encode TCE page size */
switch (tce_page_size) {
case 0x1000: /* 4K */
data64 = SETFIELD(IODA3_TVT_IO_PSIZE, data64, 1);
break;
case 0x10000: /* 64K */
data64 = SETFIELD(IODA3_TVT_IO_PSIZE, data64, 5);
break;
case 0x200000: /* 2M */
data64 = SETFIELD(IODA3_TVT_IO_PSIZE, data64, 10);
break;
case 0x40000000: /* 1G */
data64 = SETFIELD(IODA3_TVT_IO_PSIZE, data64, 19);
break;
default:
return OPAL_PARAMETER;
}
/* Encode number of levels */
data64 = SETFIELD(IODA3_TVT_NUM_LEVELS, data64, tce_levels - 1);
phb4_ioda_sel(p, IODA3_TBL_TVT, window_id, false);
out_be64(p->regs + PHB_IODA_DATA0, data64);
p->tve_cache[window_id] = data64;
return OPAL_SUCCESS;
}
static int64_t phb4_map_pe_dma_window_real(struct phb *phb,
uint64_t pe_number,
uint16_t window_id,
uint64_t pci_start_addr,
uint64_t pci_mem_size)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t end = pci_start_addr + pci_mem_size;
uint64_t tve;
if (pe_number >= p->num_pes ||
(window_id >> 1) != pe_number)
return OPAL_PARAMETER;
if (pci_mem_size) {
/* Enable */
/*
* Check that the start address has the right TVE index,
* we only support the 1 bit mode where each PE has 2
* TVEs
*/
if ((pci_start_addr >> 59) != (window_id & 1))
return OPAL_PARAMETER;
pci_start_addr &= ((1ull << 59) - 1);
end = pci_start_addr + pci_mem_size;
/* We have to be 16M aligned */
if ((pci_start_addr & 0x00ffffff) ||
(pci_mem_size & 0x00ffffff))
return OPAL_PARAMETER;
/*
* It *looks* like this is the max we can support (we need
* to verify this. Also we are not checking for rollover,
* but then we aren't trying too hard to protect ourselves
* againt a completely broken OS.
*/
if (end > 0x0003ffffffffffffull)
return OPAL_PARAMETER;
/*
* Put start address bits 49:24 into TVE[52:53]||[0:23]
* and end address bits 49:24 into TVE[54:55]||[24:47]
* and set TVE[51]
*/
tve = (pci_start_addr << 16) & (0xffffffull << 40);
tve |= (pci_start_addr >> 38) & (3ull << 10);
tve |= (end >> 8) & (0xfffffful << 16);
tve |= (end >> 40) & (3ull << 8);
tve |= PPC_BIT(51) | IODA3_TVT_NON_TRANSLATE_50;
} else {
/* Disable */
tve = 0;
}
phb4_ioda_sel(p, IODA3_TBL_TVT, window_id, false);
out_be64(p->regs + PHB_IODA_DATA0, tve);
p->tve_cache[window_id] = tve;
return OPAL_SUCCESS;
}
static int64_t phb4_set_option(struct phb *phb, enum OpalPhbOption opt,
uint64_t setting)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t data64;
data64 = phb4_read_reg(p, PHB_CTRLR);
switch (opt) {
case OPAL_PHB_OPTION_TVE1_4GB:
if (setting > 1)
return OPAL_PARAMETER;
PHBDBG(p, "4GB bypass mode = %lld\n", setting);
if (setting)
data64 |= PPC_BIT(24);
else
data64 &= ~PPC_BIT(24);
break;
case OPAL_PHB_OPTION_MMIO_EEH_DISABLE:
if (setting > 1)
return OPAL_PARAMETER;
PHBDBG(p, "MMIO EEH Disable = %lld\n", setting);
if (setting)
data64 |= PPC_BIT(14);
else
data64 &= ~PPC_BIT(14);
break;
default:
return OPAL_UNSUPPORTED;
}
phb4_write_reg(p, PHB_CTRLR, data64);
return OPAL_SUCCESS;
}
static int64_t phb4_get_option(struct phb *phb, enum OpalPhbOption opt,
__be64 *setting)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t data64;
data64 = phb4_read_reg(p, PHB_CTRLR);
switch (opt) {
case OPAL_PHB_OPTION_TVE1_4GB:
*setting = cpu_to_be64((data64 & PPC_BIT(24)) ? 1 : 0);
break;
case OPAL_PHB_OPTION_MMIO_EEH_DISABLE:
*setting = cpu_to_be64((data64 & PPC_BIT(14)) ? 1 : 0);
break;
default:
return OPAL_UNSUPPORTED;
}
return OPAL_SUCCESS;
}
static int64_t phb4_set_ive_pe(struct phb *phb,
uint64_t pe_number,
uint32_t ive_num)
{
struct phb4 *p = phb_to_phb4(phb);
uint32_t mist_idx;
uint32_t mist_quad;
uint32_t mist_shift;
uint64_t val;
if (pe_number >= p->num_pes || ive_num >= (p->num_irqs - 8))
return OPAL_PARAMETER;
mist_idx = ive_num >> 2;
mist_quad = ive_num & 3;
mist_shift = (3 - mist_quad) << 4;
p->mist_cache[mist_idx] &= ~(0x0fffull << mist_shift);
p->mist_cache[mist_idx] |= ((uint64_t)pe_number) << mist_shift;
/* Note: This has the side effect of clearing P/Q, so this
* shouldn't be called while the interrupt is "hot"
*/
phb4_ioda_sel(p, IODA3_TBL_MIST, mist_idx, false);
/* We need to inject the appropriate MIST write enable bit
* in the IODA table address register
*/
val = in_be64(p->regs + PHB_IODA_ADDR);
val = SETFIELD(PHB_IODA_AD_MIST_PWV, val, 8 >> mist_quad);
out_be64(p->regs + PHB_IODA_ADDR, val);
/* Write entry */
out_be64(p->regs + PHB_IODA_DATA0, p->mist_cache[mist_idx]);
return OPAL_SUCCESS;
}
static int64_t phb4_get_msi_32(struct phb *phb,
uint64_t pe_number,
uint32_t ive_num,
uint8_t msi_range,
uint32_t *msi_address,
uint32_t *message_data)
{
struct phb4 *p = phb_to_phb4(phb);
/*
* Sanity check. We needn't check on mve_number (PE#)
* on PHB3 since the interrupt source is purely determined
* by its DMA address and data, but the check isn't
* harmful.
*/
if (pe_number >= p->num_pes ||
ive_num >= (p->num_irqs - 8) ||
msi_range != 1 || !msi_address|| !message_data)
return OPAL_PARAMETER;
/*
* DMA address and data will form the IVE index.
* For more details, please refer to IODA2 spec.
*/
*msi_address = 0xFFFF0000 | ((ive_num << 4) & 0xFFFFFE0F);
*message_data = ive_num & 0x1F;
return OPAL_SUCCESS;
}
static int64_t phb4_get_msi_64(struct phb *phb,
uint64_t pe_number,
uint32_t ive_num,
uint8_t msi_range,
uint64_t *msi_address,
uint32_t *message_data)
{
struct phb4 *p = phb_to_phb4(phb);
/* Sanity check */
if (pe_number >= p->num_pes ||
ive_num >= (p->num_irqs - 8) ||
msi_range != 1 || !msi_address || !message_data)
return OPAL_PARAMETER;
/*
* DMA address and data will form the IVE index.
* For more details, please refer to IODA2 spec.
*/
*msi_address = (0x1ul << 60) | ((ive_num << 4) & 0xFFFFFFFFFFFFFE0Ful);
*message_data = ive_num & 0x1F;
return OPAL_SUCCESS;
}
static void phb4_rc_err_clear(struct phb4 *p)
{
/* Init_47 - Clear errors */
phb4_pcicfg_write16(&p->phb, 0, PCI_CFG_SECONDARY_STATUS, 0xffff);
if (p->ecap <= 0)
return;
phb4_pcicfg_write16(&p->phb, 0, p->ecap + PCICAP_EXP_DEVSTAT,
PCICAP_EXP_DEVSTAT_CE |
PCICAP_EXP_DEVSTAT_NFE |
PCICAP_EXP_DEVSTAT_FE |
PCICAP_EXP_DEVSTAT_UE);
if (p->aercap <= 0)
return;
/* Clear all UE status */
phb4_pcicfg_write32(&p->phb, 0, p->aercap + PCIECAP_AER_UE_STATUS,
0xffffffff);
/* Clear all CE status */
phb4_pcicfg_write32(&p->phb, 0, p->aercap + PCIECAP_AER_CE_STATUS,
0xffffffff);
/* Clear root error status */
phb4_pcicfg_write32(&p->phb, 0, p->aercap + PCIECAP_AER_RERR_STA,
0xffffffff);
}
static void phb4_err_clear_regb(struct phb4 *p)
{
uint64_t val64;
val64 = phb4_read_reg(p, PHB_REGB_ERR_STATUS);
phb4_write_reg(p, PHB_REGB_ERR_STATUS, val64);
phb4_write_reg(p, PHB_REGB_ERR1_STATUS, 0x0ul);
phb4_write_reg(p, PHB_REGB_ERR_LOG_0, 0x0ul);
phb4_write_reg(p, PHB_REGB_ERR_LOG_1, 0x0ul);
}
/*
* The function can be called during error recovery for all classes of
* errors. This is new to PHB4; previous revisions had separate
* sequences for INF/ER/Fatal errors.
*
* "Rec #" in this function refer to "Recov_#" steps in the
* PHB4 INF recovery sequence.
*/
static void phb4_err_clear(struct phb4 *p)
{
uint64_t val64;
uint64_t fir = phb4_read_reg(p, PHB_LEM_FIR_ACCUM);
/* Rec 1: Acquire the PCI config lock (we don't need to do this) */
/* Rec 2...15: Clear error status in RC config space */
phb4_rc_err_clear(p);
/* Rec 16...23: Clear PBL errors */
val64 = phb4_read_reg(p, PHB_PBL_ERR_STATUS);
phb4_write_reg(p, PHB_PBL_ERR_STATUS, val64);
phb4_write_reg(p, PHB_PBL_ERR1_STATUS, 0x0ul);
phb4_write_reg(p, PHB_PBL_ERR_LOG_0, 0x0ul);
phb4_write_reg(p, PHB_PBL_ERR_LOG_1, 0x0ul);
/* Rec 24...31: Clear REGB errors */
phb4_err_clear_regb(p);
/* Rec 32...59: Clear PHB error trap */
val64 = phb4_read_reg(p, PHB_TXE_ERR_STATUS);
phb4_write_reg(p, PHB_TXE_ERR_STATUS, val64);
phb4_write_reg(p, PHB_TXE_ERR1_STATUS, 0x0ul);
phb4_write_reg(p, PHB_TXE_ERR_LOG_0, 0x0ul);
phb4_write_reg(p, PHB_TXE_ERR_LOG_1, 0x0ul);
val64 = phb4_read_reg(p, PHB_RXE_ARB_ERR_STATUS);
phb4_write_reg(p, PHB_RXE_ARB_ERR_STATUS, val64);
phb4_write_reg(p, PHB_RXE_ARB_ERR1_STATUS, 0x0ul);
phb4_write_reg(p, PHB_RXE_ARB_ERR_LOG_0, 0x0ul);
phb4_write_reg(p, PHB_RXE_ARB_ERR_LOG_1, 0x0ul);
val64 = phb4_read_reg(p, PHB_RXE_MRG_ERR_STATUS);
phb4_write_reg(p, PHB_RXE_MRG_ERR_STATUS, val64);
phb4_write_reg(p, PHB_RXE_MRG_ERR1_STATUS, 0x0ul);
phb4_write_reg(p, PHB_RXE_MRG_ERR_LOG_0, 0x0ul);
phb4_write_reg(p, PHB_RXE_MRG_ERR_LOG_1, 0x0ul);
val64 = phb4_read_reg(p, PHB_RXE_TCE_ERR_STATUS);
phb4_write_reg(p, PHB_RXE_TCE_ERR_STATUS, val64);
phb4_write_reg(p, PHB_RXE_TCE_ERR1_STATUS, 0x0ul);
phb4_write_reg(p, PHB_RXE_TCE_ERR_LOG_0, 0x0ul);
phb4_write_reg(p, PHB_RXE_TCE_ERR_LOG_1, 0x0ul);
val64 = phb4_read_reg(p, PHB_ERR_STATUS);
phb4_write_reg(p, PHB_ERR_STATUS, val64);
phb4_write_reg(p, PHB_ERR1_STATUS, 0x0ul);
phb4_write_reg(p, PHB_ERR_LOG_0, 0x0ul);
phb4_write_reg(p, PHB_ERR_LOG_1, 0x0ul);
/* Rec 61/62: Clear FIR/WOF */
phb4_write_reg(p, PHB_LEM_FIR_AND_MASK, ~fir);
phb4_write_reg(p, PHB_LEM_WOF, 0x0ul);
/* Rec 63: Update LEM mask to its initial value */
phb4_write_reg(p, PHB_LEM_ERROR_MASK, 0x0ul);
/* Rec 64: Clear the PCI config lock (we don't need to do this) */
}
static void phb4_read_phb_status(struct phb4 *p,
struct OpalIoPhb4ErrorData *stat)
{
uint32_t i;
uint16_t __16;
uint32_t __32;
uint64_t __64;
memset(stat, 0, sizeof(struct OpalIoPhb4ErrorData));
/* Error data common part */
stat->common.version = cpu_to_be32(OPAL_PHB_ERROR_DATA_VERSION_1);
stat->common.ioType = cpu_to_be32(OPAL_PHB_ERROR_DATA_TYPE_PHB4);
stat->common.len = cpu_to_be32(sizeof(struct OpalIoPhb4ErrorData));
/* Use ASB for config space if the PHB is fenced */
if (p->flags & PHB4_AIB_FENCED)
p->flags |= PHB4_CFG_USE_ASB;
/* Grab RC bridge control, make it 32-bit */
phb4_pcicfg_read16(&p->phb, 0, PCI_CFG_BRCTL, &__16);
stat->brdgCtl = cpu_to_be32(__16);
/*
* Grab various RC PCIe capability registers. All device, slot
* and link status are 16-bit, so we grab the pair control+status
* for each of them
*/
phb4_pcicfg_read32(&p->phb, 0, p->ecap + PCICAP_EXP_DEVCTL, &__32);
stat->deviceStatus = cpu_to_be32(__32);
phb4_pcicfg_read32(&p->phb, 0, p->ecap + PCICAP_EXP_SLOTCTL, &__32);
stat->slotStatus = cpu_to_be32(__32);
phb4_pcicfg_read32(&p->phb, 0, p->ecap + PCICAP_EXP_LCTL, &__32);
stat->linkStatus = cpu_to_be32(__32);
/*
* I assume those are the standard config space header, cmd & status
* together makes 32-bit. Secondary status is 16-bit so I'll clear
* the top on that one
*/
phb4_pcicfg_read32(&p->phb, 0, PCI_CFG_CMD, &__32);
stat->devCmdStatus = cpu_to_be32(__32);
phb4_pcicfg_read16(&p->phb, 0, PCI_CFG_SECONDARY_STATUS, &__16);
stat->devSecStatus = cpu_to_be32(__16);
/* Grab a bunch of AER regs */
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_RERR_STA, &__32);
stat->rootErrorStatus = cpu_to_be32(__32);
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_UE_STATUS, &__32);
stat->uncorrErrorStatus = cpu_to_be32(__32);
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_CE_STATUS, &__32);
stat->corrErrorStatus = cpu_to_be32(__32);
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_HDR_LOG0, &__32);
stat->tlpHdr1 = cpu_to_be32(__32);
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_HDR_LOG1, &__32);
stat->tlpHdr2 = cpu_to_be32(__32);
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_HDR_LOG2, &__32);
stat->tlpHdr3 = cpu_to_be32(__32);
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_HDR_LOG3, &__32);
stat->tlpHdr4 = cpu_to_be32(__32);
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_SRCID, &__32);
stat->sourceId = cpu_to_be32(__32);
/* PEC NFIR, same as P8/PHB3 */
xscom_read(p->chip_id, p->pe_stk_xscom + 0x0, &__64);
stat->nFir = cpu_to_be64(__64);
xscom_read(p->chip_id, p->pe_stk_xscom + 0x3, &__64);
stat->nFirMask = cpu_to_be64(__64);
xscom_read(p->chip_id, p->pe_stk_xscom + 0x8, &__64);
stat->nFirWOF = cpu_to_be64(__64);
/* PHB4 inbound and outbound error Regs */
stat->phbPlssr = cpu_to_be64(phb4_read_reg_asb(p, PHB_CPU_LOADSTORE_STATUS));
stat->phbCsr = cpu_to_be64(phb4_read_reg_asb(p, PHB_DMA_CHAN_STATUS));
stat->lemFir = cpu_to_be64(phb4_read_reg_asb(p, PHB_LEM_FIR_ACCUM));
stat->lemErrorMask = cpu_to_be64(phb4_read_reg_asb(p, PHB_LEM_ERROR_MASK));
stat->lemWOF = cpu_to_be64(phb4_read_reg_asb(p, PHB_LEM_WOF));
stat->phbErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_ERR_STATUS));
stat->phbFirstErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_ERR1_STATUS));
stat->phbErrorLog0 = cpu_to_be64(phb4_read_reg_asb(p, PHB_ERR_LOG_0));
stat->phbErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_ERR_LOG_1));
stat->phbTxeErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_TXE_ERR_STATUS));
stat->phbTxeFirstErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_TXE_ERR1_STATUS));
stat->phbTxeErrorLog0 = cpu_to_be64(phb4_read_reg_asb(p, PHB_TXE_ERR_LOG_0));
stat->phbTxeErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_TXE_ERR_LOG_1));
stat->phbRxeArbErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_ARB_ERR_STATUS));
stat->phbRxeArbFirstErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_ARB_ERR1_STATUS));
stat->phbRxeArbErrorLog0 = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_ARB_ERR_LOG_0));
stat->phbRxeArbErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_ARB_ERR_LOG_1));
stat->phbRxeMrgErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_MRG_ERR_STATUS));
stat->phbRxeMrgFirstErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_MRG_ERR1_STATUS));
stat->phbRxeMrgErrorLog0 = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_MRG_ERR_LOG_0));
stat->phbRxeMrgErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_MRG_ERR_LOG_1));
stat->phbRxeTceErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_TCE_ERR_STATUS));
stat->phbRxeTceFirstErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_TCE_ERR1_STATUS));
stat->phbRxeTceErrorLog0 = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_TCE_ERR_LOG_0));
stat->phbRxeTceErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_RXE_TCE_ERR_LOG_1));
/* PHB4 REGB error registers */
stat->phbPblErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_PBL_ERR_STATUS));
stat->phbPblFirstErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_PBL_ERR1_STATUS));
stat->phbPblErrorLog0 = cpu_to_be64(phb4_read_reg_asb(p, PHB_PBL_ERR_LOG_0));
stat->phbPblErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_PBL_ERR_LOG_1));
stat->phbPcieDlpErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_PCIE_DLP_ERR_STATUS));
stat->phbPcieDlpErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_PCIE_DLP_ERRLOG1));
stat->phbPcieDlpErrorLog2 = cpu_to_be64(phb4_read_reg_asb(p, PHB_PCIE_DLP_ERRLOG2));
stat->phbRegbErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_REGB_ERR_STATUS));
stat->phbRegbFirstErrorStatus = cpu_to_be64(phb4_read_reg_asb(p, PHB_REGB_ERR1_STATUS));
stat->phbRegbErrorLog0 = cpu_to_be64(phb4_read_reg_asb(p, PHB_REGB_ERR_LOG_0));
stat->phbRegbErrorLog1 = cpu_to_be64(phb4_read_reg_asb(p, PHB_REGB_ERR_LOG_1));
/*
* Grab PESTA & B content. The error bit (bit#0) should
* be fetched from IODA and the left content from memory
* resident tables.
*/
phb4_ioda_sel(p, IODA3_TBL_PESTA, 0, true);
for (i = 0; i < p->max_num_pes; i++) {
stat->pestA[i] = cpu_to_be64(phb4_read_reg_asb(p, PHB_IODA_DATA0));
stat->pestA[i] |= p->tbl_pest[2 * i];
}
phb4_ioda_sel(p, IODA3_TBL_PESTB, 0, true);
for (i = 0; i < p->max_num_pes; i++) {
stat->pestB[i] = cpu_to_be64(phb4_read_reg_asb(p, PHB_IODA_DATA0));
stat->pestB[i] |= p->tbl_pest[2 * i + 1];
}
}
static void __unused phb4_dump_peltv(struct phb4 *p)
{
int stride = p->max_num_pes / 64;
uint64_t *tbl = (void *) p->tbl_peltv;
unsigned int pe;
PHBERR(p, "PELT-V: base addr: %p size: %llx (%d PEs, stride = %d)\n",
tbl, p->tbl_peltv_size, p->max_num_pes, stride);
for (pe = 0; pe < p->max_num_pes; pe++) {
unsigned int i, j;
uint64_t sum = 0;
i = pe * stride;
/*
* Only print an entry if there's bits set in the PE's
* PELT-V entry. There's a few hundred possible PEs and
* generally only a handful will be in use.
*/
for (j = 0; j < stride; j++)
sum |= tbl[i + j];
if (!sum)
continue; /* unused PE, skip it */
if (p->max_num_pes == 512) {
PHBERR(p, "PELT-V[%03x] = "
"%016llx %016llx %016llx %016llx"
"%016llx %016llx %016llx %016llx\n", pe,
tbl[i + 0], tbl[i + 1], tbl[i + 2], tbl[i + 3],
tbl[i + 4], tbl[i + 5], tbl[i + 6], tbl[i + 7]);
} else if (p->max_num_pes == 256) {
PHBERR(p, "PELT-V[%03x] = "
"%016llx %016llx %016llx %016llx\n", pe,
tbl[i + 0], tbl[i + 1], tbl[i + 2], tbl[i + 3]);
}
}
}
static void __unused phb4_dump_ioda_table(struct phb4 *p, int table)
{
const char *name;
int entries, i;
switch (table) {
case IODA3_TBL_LIST:
name = "LIST";
entries = 8;
break;
case IODA3_TBL_MIST:
name = "MIST";
entries = 1024;
break;
case IODA3_TBL_RCAM:
name = "RCAM";
entries = 128;
break;
case IODA3_TBL_MRT:
name = "MRT";
entries = 16;
break;
case IODA3_TBL_PESTA:
name = "PESTA";
entries = 512;
break;
case IODA3_TBL_PESTB:
name = "PESTB";
entries = 512;
break;
case IODA3_TBL_TVT:
name = "TVT";
entries = 512;
break;
case IODA3_TBL_TCAM:
name = "TCAM";
entries = 1024;
break;
case IODA3_TBL_TDR:
name = "TDR";
entries = 1024;
break;
case IODA3_TBL_MBT: /* special case, see below */
name = "MBT";
entries = 64;
break;
case IODA3_TBL_MDT:
name = "MDT";
entries = 512;
break;
case IODA3_TBL_PEEV:
name = "PEEV";
entries = 8;
break;
default:
PHBERR(p, "Invalid IODA table %d!\n", table);
return;
}
PHBERR(p, "Start %s dump (only non-zero entries are printed):\n", name);
phb4_ioda_sel(p, table, 0, true);
/*
* Each entry in the MBT is 16 bytes. Every other table has 8 byte
* entries so we special case the MDT to keep the output readable.
*/
if (table == IODA3_TBL_MBT) {
for (i = 0; i < 32; i++) {
uint64_t v1 = phb4_read_reg_asb(p, PHB_IODA_DATA0);
uint64_t v2 = phb4_read_reg_asb(p, PHB_IODA_DATA0);
if (!v1 && !v2)
continue;
PHBERR(p, "MBT[%03x] = %016llx %016llx\n", i, v1, v2);
}
} else {
for (i = 0; i < entries; i++) {
uint64_t v = phb4_read_reg_asb(p, PHB_IODA_DATA0);
if (!v)
continue;
PHBERR(p, "%s[%03x] = %016llx\n", name, i, v);
}
}
PHBERR(p, "End %s dump\n", name);
}
static void phb4_eeh_dump_regs(struct phb4 *p)
{
struct OpalIoPhb4ErrorData *s;
uint16_t reg;
unsigned int i;
if (!verbose_eeh)
return;
s = zalloc(sizeof(struct OpalIoPhb4ErrorData));
if (!s) {
PHBERR(p, "Failed to allocate error info !\n");
return;
}
phb4_read_phb_status(p, s);
PHBERR(p, " brdgCtl = %08x\n", be32_to_cpu(s->brdgCtl));
/* PHB4 cfg regs */
PHBERR(p, " deviceStatus = %08x\n", be32_to_cpu(s->deviceStatus));
PHBERR(p, " slotStatus = %08x\n", be32_to_cpu(s->slotStatus));
PHBERR(p, " linkStatus = %08x\n", be32_to_cpu(s->linkStatus));
PHBERR(p, " devCmdStatus = %08x\n", be32_to_cpu(s->devCmdStatus));
PHBERR(p, " devSecStatus = %08x\n", be32_to_cpu(s->devSecStatus));
PHBERR(p, " rootErrorStatus = %08x\n", be32_to_cpu(s->rootErrorStatus));
PHBERR(p, " corrErrorStatus = %08x\n", be32_to_cpu(s->corrErrorStatus));
PHBERR(p, " uncorrErrorStatus = %08x\n", be32_to_cpu(s->uncorrErrorStatus));
/* Two non OPAL API registers that are useful */
phb4_pcicfg_read16(&p->phb, 0, p->ecap + PCICAP_EXP_DEVCTL, ®);
PHBERR(p, " devctl = %08x\n", reg);
phb4_pcicfg_read16(&p->phb, 0, p->ecap + PCICAP_EXP_DEVSTAT,
®);
PHBERR(p, " devStat = %08x\n", reg);
/* Byte swap TLP headers so they are the same as the PCIe spec */
PHBERR(p, " tlpHdr1 = %08x\n", cpu_to_le32(be32_to_cpu(s->tlpHdr1)));
PHBERR(p, " tlpHdr2 = %08x\n", cpu_to_le32(be32_to_cpu(s->tlpHdr2)));
PHBERR(p, " tlpHdr3 = %08x\n", cpu_to_le32(be32_to_cpu(s->tlpHdr3)));
PHBERR(p, " tlpHdr4 = %08x\n", cpu_to_le32(be32_to_cpu(s->tlpHdr4)));
PHBERR(p, " sourceId = %08x\n", be32_to_cpu(s->sourceId));
PHBERR(p, " nFir = %016llx\n", be64_to_cpu(s->nFir));
PHBERR(p, " nFirMask = %016llx\n", be64_to_cpu(s->nFirMask));
PHBERR(p, " nFirWOF = %016llx\n", be64_to_cpu(s->nFirWOF));
PHBERR(p, " phbPlssr = %016llx\n", be64_to_cpu(s->phbPlssr));
PHBERR(p, " phbCsr = %016llx\n", be64_to_cpu(s->phbCsr));
PHBERR(p, " lemFir = %016llx\n", be64_to_cpu(s->lemFir));
PHBERR(p, " lemErrorMask = %016llx\n", be64_to_cpu(s->lemErrorMask));
PHBERR(p, " lemWOF = %016llx\n", be64_to_cpu(s->lemWOF));
PHBERR(p, " phbErrorStatus = %016llx\n", be64_to_cpu(s->phbErrorStatus));
PHBERR(p, " phbFirstErrorStatus = %016llx\n", be64_to_cpu(s->phbFirstErrorStatus));
PHBERR(p, " phbErrorLog0 = %016llx\n", be64_to_cpu(s->phbErrorLog0));
PHBERR(p, " phbErrorLog1 = %016llx\n", be64_to_cpu(s->phbErrorLog1));
PHBERR(p, " phbTxeErrorStatus = %016llx\n", be64_to_cpu(s->phbTxeErrorStatus));
PHBERR(p, " phbTxeFirstErrorStatus = %016llx\n", be64_to_cpu(s->phbTxeFirstErrorStatus));
PHBERR(p, " phbTxeErrorLog0 = %016llx\n", be64_to_cpu(s->phbTxeErrorLog0));
PHBERR(p, " phbTxeErrorLog1 = %016llx\n", be64_to_cpu(s->phbTxeErrorLog1));
PHBERR(p, " phbRxeArbErrorStatus = %016llx\n", be64_to_cpu(s->phbRxeArbErrorStatus));
PHBERR(p, "phbRxeArbFrstErrorStatus = %016llx\n", be64_to_cpu(s->phbRxeArbFirstErrorStatus));
PHBERR(p, " phbRxeArbErrorLog0 = %016llx\n", be64_to_cpu(s->phbRxeArbErrorLog0));
PHBERR(p, " phbRxeArbErrorLog1 = %016llx\n", be64_to_cpu(s->phbRxeArbErrorLog1));
PHBERR(p, " phbRxeMrgErrorStatus = %016llx\n", be64_to_cpu(s->phbRxeMrgErrorStatus));
PHBERR(p, "phbRxeMrgFrstErrorStatus = %016llx\n", be64_to_cpu(s->phbRxeMrgFirstErrorStatus));
PHBERR(p, " phbRxeMrgErrorLog0 = %016llx\n", be64_to_cpu(s->phbRxeMrgErrorLog0));
PHBERR(p, " phbRxeMrgErrorLog1 = %016llx\n", be64_to_cpu(s->phbRxeMrgErrorLog1));
PHBERR(p, " phbRxeTceErrorStatus = %016llx\n", be64_to_cpu(s->phbRxeTceErrorStatus));
PHBERR(p, "phbRxeTceFrstErrorStatus = %016llx\n", be64_to_cpu(s->phbRxeTceFirstErrorStatus));
PHBERR(p, " phbRxeTceErrorLog0 = %016llx\n", be64_to_cpu(s->phbRxeTceErrorLog0));
PHBERR(p, " phbRxeTceErrorLog1 = %016llx\n", be64_to_cpu(s->phbRxeTceErrorLog1));
PHBERR(p, " phbPblErrorStatus = %016llx\n", be64_to_cpu(s->phbPblErrorStatus));
PHBERR(p, " phbPblFirstErrorStatus = %016llx\n", be64_to_cpu(s->phbPblFirstErrorStatus));
PHBERR(p, " phbPblErrorLog0 = %016llx\n", be64_to_cpu(s->phbPblErrorLog0));
PHBERR(p, " phbPblErrorLog1 = %016llx\n", be64_to_cpu(s->phbPblErrorLog1));
PHBERR(p, " phbPcieDlpErrorLog1 = %016llx\n", be64_to_cpu(s->phbPcieDlpErrorLog1));
PHBERR(p, " phbPcieDlpErrorLog2 = %016llx\n", be64_to_cpu(s->phbPcieDlpErrorLog2));
PHBERR(p, " phbPcieDlpErrorStatus = %016llx\n", be64_to_cpu(s->phbPcieDlpErrorStatus));
PHBERR(p, " phbRegbErrorStatus = %016llx\n", be64_to_cpu(s->phbRegbErrorStatus));
PHBERR(p, " phbRegbFirstErrorStatus = %016llx\n", be64_to_cpu(s->phbRegbFirstErrorStatus));
PHBERR(p, " phbRegbErrorLog0 = %016llx\n", be64_to_cpu(s->phbRegbErrorLog0));
PHBERR(p, " phbRegbErrorLog1 = %016llx\n", be64_to_cpu(s->phbRegbErrorLog1));
for (i = 0; i < p->max_num_pes; i++) {
if (!s->pestA[i] && !s->pestB[i])
continue;
PHBERR(p, " PEST[%03x] = %016llx %016llx\n",
i, be64_to_cpu(s->pestA[i]), be64_to_cpu(s->pestB[i]));
}
free(s);
}
static int64_t phb4_set_pe(struct phb *phb,
uint64_t pe_number,
uint64_t bdfn,
uint8_t bcompare,
uint8_t dcompare,
uint8_t fcompare,
uint8_t action)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t mask, idx;
/* Sanity check */
if (action != OPAL_MAP_PE && action != OPAL_UNMAP_PE)
return OPAL_PARAMETER;
if (pe_number >= p->num_pes || bdfn > 0xffff ||
bcompare > OpalPciBusAll ||
dcompare > OPAL_COMPARE_RID_DEVICE_NUMBER ||
fcompare > OPAL_COMPARE_RID_FUNCTION_NUMBER)
return OPAL_PARAMETER;
/* match everything by default */
mask = 0;
/* Figure out the RID range */
if (bcompare != OpalPciBusAny)
mask = ((0x1 << (bcompare + 1)) - 1) << (15 - bcompare);
if (dcompare == OPAL_COMPARE_RID_DEVICE_NUMBER)
mask |= 0xf8;
if (fcompare == OPAL_COMPARE_RID_FUNCTION_NUMBER)
mask |= 0x7;
if (action == OPAL_UNMAP_PE)
pe_number = PHB4_RESERVED_PE_NUM(p);
/* Map or unmap the RTT range */
for (idx = 0; idx < RTT_TABLE_ENTRIES; idx++)
if ((idx & mask) == (bdfn & mask))
p->tbl_rtt[idx] = cpu_to_be16(pe_number);
/* Invalidate the RID Translation Cache (RTC) inside the PHB */
out_be64(p->regs + PHB_RTC_INVALIDATE, PHB_RTC_INVALIDATE_ALL);
return OPAL_SUCCESS;
}
static int64_t phb4_set_peltv(struct phb *phb,
uint32_t parent_pe,
uint32_t child_pe,
uint8_t state)
{
struct phb4 *p = phb_to_phb4(phb);
uint32_t idx, mask;
/* Sanity check */
if (parent_pe >= p->num_pes || child_pe >= p->num_pes)
return OPAL_PARAMETER;
/* Find index for parent PE */
idx = parent_pe * (p->max_num_pes / 8);
idx += (child_pe / 8);
mask = 0x1 << (7 - (child_pe % 8));
if (state)
p->tbl_peltv[idx] |= mask;
else
p->tbl_peltv[idx] &= ~mask;
return OPAL_SUCCESS;
}
static void phb4_prepare_link_change(struct pci_slot *slot, bool is_up)
{
struct phb4 *p = phb_to_phb4(slot->phb);
uint32_t reg32;
p->has_link = is_up;
if (is_up) {
/* Clear AER receiver error status */
phb4_pcicfg_write32(&p->phb, 0, p->aercap +
PCIECAP_AER_CE_STATUS,
PCIECAP_AER_CE_RECVR_ERR);
/* Unmask receiver error status in AER */
phb4_pcicfg_read32(&p->phb, 0, p->aercap +
PCIECAP_AER_CE_MASK, ®32);
reg32 &= ~PCIECAP_AER_CE_RECVR_ERR;
phb4_pcicfg_write32(&p->phb, 0, p->aercap +
PCIECAP_AER_CE_MASK, reg32);
/* Don't block PCI-CFG */
p->flags &= ~PHB4_CFG_BLOCKED;
/* Re-enable link down errors */
out_be64(p->regs + PHB_PCIE_MISC_STRAP,
0x0000060000000000ull);
/* Re-enable error status indicators that trigger irqs */
out_be64(p->regs + PHB_REGB_ERR_INF_ENABLE,
0x2130006efca8bc00ull);
out_be64(p->regs + PHB_REGB_ERR_ERC_ENABLE,
0x0080000000000000ull);
out_be64(p->regs + PHB_REGB_ERR_FAT_ENABLE,
0xde0fff91035743ffull);
} else {
/* Mask AER receiver error */
phb4_pcicfg_read32(&p->phb, 0, p->aercap +
PCIECAP_AER_CE_MASK, ®32);
reg32 |= PCIECAP_AER_CE_RECVR_ERR;
phb4_pcicfg_write32(&p->phb, 0, p->aercap +
PCIECAP_AER_CE_MASK, reg32);
/* Clear error link enable & error link down kill enable */
out_be64(p->regs + PHB_PCIE_MISC_STRAP, 0);
/* Disable all error status indicators that trigger irqs */
out_be64(p->regs + PHB_REGB_ERR_INF_ENABLE, 0);
out_be64(p->regs + PHB_REGB_ERR_ERC_ENABLE, 0);
out_be64(p->regs + PHB_REGB_ERR_FAT_ENABLE, 0);
/* Block PCI-CFG access */
p->flags |= PHB4_CFG_BLOCKED;
}
}
static int64_t phb4_get_presence_state(struct pci_slot *slot, uint8_t *val)
{
struct phb4 *p = phb_to_phb4(slot->phb);
uint64_t hps, dtctl;
/* Test for PHB in error state ? */
if (p->broken)
return OPAL_HARDWARE;
/* Check hotplug status */
hps = in_be64(p->regs + PHB_PCIE_HOTPLUG_STATUS);
if (!(hps & PHB_PCIE_HPSTAT_PRESENCE)) {
*val = OPAL_PCI_SLOT_PRESENT;
} else {
/*
* If it says not present but link is up, then we assume
* we are on a broken simulation environment and still
* return a valid presence. Otherwise, not present.
*/
dtctl = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
if (dtctl & PHB_PCIE_DLP_TL_LINKACT) {
PHBERR(p, "Presence detect 0 but link set !\n");
*val = OPAL_PCI_SLOT_PRESENT;
} else {
*val = OPAL_PCI_SLOT_EMPTY;
}
}
return OPAL_SUCCESS;
}
static int64_t phb4_get_link_info(struct pci_slot *slot, uint8_t *speed,
uint8_t *width)
{
struct phb4 *p = phb_to_phb4(slot->phb);
uint64_t reg;
uint16_t state;
int64_t rc;
uint8_t s;
/* Link is up, let's find the actual speed */
reg = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
if (!(reg & PHB_PCIE_DLP_TL_LINKACT)) {
*width = 0;
if (speed)
*speed = 0;
return OPAL_SUCCESS;
}
rc = phb4_pcicfg_read16(&p->phb, 0,
p->ecap + PCICAP_EXP_LSTAT, &state);
if (rc != OPAL_SUCCESS) {
PHBERR(p, "%s: Error %lld getting link state\n", __func__, rc);
return OPAL_HARDWARE;
}
if (state & PCICAP_EXP_LSTAT_DLLL_ACT) {
*width = ((state & PCICAP_EXP_LSTAT_WIDTH) >> 4);
s = state & PCICAP_EXP_LSTAT_SPEED;
} else {
*width = 0;
s = 0;
}
if (speed)
*speed = s;
return OPAL_SUCCESS;
}
static int64_t phb4_get_link_state(struct pci_slot *slot, uint8_t *val)
{
return phb4_get_link_info(slot, NULL, val);
}
static int64_t phb4_retry_state(struct pci_slot *slot)
{
struct phb4 *p = phb_to_phb4(slot->phb);
/* Mark link as down */
phb4_prepare_link_change(slot, false);
/* Last attempt to activate link */
if (slot->link_retries == 1) {
if (slot->state == PHB4_SLOT_LINK_WAIT) {
PHBERR(p, "Falling back to GEN1 training\n");
p->max_link_speed = 1;
}
}
if (!slot->link_retries--) {
switch (slot->state) {
case PHB4_SLOT_LINK_WAIT_ELECTRICAL:
PHBERR(p, "Presence detected but no electrical link\n");
break;
case PHB4_SLOT_LINK_WAIT:
PHBERR(p, "Electrical link detected but won't train\n");
break;
case PHB4_SLOT_LINK_STABLE:
PHBERR(p, "Linked trained but was degraded or unstable\n");
break;
default:
PHBERR(p, "Unknown link issue\n");
}
return OPAL_HARDWARE;
}
pci_slot_set_state(slot, PHB4_SLOT_CRESET_START);
return pci_slot_set_sm_timeout(slot, msecs_to_tb(1));
}
static uint64_t phb4_train_info(struct phb4 *p, uint64_t reg, unsigned long dt)
{
uint64_t ltssm_state = GETFIELD(PHB_PCIE_DLP_LTSSM_TRC, reg);
char s[80];
snprintf(s, sizeof(s), "TRACE:0x%016llx % 2lims",
reg, tb_to_msecs(dt));
if (reg & PHB_PCIE_DLP_TL_LINKACT)
snprintf(s, sizeof(s), "%s trained ", s);
else if (reg & PHB_PCIE_DLP_TRAINING)
snprintf(s, sizeof(s), "%s training", s);
else if (reg & PHB_PCIE_DLP_INBAND_PRESENCE)
snprintf(s, sizeof(s), "%s presence", s);
else
snprintf(s, sizeof(s), "%s ", s);
snprintf(s, sizeof(s), "%s GEN%lli:x%02lli:", s,
GETFIELD(PHB_PCIE_DLP_LINK_SPEED, reg),
GETFIELD(PHB_PCIE_DLP_LINK_WIDTH, reg));
switch (ltssm_state) {
case PHB_PCIE_DLP_LTSSM_RESET:
snprintf(s, sizeof(s), "%sreset", s);
break;
case PHB_PCIE_DLP_LTSSM_DETECT:
snprintf(s, sizeof(s), "%sdetect", s);
break;
case PHB_PCIE_DLP_LTSSM_POLLING:
snprintf(s, sizeof(s), "%spolling", s);
break;
case PHB_PCIE_DLP_LTSSM_CONFIG:
snprintf(s, sizeof(s), "%sconfig", s);
break;
case PHB_PCIE_DLP_LTSSM_L0:
snprintf(s, sizeof(s), "%sL0", s);
break;
case PHB_PCIE_DLP_LTSSM_REC:
snprintf(s, sizeof(s), "%srecovery", s);
break;
case PHB_PCIE_DLP_LTSSM_L1:
snprintf(s, sizeof(s), "%sL1", s);
break;
case PHB_PCIE_DLP_LTSSM_L2:
snprintf(s, sizeof(s), "%sL2", s);
break;
case PHB_PCIE_DLP_LTSSM_HOTRESET:
snprintf(s, sizeof(s), "%shotreset", s);
break;
case PHB_PCIE_DLP_LTSSM_DISABLED:
snprintf(s, sizeof(s), "%sdisabled", s);
break;
case PHB_PCIE_DLP_LTSSM_LOOPBACK:
snprintf(s, sizeof(s), "%sloopback", s);
break;
default:
snprintf(s, sizeof(s), "%sunvalid", s);
}
PHBNOTICE(p, "%s\n", s);
return ltssm_state;
}
static void phb4_dump_pec_err_regs(struct phb4 *p)
{
uint64_t nfir_p_wof, nfir_n_wof, err_aib;
uint64_t err_rpt0, err_rpt1;
/* Read the PCI and NEST FIRs and dump them. Also cache PCI/NEST FIRs */
xscom_read(p->chip_id,
p->pci_stk_xscom + XPEC_PCI_STK_PCI_FIR, &p->pfir_cache);
xscom_read(p->chip_id,
p->pci_stk_xscom + XPEC_PCI_STK_PCI_FIR_WOF, &nfir_p_wof);
xscom_read(p->chip_id,
p->pe_stk_xscom + XPEC_NEST_STK_PCI_NFIR, &p->nfir_cache);
xscom_read(p->chip_id,
p->pe_stk_xscom + XPEC_NEST_STK_PCI_NFIR_WOF, &nfir_n_wof);
xscom_read(p->chip_id,
p->pe_stk_xscom + XPEC_NEST_STK_ERR_RPT0, &err_rpt0);
xscom_read(p->chip_id,
p->pe_stk_xscom + XPEC_NEST_STK_ERR_RPT1, &err_rpt1);
xscom_read(p->chip_id,
p->pci_stk_xscom + XPEC_PCI_STK_PBAIB_ERR_REPORT, &err_aib);
PHBERR(p, " PCI FIR=%016llx\n", p->pfir_cache);
PHBERR(p, " PCI FIR WOF=%016llx\n", nfir_p_wof);
PHBERR(p, " NEST FIR=%016llx\n", p->nfir_cache);
PHBERR(p, " NEST FIR WOF=%016llx\n", nfir_n_wof);
PHBERR(p, " ERR RPT0=%016llx\n", err_rpt0);
PHBERR(p, " ERR RPT1=%016llx\n", err_rpt1);
PHBERR(p, " AIB ERR=%016llx\n", err_aib);
}
static void phb4_dump_capp_err_regs(struct phb4 *p)
{
uint64_t fir, apc_master_err, snoop_err, transport_err;
uint64_t tlbi_err, capp_err_status;
uint64_t offset = PHB4_CAPP_REG_OFFSET(p);
xscom_read(p->chip_id, CAPP_FIR + offset, &fir);
xscom_read(p->chip_id, CAPP_APC_MASTER_ERR_RPT + offset,
&apc_master_err);
xscom_read(p->chip_id, CAPP_SNOOP_ERR_RTP + offset, &snoop_err);
xscom_read(p->chip_id, CAPP_TRANSPORT_ERR_RPT + offset, &transport_err);
xscom_read(p->chip_id, CAPP_TLBI_ERR_RPT + offset, &tlbi_err);
xscom_read(p->chip_id, CAPP_ERR_STATUS_CTRL + offset, &capp_err_status);
PHBERR(p, " CAPP FIR=%016llx\n", fir);
PHBERR(p, "CAPP APC MASTER ERR=%016llx\n", apc_master_err);
PHBERR(p, " CAPP SNOOP ERR=%016llx\n", snoop_err);
PHBERR(p, " CAPP TRANSPORT ERR=%016llx\n", transport_err);
PHBERR(p, " CAPP TLBI ERR=%016llx\n", tlbi_err);
PHBERR(p, " CAPP ERR STATUS=%016llx\n", capp_err_status);
}
/* Check if AIB is fenced via PBCQ NFIR */
static bool phb4_fenced(struct phb4 *p)
{
/* Already fenced ? */
if (p->flags & PHB4_AIB_FENCED)
return true;
/*
* An all 1's from the PHB indicates a PHB freeze/fence. We
* don't really differenciate them at this point.
*/
if (in_be64(p->regs + PHB_CPU_LOADSTORE_STATUS)!= 0xfffffffffffffffful)
return false;
/* Mark ourselves fenced */
p->flags |= PHB4_AIB_FENCED;
PHBERR(p, "PHB Freeze/Fence detected !\n");
phb4_dump_pec_err_regs(p);
/*
* dump capp error registers in case phb was fenced due to capp.
* Expect p->nfir_cache already updated in phb4_dump_pec_err_regs()
*/
if (p->nfir_cache & XPEC_NEST_STK_PCI_NFIR_CXA_PE_CAPP)
phb4_dump_capp_err_regs(p);
phb4_eeh_dump_regs(p);
return true;
}
static bool phb4_check_reg(struct phb4 *p, uint64_t reg)
{
if (reg == 0xffffffffffffffffUL)
return !phb4_fenced(p);
return true;
}
static void phb4_get_info(struct phb *phb, uint16_t bdfn, uint8_t *speed,
uint8_t *width)
{
int32_t ecap;
uint32_t cap;
ecap = pci_find_cap(phb, bdfn, PCI_CFG_CAP_ID_EXP);
pci_cfg_read32(phb, bdfn, ecap + PCICAP_EXP_LCAP, &cap);
*width = (cap & PCICAP_EXP_LCAP_MAXWDTH) >> 4;
*speed = cap & PCICAP_EXP_LCAP_MAXSPD;
}
#define PVR_POWER9_CUMULUS 0x00002000
static bool phb4_chip_retry_workaround(void)
{
unsigned int pvr;
if (pci_retry_all)
return true;
/* Chips that need this retry are:
* - CUMULUS DD1.0
* - NIMBUS DD2.0 (and DD1.0, but it is unsupported so no check).
*/
pvr = mfspr(SPR_PVR);
if (pvr & PVR_POWER9_CUMULUS) {
if ((PVR_VERS_MAJ(pvr) == 1) && (PVR_VERS_MIN(pvr) == 0))
return true;
} else { /* NIMBUS */
if ((PVR_VERS_MAJ(pvr) == 2) && (PVR_VERS_MIN(pvr) == 0))
return true;
}
return false;
}
struct pci_card_id {
uint16_t vendor;
uint16_t device;
};
static struct pci_card_id retry_allowlist[] = {
{ 0x1000, 0x005d }, /* LSI Logic MegaRAID SAS-3 3108 */
{ 0x1000, 0x00c9 }, /* LSI MPT SAS-3 */
{ 0x104c, 0x8241 }, /* TI xHCI USB */
{ 0x1077, 0x2261 }, /* QLogic ISP2722-based 16/32Gb FC */
{ 0x10b5, 0x8725 }, /* PLX Switch: p9dsu, witherspoon */
{ 0x10b5, 0x8748 }, /* PLX Switch: ZZ */
{ 0x11f8, 0xf117 }, /* PMC-Sierra/MicroSemi NV1604 */
{ 0x15b3, 0x1013 }, /* Mellanox ConnectX-4 */
{ 0x15b3, 0x1017 }, /* Mellanox ConnectX-5 */
{ 0x15b3, 0x1019 }, /* Mellanox ConnectX-5 Ex */
{ 0x1a03, 0x1150 }, /* ASPEED AST2500 Switch */
{ 0x8086, 0x10fb }, /* Intel x520 10G Eth */
{ 0x9005, 0x028d }, /* MicroSemi PM8069 */
};
#define VENDOR(vdid) ((vdid) & 0xffff)
#define DEVICE(vdid) (((vdid) >> 16) & 0xffff)
static bool phb4_adapter_in_allowlist(uint32_t vdid)
{
int i;
if (pci_retry_all)
return true;
for (i = 0; i < ARRAY_SIZE(retry_allowlist); i++)
if ((retry_allowlist[i].vendor == VENDOR(vdid)) &&
(retry_allowlist[i].device == DEVICE(vdid)))
return true;
return false;
}
static struct pci_card_id lane_eq_disable[] = {
{ 0x10de, 0x17fd }, /* Nvidia GM200GL [Tesla M40] */
{ 0x10de, 0x1db4 }, /* Nvidia GV100 */
};
static bool phb4_lane_eq_retry_allowlist(uint32_t vdid)
{
int i;
for (i = 0; i < ARRAY_SIZE(lane_eq_disable); i++)
if ((lane_eq_disable[i].vendor == VENDOR(vdid)) &&
(lane_eq_disable[i].device == DEVICE(vdid)))
return true;
return false;
}
static void phb4_lane_eq_change(struct phb4 *p, uint32_t vdid)
{
p->lane_eq_en = !phb4_lane_eq_retry_allowlist(vdid);
}
static bool phb4_link_optimal(struct pci_slot *slot, uint32_t *vdid)
{
struct phb4 *p = phb_to_phb4(slot->phb);
uint64_t reg;
uint32_t id;
uint16_t bdfn, lane_errs;
uint8_t trained_speed, dev_speed, target_speed, rx_errs;
uint8_t trained_width, dev_width, target_width;
bool optimal_speed, optimal_width, optimal, retry_enabled, rx_err_ok;
/* Current trained state */
phb4_get_link_info(slot, &trained_speed, &trained_width);
/* Get device capability */
bdfn = 0x0100; /* bus=1 dev=0 device=0 */
/* Since this is the first access, we need to wait for CRS */
if (!pci_wait_crs(slot->phb, bdfn , &id))
return true;
phb4_get_info(slot->phb, bdfn, &dev_speed, &dev_width);
/* Work out if we are optimally trained */
target_speed = MIN(p->max_link_speed, dev_speed);
optimal_speed = (trained_speed >= target_speed);
target_width = MIN(p->max_link_width, dev_width);
optimal_width = (trained_width >= target_width);
optimal = optimal_width && optimal_speed;
retry_enabled = (phb4_chip_retry_workaround() &&
phb4_adapter_in_allowlist(id)) ||
phb4_lane_eq_retry_allowlist(id);
reg = in_be64(p->regs + PHB_PCIE_DLP_ERR_COUNTERS);
rx_errs = GETFIELD(PHB_PCIE_DLP_RX_ERR_CNT, reg);
rx_err_ok = (rx_errs < rx_err_max);
reg = in_be64(p->regs + PHB_PCIE_DLP_ERR_STATUS);
lane_errs = GETFIELD(PHB_PCIE_DLP_LANE_ERR, reg);
PHBDBG(p, "LINK: Card [%04x:%04x] %s Retry:%s\n", VENDOR(id),
DEVICE(id), optimal ? "Optimal" : "Degraded",
retry_enabled ? "enabled" : "disabled");
PHBDBG(p, "LINK: Speed Train:GEN%i PHB:GEN%i DEV:GEN%i%s\n",
trained_speed, p->max_link_speed, dev_speed,
optimal_speed ? "" : " *");
PHBDBG(p, "LINK: Width Train:x%02i PHB:x%02i DEV:x%02i%s\n",
trained_width, p->max_link_width, dev_width,
optimal_width ? "" : " *");
PHBDBG(p, "LINK: RX Errors Now:%i Max:%i Lane:0x%04x%s\n",
rx_errs, rx_err_max, lane_errs, rx_err_ok ? "" : " *");
if (vdid)
*vdid = id;
/* Always do RX error retry irrespective of chip and card */
if (!rx_err_ok)
return false;
if (!retry_enabled)
return true;
return optimal;
}
/*
* This is a trace function to watch what's happening duing pcie link
* training. If any errors are detected it simply returns so the
* normal code can deal with it.
*/
static void phb4_link_trace(struct phb4 *p, uint64_t target_state, int max_ms)
{
unsigned long now, end, start = mftb(), state = 0;
uint64_t trwctl, reg, reglast = -1;
bool enabled;
/*
* Enable the DLP trace outputs. If we don't the LTSSM state in
* PHB_PCIE_DLP_TRAIN_CTL won't be updated and always reads zero.
*/
trwctl = phb4_read_reg(p, PHB_PCIE_DLP_TRWCTL);
enabled = !!(trwctl & PHB_PCIE_DLP_TRWCTL_EN);
if (!enabled) {
phb4_write_reg(p, PHB_PCIE_DLP_TRWCTL,
trwctl | PHB_PCIE_DLP_TRWCTL_EN);
}
end = start + msecs_to_tb(max_ms);
now = start;
do {
reg = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
if (reg != reglast)
state = phb4_train_info(p, reg, now - start);
reglast = reg;
if (!phb4_check_reg(p, reg)) {
PHBNOTICE(p, "TRACE: PHB fenced.\n");
goto out;
}
if (tb_compare(now, end) == TB_AAFTERB) {
PHBNOTICE(p, "TRACE: Timed out after %dms\n", max_ms);
goto out;
}
now = mftb();
} while (state != target_state);
PHBNOTICE(p, "TRACE: Reached target state\n");
out:
/*
* The trace enable bit is a clock gate for the tracing logic. Turn
* it off to save power if we're not using it otherwise.
*/
if (!enabled)
phb4_write_reg(p, PHB_PCIE_DLP_TRWCTL, trwctl);
}
/*
* This helper is called repeatedly by the host sync notifier mechanism, which
* relies on the kernel to regularly poll the OPAL_SYNC_HOST_REBOOT call as it
* shuts down.
*/
static bool phb4_host_sync_reset(void *data)
{
struct phb4 *p = (struct phb4 *)data;
struct phb *phb = &p->phb;
int64_t rc = 0;
/* Make sure no-one modifies the phb flags while we are active */
phb_lock(phb);
/* Make sure CAPP is attached to the PHB */
if (p->capp)
/* Call phb ops to disable capi */
rc = phb->ops->set_capi_mode(phb, OPAL_PHB_CAPI_MODE_PCIE,
p->capp->attached_pe);
else
rc = OPAL_SUCCESS;
/* Continue kicking state-machine if in middle of a mode transition */
if (rc == OPAL_BUSY)
rc = phb->slot->ops.run_sm(phb->slot);
phb_unlock(phb);
return rc <= OPAL_SUCCESS;
}
/*
* Notification from the pci-core that a pci slot state machine completed.
* We use this callback to mark the CAPP disabled if we were waiting for it.
*/
static int64_t phb4_slot_sm_run_completed(struct pci_slot *slot, uint64_t err)
{
struct phb4 *p = phb_to_phb4(slot->phb);
/* Check if we are disabling the capp */
if (p->flags & PHB4_CAPP_DISABLE) {
/* Unset struct capp so that we dont fall into a creset loop */
p->flags &= ~(PHB4_CAPP_DISABLE);
p->capp->phb = NULL;
p->capp->attached_pe = phb4_get_reserved_pe_number(&p->phb);
/* Remove the host sync notifier is we are done.*/
opal_del_host_sync_notifier(phb4_host_sync_reset, p);
if (err) {
/* Force a CEC ipl reboot */
disable_fast_reboot("CAPP: reset failed");
PHBERR(p, "CAPP: Unable to reset. Error=%lld\n", err);
} else {
PHBINF(p, "CAPP: reset complete\n");
}
}
return OPAL_SUCCESS;
}
static int64_t phb4_poll_link(struct pci_slot *slot)
{
struct phb4 *p = phb_to_phb4(slot->phb);
uint64_t reg;
uint32_t vdid;
switch (slot->state) {
case PHB4_SLOT_NORMAL:
case PHB4_SLOT_LINK_START:
PHBDBG(p, "LINK: Start polling\n");
slot->retries = PHB4_LINK_ELECTRICAL_RETRIES;
pci_slot_set_state(slot, PHB4_SLOT_LINK_WAIT_ELECTRICAL);
/* Polling early here has no chance of a false positive */
return pci_slot_set_sm_timeout(slot, msecs_to_tb(1));
case PHB4_SLOT_LINK_WAIT_ELECTRICAL:
/*
* Wait for the link electrical connection to be
* established (shorter timeout). This allows us to
* workaround spurrious presence detect on some machines
* without waiting 10s each time
*
* Note: We *also* check for the full link up bit here
* because simics doesn't seem to implement the electrical
* link bit at all
*/
reg = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
if (!phb4_check_reg(p, reg)) {
PHBERR(p, "PHB fence waiting for electrical link\n");
return phb4_retry_state(slot);
}
if (reg & (PHB_PCIE_DLP_INBAND_PRESENCE |
PHB_PCIE_DLP_TL_LINKACT)) {
PHBDBG(p, "LINK: Electrical link detected\n");
pci_slot_set_state(slot, PHB4_SLOT_LINK_WAIT);
slot->retries = PHB4_LINK_WAIT_RETRIES;
/* No wait here since already have an elec link */
return pci_slot_set_sm_timeout(slot, msecs_to_tb(1));
}
if (slot->retries-- == 0) {
PHBDBG(p, "LINK: No in-band presence\n");
return OPAL_SUCCESS;
}
/* Retry */
return pci_slot_set_sm_timeout(slot, msecs_to_tb(10));
case PHB4_SLOT_LINK_WAIT:
reg = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
if (!phb4_check_reg(p, reg)) {
PHBERR(p, "LINK: PHB fence waiting for link training\n");
return phb4_retry_state(slot);
}
if (reg & PHB_PCIE_DLP_TL_LINKACT) {
PHBDBG(p, "LINK: Link is up\n");
phb4_prepare_link_change(slot, true);
pci_slot_set_state(slot, PHB4_SLOT_LINK_STABLE);
return pci_slot_set_sm_timeout(slot, secs_to_tb(1));
}
if (slot->retries-- == 0) {
PHBERR(p, "LINK: Timeout waiting for link up\n");
PHBDBG(p, "LINK: DLP train control: 0x%016llx\n", reg);
return phb4_retry_state(slot);
}
/* Retry */
return pci_slot_set_sm_timeout(slot, msecs_to_tb(10));
case PHB4_SLOT_LINK_STABLE:
/* Sanity check link */
if (phb4_fenced(p)) {
PHBERR(p, "LINK: PHB fenced waiting for stabilty\n");
return phb4_retry_state(slot);
}
reg = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
if (!phb4_check_reg(p, reg)) {
PHBERR(p, "LINK: PHB fence reading training control\n");
return phb4_retry_state(slot);
}
if (reg & PHB_PCIE_DLP_TL_LINKACT) {
PHBDBG(p, "LINK: Link is stable\n");
if (!phb4_link_optimal(slot, &vdid)) {
PHBDBG(p, "LINK: Link degraded\n");
if (slot->link_retries) {
phb4_lane_eq_change(p, vdid);
return phb4_retry_state(slot);
}
/*
* Link is degraded but no more retries, so
* settle for what we have :-(
*/
PHBERR(p, "LINK: Degraded but no more retries\n");
}
pci_restore_slot_bus_configs(slot);
pci_slot_set_state(slot, PHB4_SLOT_NORMAL);
return OPAL_SUCCESS;
}
PHBERR(p, "LINK: Went down waiting for stabilty\n");
PHBDBG(p, "LINK: DLP train control: 0x%016llx\n", reg);
return phb4_retry_state(slot);
default:
PHBERR(p, "LINK: Unexpected slot state %08x\n",
slot->state);
}
pci_slot_set_state(slot, PHB4_SLOT_NORMAL);
return OPAL_HARDWARE;
}
static unsigned int phb4_get_max_link_speed(struct phb4 *p, struct dt_node *np)
{
unsigned int max_link_speed, hw_max_link_speed;
struct proc_chip *chip;
chip = get_chip(p->chip_id);
hw_max_link_speed = 4;
if (is_phb5() && (p->index == 0 || p->index == 3))
hw_max_link_speed = 5;
/* Priority order: NVRAM -> dt -> GEN3 dd2.00 -> hw default */
max_link_speed = hw_max_link_speed;
if (p->rev == PHB4_REV_NIMBUS_DD20 &&
((0xf & chip->ec_level) == 0) && chip->ec_rev == 0)
max_link_speed = 3;
if (np) {
if (dt_has_node_property(np, "ibm,max-link-speed", NULL)) {
max_link_speed = dt_prop_get_u32(np, "ibm,max-link-speed");
p->dt_max_link_speed = max_link_speed;
}
else {
p->dt_max_link_speed = 0;
}
}
else {
if (p->dt_max_link_speed > 0) {
max_link_speed = p->dt_max_link_speed;
}
}
if (pcie_max_link_speed)
max_link_speed = pcie_max_link_speed;
if (max_link_speed > hw_max_link_speed)
max_link_speed = hw_max_link_speed;
return max_link_speed;
}
static unsigned int __phb4_get_max_link_width(struct phb4 *p)
{
uint64_t addr, reg;
unsigned int lane_config, width = 16;
/*
* On P9, only PEC2 is configurable (no-/bi-/tri-furcation)
*/
switch (p->pec) {
case 0:
width = 16;
break;
case 1:
width = 8;
break;
case 2:
addr = XPEC_P9_PCI_CPLT_CONF1 + 2 * XPEC_PCI_CPLT_OFFSET;
xscom_read(p->chip_id, addr, ®);
lane_config = GETFIELD(XPEC_P9_PCI_LANE_CFG, reg);
if (lane_config == 0b10 && p->index >= 4)
width = 4;
else
width = 8;
}
return width;
}
static unsigned int __phb5_get_max_link_width(struct phb4 *p)
{
uint64_t addr, reg;
unsigned int lane_config, width = 16;
/*
* On P10, the 2 PECs are identical and each can have a
* different furcation, so we always need to check the PEC
* config
*/
addr = XPEC_P10_PCI_CPLT_CONF1 + p->pec * XPEC_PCI_CPLT_OFFSET;
xscom_read(p->chip_id, addr, ®);
lane_config = GETFIELD(XPEC_P10_PCI_LANE_CFG, reg);
switch (lane_config) {
case 0b00:
width = 16;
break;
case 0b01:
width = 8;
break;
case 0b10:
if (p->index == 0 || p->index == 3)
width = 8;
else
width = 4;
break;
default:
PHBERR(p, "Unexpected PEC lane config value %#x\n",
lane_config);
}
return width;
}
static unsigned int phb4_get_max_link_width(struct phb4 *p)
{
if (is_phb5())
return __phb5_get_max_link_width(p);
else
return __phb4_get_max_link_width(p);
}
static void phb4_assert_perst(struct pci_slot *slot, bool assert)
{
struct phb4 *p = phb_to_phb4(slot->phb);
uint16_t linkctl;
uint64_t reg;
/*
* Disable the link before asserting PERST. The Cursed RAID card
* in ozrom1 (9005:028c) has problems coming back if PERST is asserted
* while link is active. To work around the problem we assert the link
* disable bit before asserting PERST. Asserting the secondary reset
* bit in the btctl register also works.
*/
phb4_pcicfg_read16(&p->phb, 0, p->ecap + PCICAP_EXP_LCTL, &linkctl);
reg = phb4_read_reg(p, PHB_PCIE_CRESET);
if (assert) {
linkctl |= PCICAP_EXP_LCTL_LINK_DIS;
reg &= ~PHB_PCIE_CRESET_PERST_N;
} else {
linkctl &= ~PCICAP_EXP_LCTL_LINK_DIS;
reg |= PHB_PCIE_CRESET_PERST_N;
}
phb4_write_reg(p, PHB_PCIE_CRESET, reg);
phb4_pcicfg_write16(&p->phb, 0, p->ecap + PCICAP_EXP_LCTL, linkctl);
}
static void set_sys_disable_detect(struct phb4 *p, bool set)
{
uint64_t val;
val = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
if (set)
val |= PHB_PCIE_DLP_SYS_DISABLEDETECT;
else
val &= ~PHB_PCIE_DLP_SYS_DISABLEDETECT;
out_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL, val);
}
static int64_t phb4_hreset(struct pci_slot *slot)
{
struct phb4 *p = phb_to_phb4(slot->phb);
uint16_t brctl;
uint8_t presence = 1;
switch (slot->state) {
case PHB4_SLOT_NORMAL:
PHBDBG(p, "HRESET: Starts\n");
if (slot->ops.get_presence_state)
slot->ops.get_presence_state(slot, &presence);
if (!presence) {
PHBDBG(p, "HRESET: No device\n");
return OPAL_SUCCESS;
}
/* circumvention for HW551382 */
if (is_phb5()) {
PHBINF(p, "HRESET: Workaround for HW551382\n");
set_sys_disable_detect(p, true);
}
PHBDBG(p, "HRESET: Prepare for link down\n");
phb4_prepare_link_change(slot, false);
/* fall through */
case PHB4_SLOT_HRESET_START:
PHBDBG(p, "HRESET: Assert\n");
phb4_pcicfg_read16(&p->phb, 0, PCI_CFG_BRCTL, &brctl);
brctl |= PCI_CFG_BRCTL_SECONDARY_RESET;
phb4_pcicfg_write16(&p->phb, 0, PCI_CFG_BRCTL, brctl);
pci_slot_set_state(slot, PHB4_SLOT_HRESET_DELAY);
return pci_slot_set_sm_timeout(slot, secs_to_tb(1));
case PHB4_SLOT_HRESET_DELAY:
PHBDBG(p, "HRESET: Deassert\n");
/* Clear link errors before we deassert reset */
phb4_err_clear_regb(p);
phb4_pcicfg_read16(&p->phb, 0, PCI_CFG_BRCTL, &brctl);
brctl &= ~PCI_CFG_BRCTL_SECONDARY_RESET;
phb4_pcicfg_write16(&p->phb, 0, PCI_CFG_BRCTL, brctl);
/*
* Due to some oddball adapters bouncing the link
* training a couple of times, we wait for a full second
* before we start checking the link status, otherwise
* we can get a spurrious link down interrupt which
* causes us to EEH immediately.
*/
pci_slot_set_state(slot, PHB4_SLOT_HRESET_DELAY2);
return pci_slot_set_sm_timeout(slot, secs_to_tb(1));
case PHB4_SLOT_HRESET_DELAY2:
if (is_phb5())
set_sys_disable_detect(p, false);
pci_slot_set_state(slot, PHB4_SLOT_LINK_START);
return slot->ops.poll_link(slot);
default:
PHBERR(p, "Unexpected slot state %08x\n", slot->state);
}
pci_slot_set_state(slot, PHB4_SLOT_NORMAL);
return OPAL_HARDWARE;
}
static int64_t phb4_freset(struct pci_slot *slot)
{
struct phb4 *p = phb_to_phb4(slot->phb);
switch(slot->state) {
case PHB4_SLOT_NORMAL:
case PHB4_SLOT_FRESET_START:
PHBDBG(p, "FRESET: Starts\n");
/* Reset max link speed for training */
p->max_link_speed = phb4_get_max_link_speed(p, NULL);
PHBDBG(p, "FRESET: Prepare for link down\n");
phb4_prepare_link_change(slot, false);
if (!p->skip_perst) {
/* circumvention for HW551382 */
if (is_phb5()) {
PHBINF(p, "FRESET: Workaround for HW551382\n");
set_sys_disable_detect(p, true);
}
PHBDBG(p, "FRESET: Assert\n");
phb4_assert_perst(slot, true);
pci_slot_set_state(slot, PHB4_SLOT_FRESET_ASSERT_DELAY);
/* 250ms assert time aligns with powernv */
return pci_slot_set_sm_timeout(slot, msecs_to_tb(250));
}
/* To skip the assert during boot time */
PHBDBG(p, "FRESET: Assert skipped\n");
pci_slot_set_state(slot, PHB4_SLOT_FRESET_ASSERT_DELAY);
p->skip_perst = false;
/* fall through */
case PHB4_SLOT_FRESET_ASSERT_DELAY:
/* Clear link errors before we deassert PERST */
phb4_err_clear_regb(p);
PHBDBG(p, "FRESET: Deassert\n");
phb4_assert_perst(slot, false);
if (pci_tracing)
phb4_link_trace(p, PHB_PCIE_DLP_LTSSM_L0, 3000);
if (is_phb5())
set_sys_disable_detect(p, false);
pci_slot_set_state(slot, PHB4_SLOT_LINK_START);
return slot->ops.poll_link(slot);
default:
PHBERR(p, "Unexpected slot state %08x\n", slot->state);
}
pci_slot_set_state(slot, PHB4_SLOT_NORMAL);
return OPAL_HARDWARE;
}
static int64_t load_capp_ucode(struct phb4 *p)
{
int64_t rc;
if (p->index != CAPP0_PHB_INDEX && p->index != CAPP1_PHB_INDEX)
return OPAL_HARDWARE;
/* 0x434150504c494448 = 'CAPPLIDH' in ASCII */
rc = capp_load_ucode(p->chip_id, p->phb.opal_id, p->index,
0x434150504c494448UL, PHB4_CAPP_REG_OFFSET(p),
CAPP_APC_MASTER_ARRAY_ADDR_REG,
CAPP_APC_MASTER_ARRAY_WRITE_REG,
CAPP_SNP_ARRAY_ADDR_REG,
CAPP_SNP_ARRAY_WRITE_REG);
return rc;
}
static int do_capp_recovery_scoms(struct phb4 *p)
{
uint64_t rc, reg, end;
uint64_t offset = PHB4_CAPP_REG_OFFSET(p);
/* Get the status of CAPP recovery */
xscom_read(p->chip_id, CAPP_ERR_STATUS_CTRL + offset, ®);
/* No recovery in progress ignore */
if ((reg & PPC_BIT(0)) == 0) {
PHBDBG(p, "CAPP: No recovery in progress\n");
return OPAL_SUCCESS;
}
PHBDBG(p, "CAPP: Waiting for recovery to complete\n");
/* recovery timer failure period 168ms */
end = mftb() + msecs_to_tb(168);
while ((reg & (PPC_BIT(1) | PPC_BIT(5) | PPC_BIT(9))) == 0) {
time_wait_ms(5);
xscom_read(p->chip_id, CAPP_ERR_STATUS_CTRL + offset, ®);
if (tb_compare(mftb(), end) != TB_ABEFOREB) {
PHBERR(p, "CAPP: Capp recovery Timed-out.\n");
end = 0;
break;
}
}
/* Check if the recovery failed or passed */
if (reg & PPC_BIT(1)) {
uint64_t act0, act1, mask, fir;
/* Use the Action0/1 and mask to only clear the bits
* that cause local checkstop. Other bits needs attention
* of the PRD daemon.
*/
xscom_read(p->chip_id, CAPP_FIR_ACTION0 + offset, &act0);
xscom_read(p->chip_id, CAPP_FIR_ACTION1 + offset, &act1);
xscom_read(p->chip_id, CAPP_FIR_MASK + offset, &mask);
xscom_read(p->chip_id, CAPP_FIR + offset, &fir);
fir = ~(fir & ~mask & act0 & act1);
PHBDBG(p, "Doing CAPP recovery scoms\n");
/* update capp fir clearing bits causing local checkstop */
PHBDBG(p, "Resetting CAPP Fir with mask 0x%016llX\n", fir);
xscom_write(p->chip_id, CAPP_FIR_CLEAR + offset, fir);
/* disable snoops */
xscom_write(p->chip_id, SNOOP_CAPI_CONFIG + offset, 0);
load_capp_ucode(p);
/* clear err rpt reg*/
xscom_write(p->chip_id, CAPP_ERR_RPT_CLR + offset, 0);
/* clear capp fir */
xscom_write(p->chip_id, CAPP_FIR + offset, 0);
/* Just reset Bit-0,1 and dont touch any other bit */
xscom_read(p->chip_id, CAPP_ERR_STATUS_CTRL + offset, ®);
reg &= ~(PPC_BIT(0) | PPC_BIT(1));
xscom_write(p->chip_id, CAPP_ERR_STATUS_CTRL + offset, reg);
PHBDBG(p, "CAPP recovery complete\n");
rc = OPAL_SUCCESS;
} else {
/* Most likely will checkstop here due to FIR ACTION for
* failed recovery. So this message would never be logged.
* But if we still enter here then return an error forcing a
* fence of the PHB.
*/
if (reg & PPC_BIT(5))
PHBERR(p, "CAPP: Capp recovery Failed\n");
else if (reg & PPC_BIT(9))
PHBERR(p, "CAPP: Capp recovery hang detected\n");
else if (end != 0)
PHBERR(p, "CAPP: Unknown recovery failure\n");
PHBDBG(p, "CAPP: Err/Status-reg=0x%016llx\n", reg);
rc = OPAL_HARDWARE;
}
return rc;
}
/*
* Disable CAPI mode on a PHB. Must be done while PHB is fenced and
* not in recovery.
*/
static void disable_capi_mode(struct phb4 *p)
{
uint64_t reg;
struct capp *capp = p->capp;
PHBINF(p, "CAPP: Deactivating\n");
/* Check if CAPP attached to the PHB and active */
if (!capp || capp->phb != &p->phb) {
PHBDBG(p, "CAPP: Not attached to this PHB!\n");
return;
}
xscom_read(p->chip_id, p->pe_xscom + XPEC_NEST_CAPP_CNTL, ®);
if (!(reg & PPC_BIT(0))) {
/* Not in CAPI mode, no action required */
PHBERR(p, "CAPP: Not enabled!\n");
return;
}
/* CAPP should already be out of recovery in this function */
capp_xscom_read(capp, CAPP_ERR_STATUS_CTRL, ®);
if (reg & PPC_BIT(0)) {
PHBERR(p, "CAPP: Can't disable while still in recovery!\n");
return;
}
PHBINF(p, "CAPP: Disabling CAPI mode\n");
/* First Phase Reset CAPP Registers */
/* CAPP about to be disabled mark TLBI_FENCED and tlbi_psl_is_dead */
capp_xscom_write(capp, CAPP_ERR_STATUS_CTRL, PPC_BIT(3) | PPC_BIT(4));
/* Flush SUE uOP1 Register */
if (p->rev != PHB4_REV_NIMBUS_DD10)
capp_xscom_write(capp, FLUSH_SUE_UOP1, 0);
/* Release DMA/STQ engines */
capp_xscom_write(capp, APC_FSM_READ_MASK, 0ull);
capp_xscom_write(capp, XPT_FSM_RMM, 0ull);
/* Disable snoop */
capp_xscom_write(capp, SNOOP_CAPI_CONFIG, 0);
/* Clear flush SUE state map register */
capp_xscom_write(capp, FLUSH_SUE_STATE_MAP, 0);
/* Disable epoch timer */
capp_xscom_write(capp, EPOCH_RECOVERY_TIMERS_CTRL, 0);
/* CAPP Transport Control Register */
capp_xscom_write(capp, TRANSPORT_CONTROL, PPC_BIT(15));
/* Disable snooping */
capp_xscom_write(capp, SNOOP_CONTROL, 0);
capp_xscom_write(capp, SNOOP_CAPI_CONFIG, 0);
/* APC Master PB Control Register - disable examining cResps */
capp_xscom_write(capp, APC_MASTER_PB_CTRL, 0);
/* APC Master Config Register - de-select PHBs */
xscom_write_mask(p->chip_id, capp->capp_xscom_offset +
APC_MASTER_CAPI_CTRL, 0, PPC_BITMASK(2, 3));
/* Clear all error registers */
capp_xscom_write(capp, CAPP_ERR_RPT_CLR, 0);
capp_xscom_write(capp, CAPP_FIR, 0);
capp_xscom_write(capp, CAPP_FIR_ACTION0, 0);
capp_xscom_write(capp, CAPP_FIR_ACTION1, 0);
capp_xscom_write(capp, CAPP_FIR_MASK, 0);
/* Second Phase Reset PEC/PHB Registers */
/* Reset the stack overrides if any */
xscom_write(p->chip_id, p->pci_xscom + XPEC_PCI_PRDSTKOVR, 0);
xscom_write(p->chip_id, p->pe_xscom +
XPEC_NEST_READ_STACK_OVERRIDE, 0);
/* PE Bus AIB Mode Bits. Disable Tracing. Leave HOL Blocking as it is */
if (!(p->rev == PHB4_REV_NIMBUS_DD10) && p->index == CAPP1_PHB_INDEX)
xscom_write_mask(p->chip_id,
p->pci_xscom + XPEC_PCI_PBAIB_HW_CONFIG, 0,
PPC_BIT(30));
/* Reset for PCI to PB data movement */
xscom_write_mask(p->chip_id, p->pe_xscom + XPEC_NEST_PBCQ_HW_CONFIG,
0, XPEC_NEST_PBCQ_HW_CONFIG_PBINIT);
/* Disable CAPP mode in PEC CAPP Control Register */
xscom_write(p->chip_id, p->pe_xscom + XPEC_NEST_CAPP_CNTL, 0ull);
}
static int64_t phb4_creset(struct pci_slot *slot)
{
struct phb4 *p = phb_to_phb4(slot->phb);
struct capp *capp = p->capp;
uint64_t pbcq_status;
uint64_t creset_time, wait_time;
/* Don't even try fixing a broken PHB */
if (p->broken)
return OPAL_HARDWARE;
switch (slot->state) {
case PHB4_SLOT_NORMAL:
case PHB4_SLOT_CRESET_START:
PHBDBG(p, "CRESET: Starts\n");
p->creset_start_time = mftb();
/* circumvention for HW551382 */
if (is_phb5()) {
PHBINF(p, "CRESET: Workaround for HW551382\n");
set_sys_disable_detect(p, true);
}
phb4_prepare_link_change(slot, false);
/* Clear error inject register, preventing recursive errors */
xscom_write(p->chip_id, p->pe_xscom + 0x2, 0x0);
/* Prevent HMI when PHB gets fenced as we are disabling CAPP */
if (p->flags & PHB4_CAPP_DISABLE &&
capp && capp->phb == slot->phb) {
/* Since no HMI, So set the recovery flag manually. */
p->flags |= PHB4_CAPP_RECOVERY;
xscom_write_mask(p->chip_id, capp->capp_xscom_offset +
CAPP_FIR_MASK,
PPC_BIT(31), PPC_BIT(31));
}
/* Force fence on the PHB to work around a non-existent PE */
if (!phb4_fenced(p))
xscom_write(p->chip_id, p->pe_stk_xscom + 0x2,
0x0000002000000000UL);
/*
* Force use of ASB for register access until the PHB has
* been fully reset.
*/
p->flags |= PHB4_CFG_USE_ASB | PHB4_AIB_FENCED;
/* Assert PREST before clearing errors */
phb4_assert_perst(slot, true);
/* Clear errors, following the proper sequence */
phb4_err_clear(p);
/* Actual reset */
p->flags |= PHB4_ETU_IN_RESET;
xscom_write(p->chip_id, p->pci_stk_xscom + XPEC_PCI_STK_ETU_RESET,
0x8000000000000000UL);
/* Read errors in PFIR and NFIR */
xscom_read(p->chip_id, p->pci_stk_xscom + 0x0, &p->pfir_cache);
xscom_read(p->chip_id, p->pe_stk_xscom + 0x0, &p->nfir_cache);
pci_slot_set_state(slot, PHB4_SLOT_CRESET_WAIT_CQ);
slot->retries = 500;
return pci_slot_set_sm_timeout(slot, msecs_to_tb(10));
case PHB4_SLOT_CRESET_WAIT_CQ:
// Wait until operations are complete
xscom_read(p->chip_id, p->pe_stk_xscom + 0xc, &pbcq_status);
if (!(pbcq_status & 0xC000000000000000UL)) {
PHBDBG(p, "CRESET: No pending transactions\n");
/* capp recovery */
if ((p->flags & PHB4_CAPP_RECOVERY) &&
(do_capp_recovery_scoms(p) != OPAL_SUCCESS))
goto error;
if (p->flags & PHB4_CAPP_DISABLE)
disable_capi_mode(p);
/* Clear errors in PFIR and NFIR */
xscom_write(p->chip_id, p->pci_stk_xscom + 0x1,
~p->pfir_cache);
xscom_write(p->chip_id, p->pe_stk_xscom + 0x1,
~p->nfir_cache);
/* Re-read errors in PFIR and NFIR and reset any new
* error reported.
*/
xscom_read(p->chip_id, p->pci_stk_xscom +
XPEC_PCI_STK_PCI_FIR, &p->pfir_cache);
xscom_read(p->chip_id, p->pe_stk_xscom +
XPEC_NEST_STK_PCI_NFIR, &p->nfir_cache);
if (p->pfir_cache || p->nfir_cache) {
PHBERR(p, "CRESET: PHB still fenced !!\n");
phb4_dump_pec_err_regs(p);
/* Reset the PHB errors */
xscom_write(p->chip_id, p->pci_stk_xscom +
XPEC_PCI_STK_PCI_FIR, 0);
xscom_write(p->chip_id, p->pe_stk_xscom +
XPEC_NEST_STK_PCI_NFIR, 0);
}
/* Clear PHB from reset */
xscom_write(p->chip_id,
p->pci_stk_xscom + XPEC_PCI_STK_ETU_RESET, 0x0);
p->flags &= ~PHB4_ETU_IN_RESET;
pci_slot_set_state(slot, PHB4_SLOT_CRESET_REINIT);
/* After lifting PHB reset, wait while logic settles */
return pci_slot_set_sm_timeout(slot, msecs_to_tb(10));
}
if (slot->retries-- == 0) {
PHBERR(p, "Timeout waiting for pending transaction\n");
goto error;
}
return pci_slot_set_sm_timeout(slot, msecs_to_tb(100));
case PHB4_SLOT_CRESET_REINIT:
PHBDBG(p, "CRESET: Reinitialization\n");
p->flags &= ~PHB4_AIB_FENCED;
p->flags &= ~PHB4_CAPP_RECOVERY;
p->flags &= ~PHB4_CFG_USE_ASB;
phb4_init_hw(p);
pci_slot_set_state(slot, PHB4_SLOT_CRESET_FRESET);
/*
* The PERST is sticky across resets, but LINK_DIS isn't.
* Re-assert it here now that we've reset the PHB.
*/
phb4_assert_perst(slot, true);
/*
* wait either 100ms (for the ETU logic) or until we've had
* PERST asserted for 250ms.
*/
creset_time = tb_to_msecs(mftb() - p->creset_start_time);
if (creset_time < 250)
wait_time = MAX(100, 250 - creset_time);
else
wait_time = 100;
PHBDBG(p, "CRESET: wait_time = %lld\n", wait_time);
return pci_slot_set_sm_timeout(slot, msecs_to_tb(wait_time));
case PHB4_SLOT_CRESET_FRESET:
/*
* We asserted PERST at the beginning of the CRESET and we
* have waited long enough, so we can skip it in the freset
* procedure.
*/
p->skip_perst = true;
pci_slot_set_state(slot, PHB4_SLOT_NORMAL);
return slot->ops.freset(slot);
default:
PHBERR(p, "CRESET: Unexpected slot state %08x, resetting...\n",
slot->state);
pci_slot_set_state(slot, PHB4_SLOT_NORMAL);
return slot->ops.creset(slot);
}
error:
/* Mark the PHB as dead and expect it to be removed */
p->broken = true;
return OPAL_HARDWARE;
}
/*
* Initialize root complex slot, which is mainly used to
* do fundamental reset before PCI enumeration in PCI core.
* When probing root complex and building its real slot,
* the operations will be copied over.
*/
static struct pci_slot *phb4_slot_create(struct phb *phb)
{
struct pci_slot *slot;
slot = pci_slot_alloc(phb, NULL);
if (!slot)
return slot;
/* Elementary functions */
slot->ops.get_presence_state = phb4_get_presence_state;
slot->ops.get_link_state = phb4_get_link_state;
slot->ops.get_power_state = NULL;
slot->ops.get_attention_state = NULL;
slot->ops.get_latch_state = NULL;
slot->ops.set_power_state = NULL;
slot->ops.set_attention_state = NULL;
/*
* For PHB slots, we have to split the fundamental reset
* into 2 steps. We might not have the first step which
* is to power off/on the slot, or it's controlled by
* individual platforms.
*/
slot->ops.prepare_link_change = phb4_prepare_link_change;
slot->ops.poll_link = phb4_poll_link;
slot->ops.hreset = phb4_hreset;
slot->ops.freset = phb4_freset;
slot->ops.creset = phb4_creset;
slot->ops.completed_sm_run = phb4_slot_sm_run_completed;
slot->link_retries = PHB4_LINK_LINK_RETRIES;
return slot;
}
static void phb4_int_unmask_all(struct phb4 *p)
{
/* Init_126..130 - Re-enable error interrupts */
out_be64(p->regs + PHB_ERR_IRQ_ENABLE, 0xca8880cc00000000ull);
if (is_phb5())
out_be64(p->regs + PHB_TXE_ERR_IRQ_ENABLE, 0x200850be08200020ull);
else
out_be64(p->regs + PHB_TXE_ERR_IRQ_ENABLE, 0x2008400e08200000ull);
out_be64(p->regs + PHB_RXE_ARB_ERR_IRQ_ENABLE, 0xc40038fc01804070ull);
out_be64(p->regs + PHB_RXE_MRG_ERR_IRQ_ENABLE, 0x00006100008000a8ull);
out_be64(p->regs + PHB_RXE_TCE_ERR_IRQ_ENABLE, 0x60510050c0000000ull);
}
/*
* Mask the IRQ for any currently set error bits. This prevents the PHB's ERR
* and INF interrupts from being re-fired before the kernel can handle the
* underlying condition.
*/
static void phb4_int_mask_active(struct phb4 *p)
{
const uint64_t error_regs[] = {
PHB_ERR_STATUS,
PHB_TXE_ERR_STATUS,
PHB_RXE_ARB_ERR_STATUS,
PHB_RXE_MRG_ERR_STATUS,
PHB_RXE_TCE_ERR_STATUS
};
int i;
for (i = 0; i < ARRAY_SIZE(error_regs); i++) {
uint64_t stat, mask;
/* The IRQ mask reg is always offset 0x20 from the status reg */
stat = phb4_read_reg(p, error_regs[i]);
mask = phb4_read_reg(p, error_regs[i] + 0x20);
phb4_write_reg(p, error_regs[i] + 0x20, mask & ~stat);
}
}
static uint64_t phb4_get_pesta(struct phb4 *p, uint64_t pe_number)
{
uint64_t pesta;
phb4_ioda_sel(p, IODA3_TBL_PESTA, pe_number, false);
pesta = phb4_read_reg(p, PHB_IODA_DATA0);
if (pesta & IODA3_PESTA_MMIO_FROZEN)
pesta |= be64_to_cpu(p->tbl_pest[2*pe_number]);
return pesta;
}
/* Check if the chip requires escalating a freeze to fence on MMIO loads */
static bool phb4_escalation_required(void)
{
uint64_t pvr = mfspr(SPR_PVR);
/* Only on Power9 */
if (proc_gen != proc_gen_p9)
return false;
/*
* Escalation is required on the following chip versions:
* - Cumulus DD1.0
* - Nimbus DD2.0, DD2.1 (and DD1.0, but it is unsupported so no check).
*/
if (pvr & PVR_POWER9_CUMULUS) {
if (PVR_VERS_MAJ(pvr) == 1 && PVR_VERS_MIN(pvr) == 0)
return true;
} else { /* Nimbus */
if (PVR_VERS_MAJ(pvr) == 2 && PVR_VERS_MIN(pvr) < 2)
return true;
}
return false;
}
static bool phb4_freeze_escalate(uint64_t pesta)
{
if ((GETFIELD(IODA3_PESTA_TRANS_TYPE, pesta) ==
IODA3_PESTA_TRANS_TYPE_MMIOLOAD) &&
(pesta & (IODA3_PESTA_CA_CMPLT_TMT | IODA3_PESTA_UR)))
return true;
return false;
}
static int64_t phb4_eeh_freeze_status(struct phb *phb, uint64_t pe_number,
uint8_t *freeze_state,
uint16_t *pci_error_type,
uint16_t *severity)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t peev_bit = PPC_BIT(pe_number & 0x3f);
uint64_t peev, pesta, pestb;
/* Defaults: not frozen */
*freeze_state = OPAL_EEH_STOPPED_NOT_FROZEN;
*pci_error_type = OPAL_EEH_NO_ERROR;
/* Check dead */
if (p->broken) {
*freeze_state = OPAL_EEH_STOPPED_MMIO_DMA_FREEZE;
*pci_error_type = OPAL_EEH_PHB_ERROR;
if (severity)
*severity = OPAL_EEH_SEV_PHB_DEAD;
return OPAL_HARDWARE;
}
/* Check fence and CAPP recovery */
if (phb4_fenced(p) || (p->flags & PHB4_CAPP_RECOVERY)) {
*freeze_state = OPAL_EEH_STOPPED_MMIO_DMA_FREEZE;
*pci_error_type = OPAL_EEH_PHB_ERROR;
if (severity)
*severity = OPAL_EEH_SEV_PHB_FENCED;
return OPAL_SUCCESS;
}
/* Check the PEEV */
phb4_ioda_sel(p, IODA3_TBL_PEEV, pe_number / 64, false);
peev = in_be64(p->regs + PHB_IODA_DATA0);
if (!(peev & peev_bit))
return OPAL_SUCCESS;
/* Indicate that we have an ER pending */
phb4_set_err_pending(p, true);
if (severity)
*severity = OPAL_EEH_SEV_PE_ER;
/* Read the full PESTA */
pesta = phb4_get_pesta(p, pe_number);
/* Check if we need to escalate to fence */
if (phb4_escalation_required() && phb4_freeze_escalate(pesta)) {
PHBERR(p, "Escalating freeze to fence PESTA[%lli]=%016llx\n",
pe_number, pesta);
*severity = OPAL_EEH_SEV_PHB_FENCED;
*pci_error_type = OPAL_EEH_PHB_ERROR;
}
/* Read the PESTB in the PHB */
phb4_ioda_sel(p, IODA3_TBL_PESTB, pe_number, false);
pestb = phb4_read_reg(p, PHB_IODA_DATA0);
/* Convert PESTA/B to freeze_state */
if (pesta & IODA3_PESTA_MMIO_FROZEN)
*freeze_state |= OPAL_EEH_STOPPED_MMIO_FREEZE;
if (pestb & IODA3_PESTB_DMA_STOPPED)
*freeze_state |= OPAL_EEH_STOPPED_DMA_FREEZE;
return OPAL_SUCCESS;
}
static int64_t phb4_eeh_freeze_clear(struct phb *phb, uint64_t pe_number,
uint64_t eeh_action_token)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t err, peev;
int32_t i;
bool frozen_pe = false;
if (p->broken)
return OPAL_HARDWARE;
/* Summary. If nothing, move to clearing the PESTs which can
* contain a freeze state from a previous error or simply set
* explicitely by the user
*/
err = in_be64(p->regs + PHB_ETU_ERR_SUMMARY);
if (err == 0xffffffffffffffffUL) {
if (phb4_fenced(p)) {
PHBERR(p, "eeh_freeze_clear on fenced PHB\n");
return OPAL_HARDWARE;
}
}
if (err != 0)
phb4_err_clear(p);
/*
* We have PEEV in system memory. It would give more performance
* to access that directly.
*/
if (eeh_action_token & OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO) {
phb4_ioda_sel(p, IODA3_TBL_PESTA, pe_number, false);
out_be64(p->regs + PHB_IODA_DATA0, 0);
}
if (eeh_action_token & OPAL_EEH_ACTION_CLEAR_FREEZE_DMA) {
phb4_ioda_sel(p, IODA3_TBL_PESTB, pe_number, false);
out_be64(p->regs + PHB_IODA_DATA0, 0);
}
/* Update ER pending indication */
phb4_ioda_sel(p, IODA3_TBL_PEEV, 0, true);
for (i = 0; i < p->num_pes/64; i++) {
peev = in_be64(p->regs + PHB_IODA_DATA0);
if (peev) {
frozen_pe = true;
break;
}
}
if (frozen_pe) {
p->err.err_src = PHB4_ERR_SRC_PHB;
p->err.err_class = PHB4_ERR_CLASS_ER;
p->err.err_bit = -1;
phb4_set_err_pending(p, true);
} else
phb4_set_err_pending(p, false);
return OPAL_SUCCESS;
}
static int64_t phb4_eeh_freeze_set(struct phb *phb, uint64_t pe_number,
uint64_t eeh_action_token)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t data;
if (p->broken)
return OPAL_HARDWARE;
if (pe_number >= p->num_pes)
return OPAL_PARAMETER;
if (eeh_action_token != OPAL_EEH_ACTION_SET_FREEZE_MMIO &&
eeh_action_token != OPAL_EEH_ACTION_SET_FREEZE_DMA &&
eeh_action_token != OPAL_EEH_ACTION_SET_FREEZE_ALL)
return OPAL_PARAMETER;
if (eeh_action_token & OPAL_EEH_ACTION_SET_FREEZE_MMIO) {
phb4_ioda_sel(p, IODA3_TBL_PESTA, pe_number, false);
data = in_be64(p->regs + PHB_IODA_DATA0);
data |= IODA3_PESTA_MMIO_FROZEN;
out_be64(p->regs + PHB_IODA_DATA0, data);
}
if (eeh_action_token & OPAL_EEH_ACTION_SET_FREEZE_DMA) {
phb4_ioda_sel(p, IODA3_TBL_PESTB, pe_number, false);
data = in_be64(p->regs + PHB_IODA_DATA0);
data |= IODA3_PESTB_DMA_STOPPED;
out_be64(p->regs + PHB_IODA_DATA0, data);
}
return OPAL_SUCCESS;
}
static int64_t phb4_eeh_next_error(struct phb *phb,
uint64_t *first_frozen_pe,
uint16_t *pci_error_type,
uint16_t *severity)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t peev, pesta;
uint32_t peev_size = p->num_pes/64;
int32_t i, j;
/* If the PHB is broken, we needn't go forward */
if (p->broken) {
*pci_error_type = OPAL_EEH_PHB_ERROR;
*severity = OPAL_EEH_SEV_PHB_DEAD;
return OPAL_SUCCESS;
}
if ((p->flags & PHB4_CAPP_RECOVERY)) {
*pci_error_type = OPAL_EEH_PHB_ERROR;
*severity = OPAL_EEH_SEV_PHB_FENCED;
return OPAL_SUCCESS;
}
/*
* Check if we already have pending errors. If that's
* the case, then to get more information about the
* pending errors. Here we try PBCQ prior to PHB.
*/
if (phb4_err_pending(p) /*&&
!phb4_err_check_pbcq(p) &&
!phb4_err_check_lem(p) */)
phb4_set_err_pending(p, false);
/* Clear result */
*pci_error_type = OPAL_EEH_NO_ERROR;
*severity = OPAL_EEH_SEV_NO_ERROR;
*first_frozen_pe = (uint64_t)-1;
/* Check frozen PEs */
if (!phb4_err_pending(p)) {
phb4_ioda_sel(p, IODA3_TBL_PEEV, 0, true);
for (i = 0; i < peev_size; i++) {
peev = in_be64(p->regs + PHB_IODA_DATA0);
if (peev) {
p->err.err_src = PHB4_ERR_SRC_PHB;
p->err.err_class = PHB4_ERR_CLASS_ER;
p->err.err_bit = -1;
phb4_set_err_pending(p, true);
break;
}
}
}
if (!phb4_err_pending(p))
return OPAL_SUCCESS;
/*
* If the frozen PE is caused by a malfunctioning TLP, we
* need reset the PHB. So convert ER to PHB-fatal error
* for the case.
*/
if (p->err.err_class == PHB4_ERR_CLASS_ER) {
for (i = peev_size - 1; i >= 0; i--) {
phb4_ioda_sel(p, IODA3_TBL_PEEV, i, false);
peev = in_be64(p->regs + PHB_IODA_DATA0);
for (j = 0; j < 64; j++) {
if (peev & PPC_BIT(j)) {
*first_frozen_pe = i * 64 + j;
break;
}
}
if (*first_frozen_pe != (uint64_t)(-1))
break;
}
}
if (*first_frozen_pe != (uint64_t)(-1)) {
pesta = phb4_get_pesta(p, *first_frozen_pe);
if (phb4_escalation_required() && phb4_freeze_escalate(pesta)) {
PHBINF(p, "Escalating freeze to fence. PESTA[%lli]=%016llx\n",
*first_frozen_pe, pesta);
p->err.err_class = PHB4_ERR_CLASS_FENCED;
}
}
switch (p->err.err_class) {
case PHB4_ERR_CLASS_DEAD:
*pci_error_type = OPAL_EEH_PHB_ERROR;
*severity = OPAL_EEH_SEV_PHB_DEAD;
break;
case PHB4_ERR_CLASS_FENCED:
*pci_error_type = OPAL_EEH_PHB_ERROR;
*severity = OPAL_EEH_SEV_PHB_FENCED;
break;
case PHB4_ERR_CLASS_ER:
*pci_error_type = OPAL_EEH_PE_ERROR;
*severity = OPAL_EEH_SEV_PE_ER;
/* No frozen PE ? */
if (*first_frozen_pe == (uint64_t)-1) {
*pci_error_type = OPAL_EEH_NO_ERROR;
*severity = OPAL_EEH_SEV_NO_ERROR;
phb4_set_err_pending(p, false);
}
break;
case PHB4_ERR_CLASS_INF:
*pci_error_type = OPAL_EEH_PHB_ERROR;
*severity = OPAL_EEH_SEV_INF;
break;
default:
*pci_error_type = OPAL_EEH_NO_ERROR;
*severity = OPAL_EEH_SEV_NO_ERROR;
phb4_set_err_pending(p, false);
}
/*
* Unmask all our error interrupts once all pending errors
* have been handled.
*/
if (!phb4_err_pending(p))
phb4_int_unmask_all(p);
return OPAL_SUCCESS;
}
static int64_t phb4_err_inject_finalize(struct phb4 *phb, uint64_t addr,
uint64_t mask, uint64_t ctrl,
bool is_write)
{
if (is_write)
ctrl |= PHB_PAPR_ERR_INJ_CTL_WR;
else
ctrl |= PHB_PAPR_ERR_INJ_CTL_RD;
out_be64(phb->regs + PHB_PAPR_ERR_INJ_ADDR, addr);
out_be64(phb->regs + PHB_PAPR_ERR_INJ_MASK, mask);
out_be64(phb->regs + PHB_PAPR_ERR_INJ_CTL, ctrl);
return OPAL_SUCCESS;
}
static int64_t phb4_err_inject_mem32(struct phb4 *phb __unused,
uint64_t pe_number __unused,
uint64_t addr __unused,
uint64_t mask __unused,
bool is_write __unused)
{
return OPAL_UNSUPPORTED;
}
static int64_t phb4_err_inject_mem64(struct phb4 *phb __unused,
uint64_t pe_number __unused,
uint64_t addr __unused,
uint64_t mask __unused,
bool is_write __unused)
{
return OPAL_UNSUPPORTED;
}
static int64_t phb4_err_inject_cfg(struct phb4 *phb, uint64_t pe_number,
uint64_t addr, uint64_t mask,
bool is_write)
{
uint64_t a, m, prefer, ctrl;
int bdfn;
bool is_bus_pe = false;
a = 0xffffull;
prefer = 0xffffull;
m = PHB_PAPR_ERR_INJ_MASK_CFG_ALL;
ctrl = PHB_PAPR_ERR_INJ_CTL_CFG;
for (bdfn = 0; bdfn < RTT_TABLE_ENTRIES; bdfn++) {
if (be16_to_cpu(phb->tbl_rtt[bdfn]) != pe_number)
continue;
/* The PE can be associated with PCI bus or device */
is_bus_pe = false;
if ((bdfn + 8) < RTT_TABLE_ENTRIES &&
be16_to_cpu(phb->tbl_rtt[bdfn + 8]) == pe_number)
is_bus_pe = true;
/* Figure out the PCI config address */
if (prefer == 0xffffull) {
if (is_bus_pe) {
m = PHB_PAPR_ERR_INJ_MASK_CFG;
prefer = SETFIELD(m, 0x0ull, PCI_BUS_NUM(bdfn));
} else {
m = PHB_PAPR_ERR_INJ_MASK_CFG_ALL;
prefer = SETFIELD(m, 0x0ull, bdfn);
}
}
/* Check the input address is valid or not */
if (!is_bus_pe &&
GETFIELD(PHB_PAPR_ERR_INJ_MASK_CFG_ALL, addr) == bdfn) {
a = addr;
break;
}
if (is_bus_pe &&
GETFIELD(PHB_PAPR_ERR_INJ_MASK_CFG, addr) == PCI_BUS_NUM(bdfn)) {
a = addr;
break;
}
}
/* Invalid PE number */
if (prefer == 0xffffull)
return OPAL_PARAMETER;
/* Specified address is out of range */
if (a == 0xffffull)
a = prefer;
else
m = mask;
return phb4_err_inject_finalize(phb, a, m, ctrl, is_write);
}
static int64_t phb4_err_inject_dma(struct phb4 *phb __unused,
uint64_t pe_number __unused,
uint64_t addr __unused,
uint64_t mask __unused,
bool is_write __unused,
bool is_64bits __unused)
{
return OPAL_UNSUPPORTED;
}
static int64_t phb4_err_inject_dma32(struct phb4 *phb, uint64_t pe_number,
uint64_t addr, uint64_t mask,
bool is_write)
{
return phb4_err_inject_dma(phb, pe_number, addr, mask, is_write, false);
}
static int64_t phb4_err_inject_dma64(struct phb4 *phb, uint64_t pe_number,
uint64_t addr, uint64_t mask,
bool is_write)
{
return phb4_err_inject_dma(phb, pe_number, addr, mask, is_write, true);
}
static int64_t phb4_err_inject(struct phb *phb, uint64_t pe_number,
uint32_t type, uint32_t func,
uint64_t addr, uint64_t mask)
{
struct phb4 *p = phb_to_phb4(phb);
int64_t (*handler)(struct phb4 *p, uint64_t pe_number,
uint64_t addr, uint64_t mask, bool is_write);
bool is_write;
/* We can't inject error to the reserved PE */
if (pe_number == PHB4_RESERVED_PE_NUM(p) || pe_number >= p->num_pes)
return OPAL_PARAMETER;
/* Clear leftover from last time */
out_be64(p->regs + PHB_PAPR_ERR_INJ_CTL, 0x0ul);
switch (func) {
case OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR:
case OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_DATA:
is_write = false;
if (type == OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64)
handler = phb4_err_inject_mem64;
else
handler = phb4_err_inject_mem32;
break;
case OPAL_ERR_INJECT_FUNC_IOA_ST_MEM_ADDR:
case OPAL_ERR_INJECT_FUNC_IOA_ST_MEM_DATA:
is_write = true;
if (type == OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64)
handler = phb4_err_inject_mem64;
else
handler = phb4_err_inject_mem32;
break;
case OPAL_ERR_INJECT_FUNC_IOA_LD_CFG_ADDR:
case OPAL_ERR_INJECT_FUNC_IOA_LD_CFG_DATA:
is_write = false;
handler = phb4_err_inject_cfg;
break;
case OPAL_ERR_INJECT_FUNC_IOA_ST_CFG_ADDR:
case OPAL_ERR_INJECT_FUNC_IOA_ST_CFG_DATA:
is_write = true;
handler = phb4_err_inject_cfg;
break;
case OPAL_ERR_INJECT_FUNC_IOA_DMA_RD_ADDR:
case OPAL_ERR_INJECT_FUNC_IOA_DMA_RD_DATA:
case OPAL_ERR_INJECT_FUNC_IOA_DMA_RD_MASTER:
case OPAL_ERR_INJECT_FUNC_IOA_DMA_RD_TARGET:
is_write = false;
if (type == OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64)
handler = phb4_err_inject_dma64;
else
handler = phb4_err_inject_dma32;
break;
case OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_ADDR:
case OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_DATA:
case OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_MASTER:
case OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET:
is_write = true;
if (type == OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64)
handler = phb4_err_inject_dma64;
else
handler = phb4_err_inject_dma32;
break;
default:
return OPAL_PARAMETER;
}
return handler(p, pe_number, addr, mask, is_write);
}
static int64_t phb4_get_diag_data(struct phb *phb,
void *diag_buffer,
uint64_t diag_buffer_len)
{
bool fenced;
struct phb4 *p = phb_to_phb4(phb);
struct OpalIoPhb4ErrorData *data = diag_buffer;
if (diag_buffer_len < sizeof(struct OpalIoPhb4ErrorData))
return OPAL_PARAMETER;
if (p->broken)
return OPAL_HARDWARE;
/*
* Dummy check for fence so that phb4_read_phb_status knows
* whether to use ASB or AIB
*/
fenced = phb4_fenced(p);
phb4_read_phb_status(p, data);
if (!fenced)
phb4_eeh_dump_regs(p);
/*
* We're running to here probably because of errors
* (INF class). For that case, we need clear the error
* explicitly.
*/
if (phb4_err_pending(p) &&
p->err.err_class == PHB4_ERR_CLASS_INF &&
p->err.err_src == PHB4_ERR_SRC_PHB) {
phb4_err_clear(p);
phb4_set_err_pending(p, false);
}
return OPAL_SUCCESS;
}
static uint64_t tve_encode_50b_noxlate(uint64_t start_addr, uint64_t end_addr)
{
uint64_t tve;
/*
* Put start address bits 49:24 into TVE[52:53]||[0:23]
* and end address bits 49:24 into TVE[54:55]||[24:47]
* and set TVE[51]
*/
tve = (start_addr << 16) & (0xffffffull << 40);
tve |= (start_addr >> 38) & (3ull << 10);
tve |= (end_addr >> 8) & (0xfffffful << 16);
tve |= (end_addr >> 40) & (3ull << 8);
tve |= PPC_BIT(51) | IODA3_TVT_NON_TRANSLATE_50;
return tve;
}
static bool phb4_is_dd20(struct phb4 *p)
{
struct proc_chip *chip = get_chip(p->chip_id);
if (p->rev == PHB4_REV_NIMBUS_DD20 && ((0xf & chip->ec_level) == 0))
return true;
return false;
}
static int64_t phb4_get_capp_info(int chip_id, struct phb *phb,
struct capp_info *info)
{
struct phb4 *p = phb_to_phb4(phb);
uint32_t offset;
/* Not even supposed to be here on P10, but doesn't hurt */
if (is_phb5())
return OPAL_UNSUPPORTED;
if (chip_id != p->chip_id)
return OPAL_PARAMETER;
/* Check is CAPP is attached to the PHB */
if (p->capp == NULL || p->capp->phb != phb)
return OPAL_PARAMETER;
offset = PHB4_CAPP_REG_OFFSET(p);
if (p->index == CAPP0_PHB_INDEX)
info->capp_index = 0;
if (p->index == CAPP1_PHB_INDEX)
info->capp_index = 1;
info->phb_index = p->index;
info->capp_fir_reg = CAPP_FIR + offset;
info->capp_fir_mask_reg = CAPP_FIR_MASK + offset;
info->capp_fir_action0_reg = CAPP_FIR_ACTION0 + offset;
info->capp_fir_action1_reg = CAPP_FIR_ACTION1 + offset;
info->capp_err_status_ctrl_reg = CAPP_ERR_STATUS_CTRL + offset;
return OPAL_SUCCESS;
}
static void phb4_init_capp_regs(struct phb4 *p, uint32_t capp_eng)
{
uint64_t addr, reg;
uint32_t offset;
uint8_t link_width_x16 = 1;
offset = PHB4_CAPP_REG_OFFSET(p);
/* Calculate the phb link width if card is attached to PEC2 */
if (p->index == CAPP1_PHB_INDEX) {
/* Check if PEC2 is in x8 or x16 mode.
* PEC0 is always in x16
*/
addr = XPEC_P9_PCI_CPLT_CONF1 + 2 * XPEC_PCI_CPLT_OFFSET;
xscom_read(p->chip_id, addr, ®);
link_width_x16 = ((reg & XPEC_P9_PCI_IOVALID_MASK) ==
XPEC_P9_PCI_IOVALID_X16);
}
/* APC Master PowerBus Control Register */
xscom_read(p->chip_id, APC_MASTER_PB_CTRL + offset, ®);
reg |= PPC_BIT(0); /* enable cResp exam */
reg |= PPC_BIT(3); /* disable vg not sys */
reg |= PPC_BIT(12);/* HW417025: disable capp virtual machines */
reg |= PPC_BIT(2); /* disable nn rn */
reg |= PPC_BIT(4); /* disable g */
reg |= PPC_BIT(5); /* disable ln */
xscom_write(p->chip_id, APC_MASTER_PB_CTRL + offset, reg);
/* Set PHB mode, HPC Dir State and P9 mode */
xscom_write(p->chip_id, APC_MASTER_CAPI_CTRL + offset,
0x1772000000000000UL);
PHBINF(p, "CAPP: port attached\n");
/* Set snoop ttype decoding , dir size to 512K */
xscom_write(p->chip_id, SNOOP_CAPI_CONFIG + offset, 0x9000000000000000UL);
/* Use Read Epsilon Tier2 for all scopes.
* Set Tier2 Read Epsilon.
*/
xscom_read(p->chip_id, SNOOP_CONTROL + offset, ®);
reg |= PPC_BIT(0);
reg |= PPC_BIT(35);
reg |= PPC_BIT(45);
reg |= PPC_BIT(46);
reg |= PPC_BIT(47);
reg |= PPC_BIT(50);
xscom_write(p->chip_id, SNOOP_CONTROL + offset, reg);
/* Transport Control Register */
xscom_read(p->chip_id, TRANSPORT_CONTROL + offset, ®);
if (p->index == CAPP0_PHB_INDEX) {
reg |= PPC_BIT(1); /* Send Packet Timer Value */
reg |= PPC_BITMASK(10, 13); /* Send Packet Timer Value */
reg &= ~PPC_BITMASK(14, 17); /* Set Max LPC CI store buffer to zeros */
reg &= ~PPC_BITMASK(18, 21); /* Set Max tlbi divider */
if (capp_eng & CAPP_MIN_STQ_ENGINES) {
/* 2 CAPP msg engines */
reg |= PPC_BIT(58);
reg |= PPC_BIT(59);
reg |= PPC_BIT(60);
}
if (capp_eng & CAPP_MAX_STQ_ENGINES) {
/* 14 CAPP msg engines */
reg |= PPC_BIT(60);
}
reg |= PPC_BIT(62);
}
if (p->index == CAPP1_PHB_INDEX) {
reg |= PPC_BIT(4); /* Send Packet Timer Value */
reg &= ~PPC_BIT(10); /* Set CI Store Buffer Threshold=5 */
reg |= PPC_BIT(11); /* Set CI Store Buffer Threshold=5 */
reg &= ~PPC_BIT(12); /* Set CI Store Buffer Threshold=5 */
reg |= PPC_BIT(13); /* Set CI Store Buffer Threshold=5 */
reg &= ~PPC_BITMASK(14, 17); /* Set Max LPC CI store buffer to zeros */
reg &= ~PPC_BITMASK(18, 21); /* Set Max tlbi divider */
if (capp_eng & CAPP_MIN_STQ_ENGINES) {
/* 2 CAPP msg engines */
reg |= PPC_BIT(59);
reg |= PPC_BIT(60);
} else if (capp_eng & CAPP_MAX_STQ_ENGINES) {
if (link_width_x16)
/* 14 CAPP msg engines */
reg |= PPC_BIT(60) | PPC_BIT(62);
else
/* 6 CAPP msg engines */
reg |= PPC_BIT(60);
}
}
xscom_write(p->chip_id, TRANSPORT_CONTROL + offset, reg);
/* The transport control register needs to be loaded in two
* steps. Once the register values have been set, we have to
* write bit 63 to a '1', which loads the register values into
* the ci store buffer logic.
*/
xscom_read(p->chip_id, TRANSPORT_CONTROL + offset, ®);
reg |= PPC_BIT(63);
xscom_write(p->chip_id, TRANSPORT_CONTROL + offset, reg);
/* Enable epoch timer */
xscom_write(p->chip_id, EPOCH_RECOVERY_TIMERS_CTRL + offset,
0xC0000000FFF8FFE0UL);
/* Flush SUE State Map Register */
xscom_write(p->chip_id, FLUSH_SUE_STATE_MAP + offset,
0x08020A0000000000UL);
/* Flush SUE uOP1 Register */
xscom_write(p->chip_id, FLUSH_SUE_UOP1 + offset,
0xDCE0280428000000);
/* capp owns PHB read buffers */
if (p->index == CAPP0_PHB_INDEX) {
/* max PHB read buffers 0-47 */
reg = 0xFFFFFFFFFFFF0000UL;
if (capp_eng & CAPP_MAX_DMA_READ_ENGINES)
reg = 0xF000000000000000UL;
xscom_write(p->chip_id, APC_FSM_READ_MASK + offset, reg);
xscom_write(p->chip_id, XPT_FSM_RMM + offset, reg);
}
if (p->index == CAPP1_PHB_INDEX) {
if (capp_eng & CAPP_MAX_DMA_READ_ENGINES) {
reg = 0xF000000000000000ULL;
} else if (link_width_x16) {
/* 0-47 (Read machines) are available for
* capp use
*/
reg = 0x0000FFFFFFFFFFFFULL;
} else {
/* Set 30 Read machines for CAPP Minus
* 20-27 for DMA
*/
reg = 0xFFFFF00E00000000ULL;
}
xscom_write(p->chip_id, APC_FSM_READ_MASK + offset, reg);
xscom_write(p->chip_id, XPT_FSM_RMM + offset, reg);
}
/* CAPP FIR Action 0 */
xscom_write(p->chip_id, CAPP_FIR_ACTION0 + offset, 0x0b1c000104060000UL);
/* CAPP FIR Action 1 */
xscom_write(p->chip_id, CAPP_FIR_ACTION1 + offset, 0x2b9c0001240E0000UL);
/* CAPP FIR MASK */
xscom_write(p->chip_id, CAPP_FIR_MASK + offset, 0x80031f98d8717000UL);
/* Mask the CAPP PSL Credit Timeout Register error */
xscom_write_mask(p->chip_id, CAPP_FIR_MASK + offset,
PPC_BIT(46), PPC_BIT(46));
/* Deassert TLBI_FENCED and tlbi_psl_is_dead */
xscom_write(p->chip_id, CAPP_ERR_STATUS_CTRL + offset, 0);
}
/* override some inits with CAPI defaults */
static void phb4_init_capp_errors(struct phb4 *p)
{
/* Init_77: TXE Error AIB Fence Enable Register */
if (phb4_is_dd20(p))
out_be64(p->regs + 0x0d30, 0xdfffbf0ff7ddfff0ull);
else
out_be64(p->regs + 0x0d30, 0xdff7bf0ff7ddfff0ull);
/* Init_86: RXE_ARB Error AIB Fence Enable Register */
out_be64(p->regs + 0x0db0, 0xfbffd7bbfb7fbfefull);
/* Init_95: RXE_MRG Error AIB Fence Enable Register */
out_be64(p->regs + 0x0e30, 0xfffffeffff7fff57ull);
/* Init_104: RXE_TCE Error AIB Fence Enable Register */
out_be64(p->regs + 0x0eb0, 0xffaeffafffffffffull);
/* Init_113: PHB Error AIB Fence Enable Register */
out_be64(p->regs + 0x0cb0, 0x35777073ff000000ull);
}
/*
* The capi, NBW and ASN indicators are used only on P9 to flag some
* types of incoming traffic for the PHB and have been removed on P10.
*
* The capi indicator is over the 8 most significant bits (and
* not 16). We stay away from bits 59 (TVE select), 60 and 61 (MSI)
*
* For the mask, we keep bit 59 in, as capi messages must hit TVE#0.
* Bit 56 is not part of the mask, so that a NBW message (see below)
* is also considered a capi message.
*/
#define CAPIIND 0x0200
#define CAPIMASK 0xFE00
/*
* Non-Blocking Write messages are a subset of capi messages, so the
* indicator is the same as capi + an extra bit (56) to differentiate.
* Mask is the same as capi + the extra bit
*/
#define NBWIND 0x0300
#define NBWMASK 0xFF00
/*
* The ASN indicator is used for tunneled operations (as_notify and
* atomics). Tunneled operation messages can be sent in PCI mode as
* well as CAPI mode.
*
* The format of those messages is specific and, for as_notify
* messages, the address field is hijacked to encode the LPID/PID/TID
* of the target thread, so those messages should not go through
* translation. They must hit TVE#1. Therefore bit 59 is part of the
* indicator.
*/
#define ASNIND 0x0C00
#define ASNMASK 0xFF00
/* Power Bus Common Queue Registers
* All PBCQ and PBAIB registers are accessed via SCOM
* NestBase = 4010C00 for PEC0
* 4011000 for PEC1
* 4011400 for PEC2
* PCIBase = D010800 for PE0
* E010800 for PE1
* F010800 for PE2
*
* Some registers are shared amongst all of the stacks and will only
* have 1 copy. Other registers are implemented one per stack.
* Registers that are duplicated will have an additional offset
* of “StackBase” so that they have a unique address.
* Stackoffset = 00000040 for Stack0
* = 00000080 for Stack1
* = 000000C0 for Stack2
*/
static int64_t enable_capi_mode(struct phb4 *p, uint64_t pe_number,
uint32_t capp_eng)
{
uint64_t addr, reg, start_addr, end_addr, stq_eng, dma_eng;
uint64_t mbt0, mbt1;
int i, window_num = -1;
/* CAPP Control Register */
xscom_read(p->chip_id, p->pe_xscom + XPEC_NEST_CAPP_CNTL, ®);
if (reg & PPC_BIT(0)) {
PHBDBG(p, "Already in CAPP mode\n");
}
for (i = 0; i < 500000; i++) {
/* PBCQ General Status Register */
xscom_read(p->chip_id,
p->pe_stk_xscom + XPEC_NEST_STK_PBCQ_STAT,
®);
if (!(reg & 0xC000000000000000UL))
break;
time_wait_us(10);
}
if (reg & 0xC000000000000000UL) {
PHBERR(p, "CAPP: Timeout waiting for pending transaction\n");
return OPAL_HARDWARE;
}
stq_eng = 0x0000000000000000ULL;
dma_eng = 0x0000000000000000ULL;
if (p->index == CAPP0_PHB_INDEX) {
/* PBCQ is operating as a x16 stack
* - The maximum number of engines give to CAPP will be
* 14 and will be assigned in the order of STQ 15 to 2.
* - 0-47 (Read machines) are available for capp use.
*/
stq_eng = 0x000E000000000000ULL; /* 14 CAPP msg engines */
dma_eng = 0x0000FFFFFFFFFFFFULL; /* 48 CAPP Read machines */
}
if (p->index == CAPP1_PHB_INDEX) {
/* Check if PEC is in x8 or x16 mode */
addr = XPEC_P9_PCI_CPLT_CONF1 + 2 * XPEC_PCI_CPLT_OFFSET;
xscom_read(p->chip_id, addr, ®);
if ((reg & XPEC_P9_PCI_IOVALID_MASK) == XPEC_P9_PCI_IOVALID_X16) {
/* PBCQ is operating as a x16 stack
* - The maximum number of engines give to CAPP will be
* 14 and will be assigned in the order of STQ 15 to 2.
* - 0-47 (Read machines) are available for capp use.
*/
stq_eng = 0x000E000000000000ULL;
dma_eng = 0x0000FFFFFFFFFFFFULL;
} else {
/* PBCQ is operating as a x8 stack
* - The maximum number of engines given to CAPP should
* be 6 and will be assigned in the order of 7 to 2.
* - 0-30 (Read machines) are available for capp use.
*/
stq_eng = 0x0006000000000000ULL;
/* 30 Read machines for CAPP Minus 20-27 for DMA */
dma_eng = 0x0000FFFFF00E0000ULL;
}
}
if (capp_eng & CAPP_MIN_STQ_ENGINES)
stq_eng = 0x0002000000000000ULL; /* 2 capp msg engines */
/* CAPP Control Register. Enable CAPP Mode */
reg = 0x8000000000000000ULL; /* PEC works in CAPP Mode */
reg |= stq_eng;
if (capp_eng & CAPP_MAX_DMA_READ_ENGINES)
dma_eng = 0x0000F00000000000ULL; /* 4 CAPP Read machines */
reg |= dma_eng;
xscom_write(p->chip_id, p->pe_xscom + XPEC_NEST_CAPP_CNTL, reg);
/* PEC2 has 3 ETU's + 16 pci lanes that can operate as x16,
* x8+x8 (bifurcated) or x8+x4+x4 (trifurcated) mode. When
* Mellanox CX5 card is attached to stack0 of this PEC, indicated by
* request to allocate CAPP_MAX_DMA_READ_ENGINES; we tweak the default
* dma-read engines allocations to maximize the DMA read performance
*/
if ((p->index == CAPP1_PHB_INDEX) &&
(capp_eng & CAPP_MAX_DMA_READ_ENGINES))
phb4_pec2_dma_engine_realloc(p);
/* PCI to PB data movement ignores the PB init signal. */
xscom_write_mask(p->chip_id, p->pe_xscom + XPEC_NEST_PBCQ_HW_CONFIG,
XPEC_NEST_PBCQ_HW_CONFIG_PBINIT,
XPEC_NEST_PBCQ_HW_CONFIG_PBINIT);
/* If pump mode is enabled don't do nodal broadcasts.
*/
xscom_read(p->chip_id, PB_CENT_HP_MODE_CURR, ®);
if (reg & PB_CFG_PUMP_MODE) {
reg = XPEC_NEST_PBCQ_HW_CONFIG_DIS_NODAL;
reg |= XPEC_NEST_PBCQ_HW_CONFIG_DIS_RNNN;
xscom_write_mask(p->chip_id,
p->pe_xscom + XPEC_NEST_PBCQ_HW_CONFIG,
reg, reg);
}
/* PEC Phase 4 (PHB) registers adjustment
* Inbound CAPP traffic: The CAPI can send both CAPP packets and
* I/O packets. A PCIe packet is indentified as a CAPP packet in
* the PHB if the PCIe address matches either the CAPI
* Compare/Mask register or its NBW Compare/Mask register.
*/
/*
* Bit [0:7] XSL_DSNCTL[capiind]
* Init_26 - CAPI Compare/Mask
*/
out_be64(p->regs + PHB_CAPI_CMPM,
((u64)CAPIIND << 48) |
((u64)CAPIMASK << 32) | PHB_CAPI_CMPM_ENABLE);
/* PB AIB Hardware Control Register
* Wait 32 PCI clocks for a credit to become available
* before rejecting.
*/
xscom_read(p->chip_id, p->pci_xscom + XPEC_PCI_PBAIB_HW_CONFIG, ®);
reg |= PPC_BITMASK(40, 42);
if (p->index == CAPP1_PHB_INDEX)
reg |= PPC_BIT(30);
xscom_write(p->chip_id, p->pci_xscom + XPEC_PCI_PBAIB_HW_CONFIG, reg);
/* non-translate/50-bit mode */
out_be64(p->regs + PHB_NXLATE_PREFIX, 0x0000000000000000Ull);
/* set tve no translate mode allow mmio window */
memset(p->tve_cache, 0x0, sizeof(p->tve_cache));
/*
* In 50-bit non-translate mode, the fields of the TVE are
* used to perform an address range check. In this mode TCE
* Table Size(0) must be a '1' (TVE[51] = 1)
* PCI Addr(49:24) >= TVE[52:53]+TVE[0:23] and
* PCI Addr(49:24) < TVE[54:55]+TVE[24:47]
*
* TVE[51] = 1
* TVE[56] = 1: 50-bit Non-Translate Mode Enable
* TVE[0:23] = 0x000000
* TVE[24:47] = 0xFFFFFF
*
* capi dma mode: CAPP DMA mode needs access to all of memory
* capi mode: Allow address range (bit 14 = 1)
* 0x0002000000000000: 0x0002FFFFFFFFFFFF
* TVE[52:53] = '10' and TVE[54:55] = '10'
*/
/* TVT#0: CAPI window + DMA, all memory */
start_addr = 0ull;
end_addr = 0x0003ffffffffffffull;
p->tve_cache[pe_number * 2] =
tve_encode_50b_noxlate(start_addr, end_addr);
/* TVT#1: CAPI window + DMA, all memory, in bypass mode */
start_addr = (1ull << 59);
end_addr = start_addr + 0x0003ffffffffffffull;
p->tve_cache[pe_number * 2 + 1] =
tve_encode_50b_noxlate(start_addr, end_addr);
phb4_ioda_sel(p, IODA3_TBL_TVT, 0, true);
for (i = 0; i < p->tvt_size; i++)
out_be64(p->regs + PHB_IODA_DATA0, p->tve_cache[i]);
/*
* Since TVT#0 is in by-pass mode, disable 32-bit MSI, as a
* DMA write targeting 0x00000000FFFFxxxx would be interpreted
* as a 32-bit MSI
*/
reg = in_be64(p->regs + PHB_PHB4_CONFIG);
reg &= ~PHB_PHB4C_32BIT_MSI_EN;
out_be64(p->regs + PHB_PHB4_CONFIG, reg);
/* set mbt bar to pass capi mmio window and keep the other
* mmio values
*/
mbt0 = IODA3_MBT0_ENABLE | IODA3_MBT0_TYPE_M64 |
SETFIELD(IODA3_MBT0_MODE, 0ull, IODA3_MBT0_MODE_SINGLE_PE) |
SETFIELD(IODA3_MBT0_MDT_COLUMN, 0ull, 0) |
(0x0002000000000000ULL & IODA3_MBT0_BASE_ADDR);
mbt1 = IODA3_MBT1_ENABLE |
(0x00ff000000000000ULL & IODA3_MBT1_MASK) |
SETFIELD(IODA3_MBT1_SINGLE_PE_NUM, 0ull, pe_number);
for (i = 0; i < p->mbt_size; i++) {
/* search if the capi mmio window is already present */
if ((p->mbt_cache[i][0] == mbt0) &&
(p->mbt_cache[i][1] == mbt1))
break;
/* search a free entry */
if ((window_num == -1) &&
((!(p->mbt_cache[i][0] & IODA3_MBT0_ENABLE)) &&
(!(p->mbt_cache[i][1] & IODA3_MBT1_ENABLE))))
window_num = i;
}
if (window_num >= 0 && i == p->mbt_size) {
/* no capi mmio window found, so add it */
p->mbt_cache[window_num][0] = mbt0;
p->mbt_cache[window_num][1] = mbt1;
phb4_ioda_sel(p, IODA3_TBL_MBT, window_num << 1, true);
out_be64(p->regs + PHB_IODA_DATA0, mbt0);
out_be64(p->regs + PHB_IODA_DATA0, mbt1);
} else if (i == p->mbt_size) {
/* mbt cache full, this case should never happen */
PHBERR(p, "CAPP: Failed to add CAPI mmio window\n");
} else {
/* duplicate entry. Nothing to do */
}
phb4_init_capp_errors(p);
phb4_init_capp_regs(p, capp_eng);
if (!chiptod_capp_timebase_sync(p->chip_id, CAPP_TFMR,
CAPP_TB,
PHB4_CAPP_REG_OFFSET(p)))
PHBERR(p, "CAPP: Failed to sync timebase\n");
/* set callbacks to handle HMI events */
capi_ops.get_capp_info = &phb4_get_capp_info;
return OPAL_SUCCESS;
}
static int64_t phb4_init_capp(struct phb4 *p)
{
struct capp *capp;
int rc;
if (p->index != CAPP0_PHB_INDEX &&
p->index != CAPP1_PHB_INDEX)
return OPAL_UNSUPPORTED;
capp = zalloc(sizeof(struct capp));
if (capp == NULL)
return OPAL_NO_MEM;
if (p->index == CAPP0_PHB_INDEX) {
capp->capp_index = 0;
capp->capp_xscom_offset = 0;
} else if (p->index == CAPP1_PHB_INDEX) {
capp->capp_index = 1;
capp->capp_xscom_offset = CAPP1_REG_OFFSET;
}
capp->attached_pe = phb4_get_reserved_pe_number(&p->phb);
capp->chip_id = p->chip_id;
/* Load capp microcode into the capp unit */
rc = load_capp_ucode(p);
if (rc == OPAL_SUCCESS)
p->capp = capp;
else
free(capp);
return rc;
}
static int64_t phb4_set_capi_mode(struct phb *phb, uint64_t mode,
uint64_t pe_number)
{
struct phb4 *p = phb_to_phb4(phb);
struct proc_chip *chip = get_chip(p->chip_id);
struct capp *capp = p->capp;
uint64_t reg, ret;
/* No CAPI on P10. OpenCAPI only */
if (is_phb5())
return OPAL_UNSUPPORTED;
/* cant do a mode switch when capp is in recovery mode */
ret = capp_xscom_read(capp, CAPP_ERR_STATUS_CTRL, ®);
if (ret != OPAL_SUCCESS)
return ret;
if ((reg & PPC_BIT(0)) && (!(reg & PPC_BIT(1)))) {
PHBDBG(p, "CAPP: recovery in progress\n");
return OPAL_BUSY;
}
switch (mode) {
case OPAL_PHB_CAPI_MODE_DMA: /* Enabled by default on p9 */
case OPAL_PHB_CAPI_MODE_SNOOP_ON:
/* nothing to do on P9 if CAPP is already enabled */
ret = p->capp->phb ? OPAL_SUCCESS : OPAL_UNSUPPORTED;
break;
case OPAL_PHB_CAPI_MODE_SNOOP_OFF:
ret = p->capp->phb ? OPAL_UNSUPPORTED : OPAL_SUCCESS;
break;
case OPAL_PHB_CAPI_MODE_PCIE:
if (p->flags & PHB4_CAPP_DISABLE) {
/* We are in middle of a CAPP disable */
ret = OPAL_BUSY;
} else if (capp->phb) {
/* Kick start a creset */
p->flags |= PHB4_CAPP_DISABLE;
PHBINF(p, "CAPP: PCIE mode needs a cold-reset\n");
/* Kick off the pci state machine */
ret = phb4_creset(phb->slot);
ret = ret > 0 ? OPAL_BUSY : ret;
} else {
/* PHB already in PCI mode */
ret = OPAL_SUCCESS;
}
break;
case OPAL_PHB_CAPI_MODE_CAPI: /* Fall Through */
case OPAL_PHB_CAPI_MODE_DMA_TVT1:
/* Make sure that PHB is not disabling CAPP */
if (p->flags & PHB4_CAPP_DISABLE) {
PHBERR(p, "CAPP: Disable in progress\n");
ret = OPAL_BUSY;
break;
}
/* Check if ucode is available */
if (!capp_ucode_loaded(chip, p->index)) {
PHBERR(p, "CAPP: ucode not loaded\n");
ret = OPAL_RESOURCE;
break;
}
/*
* Mark the CAPP attached to the PHB right away so that
* if a MCE happens during CAPP init we can handle it.
* In case of an error in CAPP init we remove the PHB
* from the attached_mask later.
*/
capp->phb = phb;
capp->attached_pe = pe_number;
if (mode == OPAL_PHB_CAPI_MODE_DMA_TVT1)
ret = enable_capi_mode(p, pe_number,
CAPP_MIN_STQ_ENGINES |
CAPP_MAX_DMA_READ_ENGINES);
else
ret = enable_capi_mode(p, pe_number,
CAPP_MAX_STQ_ENGINES |
CAPP_MIN_DMA_READ_ENGINES);
if (ret == OPAL_SUCCESS) {
/* register notification on system shutdown */
opal_add_host_sync_notifier(&phb4_host_sync_reset, p);
} else {
/* In case of an error mark the PHB detached */
capp->phb = NULL;
capp->attached_pe = phb4_get_reserved_pe_number(phb);
}
break;
default:
ret = OPAL_UNSUPPORTED;
break;
};
return ret;
}
static void phb4_p2p_set_initiator(struct phb4 *p, uint16_t pe_number)
{
uint64_t tve;
uint16_t window_id = (pe_number << 1) + 1;
/*
* Initiator needs access to the MMIO space of the target,
* which is well beyond the 'normal' memory area. Set its TVE
* with no range checking.
*/
PHBDBG(p, "Setting TVE#1 for peer-to-peer for pe %d\n", pe_number);
tve = PPC_BIT(51);
phb4_ioda_sel(p, IODA3_TBL_TVT, window_id, false);
out_be64(p->regs + PHB_IODA_DATA0, tve);
p->tve_cache[window_id] = tve;
}
static void phb4_p2p_set_target(struct phb4 *p, bool enable)
{
uint64_t val;
/*
* Enabling p2p on a target PHB reserves an outbound (as seen
* from the CPU) store queue for p2p
*/
PHBDBG(p, "%s peer-to-peer\n", (enable ? "Enabling" : "Disabling"));
xscom_read(p->chip_id,
p->pe_stk_xscom + XPEC_NEST_STK_PBCQ_MODE, &val);
if (enable)
val |= XPEC_NEST_STK_PBCQ_MODE_P2P;
else
val &= ~XPEC_NEST_STK_PBCQ_MODE_P2P;
xscom_write(p->chip_id,
p->pe_stk_xscom + XPEC_NEST_STK_PBCQ_MODE, val);
}
static void phb4_set_p2p(struct phb *phb, uint64_t mode, uint64_t flags,
uint16_t pe_number)
{
struct phb4 *p = phb_to_phb4(phb);
switch (mode) {
case OPAL_PCI_P2P_INITIATOR:
if (flags & OPAL_PCI_P2P_ENABLE)
phb4_p2p_set_initiator(p, pe_number);
/*
* When disabling p2p on the initiator, we should
* reset the TVE to its default bypass setting, but it
* is more easily done from the OS, as it knows the
* the start and end address and there's already an
* opal call for it, so let linux handle it.
*/
break;
case OPAL_PCI_P2P_TARGET:
phb4_p2p_set_target(p, !!(flags & OPAL_PCI_P2P_ENABLE));
break;
default:
assert(0);
}
}
static int64_t phb4_set_capp_recovery(struct phb *phb)
{
struct phb4 *p = phb_to_phb4(phb);
if (p->flags & PHB4_CAPP_RECOVERY)
return 0;
/* set opal event flag to indicate eeh condition */
opal_update_pending_evt(OPAL_EVENT_PCI_ERROR,
OPAL_EVENT_PCI_ERROR);
p->flags |= PHB4_CAPP_RECOVERY;
return 0;
}
/*
* Return the address out of a PBCQ Tunnel Bar register.
*/
static void phb4_get_tunnel_bar(struct phb *phb, uint64_t *addr)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t val;
xscom_read(p->chip_id, p->pe_stk_xscom + XPEC_NEST_STK_TUNNEL_BAR,
&val);
*addr = val >> 8;
}
/*
* Set PBCQ Tunnel Bar register.
* Store addr bits [8:50] in PBCQ Tunnel Bar register bits [0:42].
* Note that addr bits [8:50] must also match PSL_TNR_ADDR[8:50].
* Reset register if val == 0.
*
* This interface is required to let device drivers set the Tunnel Bar
* value of their choice.
*
* Compatibility with older versions of linux, that do not set the
* Tunnel Bar with phb4_set_tunnel_bar(), is ensured by enable_capi_mode(),
* that will set the default value that used to be assumed.
*/
static int64_t phb4_set_tunnel_bar(struct phb *phb, uint64_t addr)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t mask = 0x00FFFFFFFFFFE000ULL;
if (!addr) {
/* Reset register */
xscom_write(p->chip_id,
p->pe_stk_xscom + XPEC_NEST_STK_TUNNEL_BAR, addr);
return OPAL_SUCCESS;
}
if ((addr & ~mask))
return OPAL_PARAMETER;
if (!(addr & mask))
return OPAL_PARAMETER;
xscom_write(p->chip_id, p->pe_stk_xscom + XPEC_NEST_STK_TUNNEL_BAR,
(addr & mask) << 8);
return OPAL_SUCCESS;
}
static const struct phb_ops phb4_ops = {
.cfg_read8 = phb4_pcicfg_read8,
.cfg_read16 = phb4_pcicfg_read16,
.cfg_read32 = phb4_pcicfg_read32,
.cfg_write8 = phb4_pcicfg_write8,
.cfg_write16 = phb4_pcicfg_write16,
.cfg_write32 = phb4_pcicfg_write32,
.get_reserved_pe_number = phb4_get_reserved_pe_number,
.device_init = phb4_device_init,
.device_remove = NULL,
.ioda_reset = phb4_ioda_reset,
.papr_errinjct_reset = phb4_papr_errinjct_reset,
.pci_reinit = phb4_pci_reinit,
.set_phb_mem_window = phb4_set_phb_mem_window,
.phb_mmio_enable = phb4_phb_mmio_enable,
.map_pe_mmio_window = phb4_map_pe_mmio_window,
.map_pe_dma_window = phb4_map_pe_dma_window,
.map_pe_dma_window_real = phb4_map_pe_dma_window_real,
.set_option = phb4_set_option,
.get_option = phb4_get_option,
.set_xive_pe = phb4_set_ive_pe,
.get_msi_32 = phb4_get_msi_32,
.get_msi_64 = phb4_get_msi_64,
.set_pe = phb4_set_pe,
.set_peltv = phb4_set_peltv,
.eeh_freeze_status = phb4_eeh_freeze_status,
.eeh_freeze_clear = phb4_eeh_freeze_clear,
.eeh_freeze_set = phb4_eeh_freeze_set,
.next_error = phb4_eeh_next_error,
.err_inject = phb4_err_inject,
.get_diag_data2 = phb4_get_diag_data,
.tce_kill = phb4_tce_kill,
.set_capi_mode = phb4_set_capi_mode,
.set_p2p = phb4_set_p2p,
.set_capp_recovery = phb4_set_capp_recovery,
.get_tunnel_bar = phb4_get_tunnel_bar,
.set_tunnel_bar = phb4_set_tunnel_bar,
};
static void phb4_init_ioda3(struct phb4 *p)
{
if (is_phb5()) {
/*
* When ABT is on, the MSIs on the PHB use the PQ state bits
* of the IC and MSI triggers from the PHB are forwarded
* directly to the IC ESB page. However, the LSIs are still
* controlled locally on the PHB and LSI triggers use a
* special offset for trigger injection.
*/
if (phb_abt_mode(p)) {
uint64_t mmio_base = xive2_get_esb_base(p->base_msi);
PHBDBG(p, "Using ABT mode. ESB: 0x%016llx\n", mmio_base);
/* Init_18 - Interrupt Notify Base Address */
out_be64(p->regs + PHB_INT_NOTIFY_ADDR,
PHB_INT_NOTIFY_ADDR_64K | mmio_base);
/* Interrupt Notify Base Index is unused */
} else {
p->irq_port = xive2_get_notify_port(p->chip_id,
XIVE_HW_SRC_PHBn(p->index));
PHBDBG(p, "Using IC notif page at 0x%016llx\n",
p->irq_port);
/* Init_18 - Interrupt Notify Base Address */
out_be64(p->regs + PHB_INT_NOTIFY_ADDR, p->irq_port);
/* Init_19 - Interrupt Notify Base Index */
out_be64(p->regs + PHB_INT_NOTIFY_INDEX,
xive2_get_notify_base(p->base_msi));
}
} else { /* p9 */
p->irq_port = xive_get_notify_port(p->chip_id,
XIVE_HW_SRC_PHBn(p->index));
/* Init_18 - Interrupt Notify Base Address */
out_be64(p->regs + PHB_INT_NOTIFY_ADDR, p->irq_port);
/* Init_19 - Interrupt Notify Base Index */
out_be64(p->regs + PHB_INT_NOTIFY_INDEX,
xive_get_notify_base(p->base_msi));
}
/* Init_19x - Not in spec: Initialize source ID */
PHBDBG(p, "Reset state SRC_ID: %016llx\n",
in_be64(p->regs + PHB_LSI_SOURCE_ID));
out_be64(p->regs + PHB_LSI_SOURCE_ID,
SETFIELD(PHB_LSI_SRC_ID, 0ull, (p->num_irqs - 1) >> 3));
/* Init_20 - RTT BAR */
out_be64(p->regs + PHB_RTT_BAR, (u64) p->tbl_rtt | PHB_RTT_BAR_ENABLE);
/* Init_21 - PELT-V BAR */
out_be64(p->regs + PHB_PELTV_BAR,
(u64) p->tbl_peltv | PHB_PELTV_BAR_ENABLE);
/* Init_22 - Setup M32 starting address */
out_be64(p->regs + PHB_M32_START_ADDR, M32_PCI_START);
/* Init_23 - Setup PEST BAR */
out_be64(p->regs + PHB_PEST_BAR,
(u64)p->tbl_pest | PHB_PEST_BAR_ENABLE);
/* Init_24 - CRW Base Address Reg */
/* See enable_capi_mode() */
if (is_phb4()) {
/* Init_25 - ASN Compare/Mask - P9 only */
out_be64(p->regs + PHB_ASN_CMPM, ((u64)ASNIND << 48) |
((u64)ASNMASK << 32) | PHB_ASN_CMPM_ENABLE);
}
/* Init_26 - CAPI Compare/Mask */
/* See enable_capi_mode() */
/* if CAPP being disabled then reset CAPI Compare/Mask Register */
if (p->flags & PHB4_CAPP_DISABLE)
out_be64(p->regs + PHB_CAPI_CMPM, 0);
/* Init_27 - PCIE Outbound upper address */
out_be64(p->regs + PHB_M64_UPPER_BITS, 0);
/* Init_28 - PHB4 Configuration */
out_be64(p->regs + PHB_PHB4_CONFIG,
PHB_PHB4C_32BIT_MSI_EN |
PHB_PHB4C_64BIT_MSI_EN);
/* Init_29 - At least 256ns delay according to spec. Do a dummy
* read first to flush posted writes
*/
in_be64(p->regs + PHB_PHB4_CONFIG);
time_wait_us(2);
/* Init_30..41 - On-chip IODA tables init */
phb4_ioda_reset(&p->phb, false);
}
/* phb4_init_rc - Initialize the Root Complex config space
*/
static bool phb4_init_rc_cfg(struct phb4 *p)
{
int64_t ecap, aercap;
/* XXX Handle errors ? */
/* Init_46:
*
* Set primary bus to 0, secondary to 1 and subordinate to 0xff
*/
phb4_pcicfg_write32(&p->phb, 0, PCI_CFG_PRIMARY_BUS, 0x00ff0100);
/* Init_47 - Clear errors */
/* see phb4_rc_err_clear() called below */
/* Init_48
*
* PCIE Device control/status, enable error reporting, disable relaxed
* ordering, set MPS to 128 (see note), clear errors.
*
* Note: The doc recommends to set MPS to 512. This has proved to have
* some issues as it requires specific clamping of MRSS on devices and
* we've found devices in the field that misbehave when doing that.
*
* We currently leave it all to 128 bytes (minimum setting) at init
* time. The generic PCIe probing later on might apply a different
* value, or the kernel will, but we play it safe at early init
*/
if (p->ecap <= 0) {
ecap = pci_find_cap(&p->phb, 0, PCI_CFG_CAP_ID_EXP);
if (ecap < 0) {
PHBERR(p, "Can't locate PCI-E capability\n");
return false;
}
p->ecap = ecap;
} else {
ecap = p->ecap;
}
phb4_pcicfg_write16(&p->phb, 0, ecap + PCICAP_EXP_DEVCTL,
PCICAP_EXP_DEVCTL_CE_REPORT |
PCICAP_EXP_DEVCTL_NFE_REPORT |
PCICAP_EXP_DEVCTL_FE_REPORT |
PCICAP_EXP_DEVCTL_UR_REPORT |
SETFIELD(PCICAP_EXP_DEVCTL_MPS, 0, PCIE_MPS_128B));
/* Init_49 - Device Control/Status 2 */
phb4_pcicfg_write16(&p->phb, 0, ecap + PCICAP_EXP_DCTL2,
SETFIELD(PCICAP_EXP_DCTL2_CMPTOUT, 0, 0x5) |
PCICAP_EXP_DCTL2_ARI_FWD);
/* Init_50..54
*
* AER inits
*/
if (p->aercap <= 0) {
aercap = pci_find_ecap(&p->phb, 0, PCIECAP_ID_AER, NULL);
if (aercap < 0) {
PHBERR(p, "Can't locate AER capability\n");
return false;
}
p->aercap = aercap;
} else {
aercap = p->aercap;
}
/* Disable some error reporting as per the PHB4 spec */
phb4_pcicfg_write32(&p->phb, 0, aercap + PCIECAP_AER_UE_MASK,
PCIECAP_AER_UE_POISON_TLP |
PCIECAP_AER_UE_COMPL_TIMEOUT |
PCIECAP_AER_UE_COMPL_ABORT);
/* Enable ECRC generation & checking */
phb4_pcicfg_write32(&p->phb, 0, aercap + PCIECAP_AER_CAPCTL,
PCIECAP_AER_CAPCTL_ECRCG_EN |
PCIECAP_AER_CAPCTL_ECRCC_EN);
phb4_rc_err_clear(p);
return true;
}
static void phb4_init_errors(struct phb4 *p)
{
/* Init_55..63 - PBL errors */
out_be64(p->regs + 0x1900, 0xffffffffffffffffull);
out_be64(p->regs + 0x1908, 0x0000000000000000ull);
out_be64(p->regs + 0x1920, 0x000000004d1780f8ull);
out_be64(p->regs + 0x1928, 0x0000000000000000ull);
out_be64(p->regs + 0x1930, 0xffffffffb2f87f07ull);
out_be64(p->regs + 0x1940, 0x0000000000000000ull);
out_be64(p->regs + 0x1948, 0x0000000000000000ull);
out_be64(p->regs + 0x1950, 0x0000000000000000ull);
out_be64(p->regs + 0x1958, 0x0000000000000000ull);
/* Init_64..72 - REGB errors */
out_be64(p->regs + 0x1c00, 0xffffffffffffffffull);
out_be64(p->regs + 0x1c08, 0x0000000000000000ull);
/* Enable/disable error status indicators that trigger irqs */
if (p->has_link) {
out_be64(p->regs + 0x1c20, 0x2130006efca8bc00ull);
out_be64(p->regs + 0x1c30, 0xde1fff91035743ffull);
} else {
out_be64(p->regs + 0x1c20, 0x0000000000000000ull);
out_be64(p->regs + 0x1c30, 0x0000000000000000ull);
}
out_be64(p->regs + 0x1c28, 0x0080000000000000ull);
out_be64(p->regs + 0x1c40, 0x0000000000000000ull);
out_be64(p->regs + 0x1c48, 0x0000000000000000ull);
out_be64(p->regs + 0x1c50, 0x0000000000000000ull);
out_be64(p->regs + 0x1c58, 0x0040000000000000ull);
/* Init_73..81 - TXE errors */
out_be64(p->regs + 0x0d08, 0x0000000000000000ull);
/* Errata: Clear bit 17, otherwise a CFG write UR/CA will incorrectly
* freeze a "random" PE (whatever last PE did an MMIO)
*/
if (is_phb5()) {
out_be64(p->regs + 0x0d28, 0x0000500a00000000ull);
out_be64(p->regs + 0x0d00, 0xffffffffffffffffull);
out_be64(p->regs + 0x0d18, 0xffffff0fffffffffull);
out_be64(p->regs + 0x0d30, 0xdff7af41f7ddffdfull);
} else {
out_be64(p->regs + 0x0d28, 0x0000000a00000000ull);
if (phb4_is_dd20(p)) {
out_be64(p->regs + 0x0d00, 0xf3acff0ff7ddfff0ull);
out_be64(p->regs + 0x0d18, 0xf3acff0ff7ddfff0ull);
out_be64(p->regs + 0x0d30, 0xdfffbd05f7ddfff0ull); /* XXX CAPI has diff. value */
} else {
out_be64(p->regs + 0x0d00, 0xffffffffffffffffull);
out_be64(p->regs + 0x0d18, 0xffffff0fffffffffull);
out_be64(p->regs + 0x0d30, 0xdff7bd05f7ddfff0ull);
}
}
out_be64(p->regs + 0x0d40, 0x0000000000000000ull);
out_be64(p->regs + 0x0d48, 0x0000000000000000ull);
out_be64(p->regs + 0x0d50, 0x0000000000000000ull);
out_be64(p->regs + 0x0d58, 0x0000000000000000ull);
/* Init_82..90 - RXE_ARB errors */
out_be64(p->regs + 0x0d80, 0xffffffffffffffffull);
out_be64(p->regs + 0x0d88, 0x0000000000000000ull);
out_be64(p->regs + 0x0d98, 0xfffffffffbffffffull);
out_be64(p->regs + 0x0da8, 0xc00018b801000060ull);
/*
* Errata ER20161123 says we should set the top two bits in
* 0x0db0 but this causes config space accesses which don't
* get a response to fence the PHB. This breaks probing,
* hence we don't set them here.
*/
out_be64(p->regs + 0x0db0, 0x3bffd703fa7fbf8full); /* XXX CAPI has diff. value */
out_be64(p->regs + 0x0dc0, 0x0000000000000000ull);
out_be64(p->regs + 0x0dc8, 0x0000000000000000ull);
out_be64(p->regs + 0x0dd0, 0x0000000000000000ull);
out_be64(p->regs + 0x0dd8, 0x0000000004000000ull);
/* Init_91..99 - RXE_MRG errors */
out_be64(p->regs + 0x0e00, 0xffffffffffffffffull);
out_be64(p->regs + 0x0e08, 0x0000000000000000ull);
out_be64(p->regs + 0x0e18, 0xffffffffffffffffull);
out_be64(p->regs + 0x0e28, 0x0000600000000000ull);
out_be64(p->regs + 0x0e30, 0xfffffeffff7fff57ull);
out_be64(p->regs + 0x0e40, 0x0000000000000000ull);
out_be64(p->regs + 0x0e48, 0x0000000000000000ull);
out_be64(p->regs + 0x0e50, 0x0000000000000000ull);
out_be64(p->regs + 0x0e58, 0x0000000000000000ull);
/* Init_100..108 - RXE_TCE errors */
out_be64(p->regs + 0x0e80, 0xffffffffffffffffull);
out_be64(p->regs + 0x0e88, 0x0000000000000000ull);
out_be64(p->regs + 0x0e98, 0xffffffffffffffffull);
out_be64(p->regs + 0x0ea8, 0x60000000c0000000ull);
out_be64(p->regs + 0x0eb0, 0x9faeffaf3fffffffull); /* XXX CAPI has diff. value */
out_be64(p->regs + 0x0ec0, 0x0000000000000000ull);
out_be64(p->regs + 0x0ec8, 0x0000000000000000ull);
out_be64(p->regs + 0x0ed0, 0x0000000000000000ull);
out_be64(p->regs + 0x0ed8, 0x0000000000000000ull);
/* Init_109..117 - RXPHB errors */
out_be64(p->regs + 0x0c80, 0xffffffffffffffffull);
out_be64(p->regs + 0x0c88, 0x0000000000000000ull);
out_be64(p->regs + 0x0c98, 0xffffffffffffffffull);
out_be64(p->regs + 0x0ca8, 0x0000004000000000ull);
out_be64(p->regs + 0x0cb0, 0x35777033ff000000ull); /* XXX CAPI has diff. value */
out_be64(p->regs + 0x0cc0, 0x0000000000000000ull);
out_be64(p->regs + 0x0cc8, 0x0000000000000000ull);
out_be64(p->regs + 0x0cd0, 0x0000000000000000ull);
out_be64(p->regs + 0x0cd8, 0x0000000000000000ull);
/* Init_118..121 - LEM */
out_be64(p->regs + 0x0c00, 0x0000000000000000ull);
if (phb4_is_dd20(p)) {
out_be64(p->regs + 0x0c30, 0xf3ffffffffffffffull);
out_be64(p->regs + 0x0c38, 0xf3ffffffffffffffull);
} else {
out_be64(p->regs + 0x0c30, 0xffffffffffffffffull);
out_be64(p->regs + 0x0c38, 0xffffffffffffffffull);
}
out_be64(p->regs + 0x0c40, 0x0000000000000000ull);
}
static bool phb4_wait_dlp_reset(struct phb4 *p)
{
unsigned int i;
uint64_t val;
/*
* Firmware cannot access the UTL core regs or PCI config space
* until the cores are out of DL_PGRESET.
* DL_PGRESET should be polled until it is inactive with a value
* of '0'. The recommended polling frequency is once every 1ms.
* Firmware should poll at least 200 attempts before giving up.
* MMIO Stores to the link are silently dropped by the UTL core if
* the link is down.
* MMIO Loads to the link will be dropped by the UTL core and will
* eventually time-out and will return an all ones response if the
* link is down.
*/
#define DLP_RESET_ATTEMPTS 200
PHBDBG(p, "Waiting for DLP PG reset to complete...\n");
for (i = 0; i < DLP_RESET_ATTEMPTS; i++) {
val = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
if (!(val & PHB_PCIE_DLP_DL_PGRESET))
break;
time_wait_ms(1);
}
if (val & PHB_PCIE_DLP_DL_PGRESET) {
PHBERR(p, "Timeout waiting for DLP PG reset !\n");
return false;
}
return true;
}
static void phb4_init_hw(struct phb4 *p)
{
uint64_t val, creset;
PHBDBG(p, "Initializing PHB...\n");
/* Init_1 - Sync reset
*
* At this point we assume the PHB has already been reset.
*/
/* Init_2 - Mask FIRs */
out_be64(p->regs + PHB_LEM_ERROR_MASK, 0xffffffffffffffffull);
/* Init_3 - TCE tag enable */
out_be64(p->regs + PHB_TCE_TAG_ENABLE, 0xffffffffffffffffull);
/* Init_4 - PCIE System Configuration Register
*
* Adjust max speed based on system config
*/
val = in_be64(p->regs + PHB_PCIE_SCR);
PHBDBG(p, "Default system config: 0x%016llx\n", val);
val = SETFIELD(PHB_PCIE_SCR_MAXLINKSPEED, val, p->max_link_speed);
out_be64(p->regs + PHB_PCIE_SCR, val);
PHBDBG(p, "New system config : 0x%016llx\n",
in_be64(p->regs + PHB_PCIE_SCR));
/* Init_5 - deassert CFG reset */
creset = in_be64(p->regs + PHB_PCIE_CRESET);
PHBDBG(p, "Initial PHB CRESET is 0x%016llx\n", creset);
creset &= ~PHB_PCIE_CRESET_CFG_CORE;
out_be64(p->regs + PHB_PCIE_CRESET, creset);
/* Init_6..13 - PCIE DLP Lane EQ control */
if (p->lane_eq) {
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL0, be64_to_cpu(p->lane_eq[0]));
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL1, be64_to_cpu(p->lane_eq[1]));
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL2, be64_to_cpu(p->lane_eq[2]));
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL3, be64_to_cpu(p->lane_eq[3]));
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL40, be64_to_cpu(p->lane_eq[4]));
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL41, be64_to_cpu(p->lane_eq[5]));
if (is_phb5()) {
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL50, be64_to_cpu(p->lane_eq[6]));
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL51, be64_to_cpu(p->lane_eq[7]));
}
}
if (!p->lane_eq_en) {
/* Read modify write and set to 2 bits */
PHBDBG(p, "LINK: Disabling Lane EQ\n");
val = in_be64(p->regs + PHB_PCIE_DLP_CTL);
val |= PHB_PCIE_DLP_CTL_BYPASS_PH2 | PHB_PCIE_DLP_CTL_BYPASS_PH3;
out_be64(p->regs + PHB_PCIE_DLP_CTL, val);
}
if (is_phb5()) {
/* disable scaled flow control for now. SW527785 */
PHBDBG(p, "LINK: Disabling scaled flow control\n");
val = in_be64(p->regs + PHB_PCIE_DLP_CTL);
val |= PHB_PCIE_DLP_CTL_SFC_DISABLE;
out_be64(p->regs + PHB_PCIE_DLP_CTL, val);
/* lane equalization settings need to be tuned on P10 */
out_be64(p->regs + PHB_PCIE_PDL_PHY_EQ_CNTL,
0x80F4FFFFFF0F9C00);
}
/* Init_14 - Clear link training */
phb4_pcicfg_write32(&p->phb, 0, 0x78,
0x07FE0000 | p->max_link_speed);
/* Init_15 - deassert cores reset */
/*
* Lift the PHB resets but not PERST, this will be lifted
* later by the initial PERST state machine
*/
creset &= ~(PHB_PCIE_CRESET_TLDLP | PHB_PCIE_CRESET_PBL);
creset |= PHB_PCIE_CRESET_PIPE_N;
out_be64(p->regs + PHB_PCIE_CRESET, creset);
/* Init_16 - Wait for DLP PGRESET to clear */
if (!phb4_wait_dlp_reset(p))
goto failed;
/* Init_17 - PHB Control */
val = PHB_CTRLR_IRQ_PGSZ_64K;
val |= PHB_CTRLR_TCE_CLB_DISABLE; // HW557787 circumvention
val |= SETFIELD(PHB_CTRLR_TVT_ADDR_SEL, 0ull, TVT_2_PER_PE);
if (phb_pq_disable(p))
val |= PHB_CTRLR_IRQ_PQ_DISABLE;
if (phb_abt_mode(p))
val |= PHB_CTRLR_IRQ_ABT_MODE;
if (phb_can_store_eoi(p)) {
val |= PHB_CTRLR_IRQ_STORE_EOI;
PHBDBG(p, "store EOI is enabled\n");
}
if (!pci_eeh_mmio)
val |= PHB_CTRLR_MMIO_EEH_DISABLE;
out_be64(p->regs + PHB_CTRLR, val);
/* Init_18..41 - Architected IODA3 inits */
phb4_init_ioda3(p);
/* Init_42..45 - Clear DLP error logs */
out_be64(p->regs + 0x1aa0, 0xffffffffffffffffull);
out_be64(p->regs + 0x1aa8, 0xffffffffffffffffull);
out_be64(p->regs + 0x1ab0, 0xffffffffffffffffull);
out_be64(p->regs + 0x1ab8, 0x0);
/* Init_46..54 : Init root complex config space */
if (!phb4_init_rc_cfg(p))
goto failed;
/* Init_55..121 : Setup error registers */
phb4_init_errors(p);
/* Init_122..123 : Wait for link
* NOTE: At this point the spec waits for the link to come up. We
* don't bother as we are doing a PERST soon.
*/
/* Init_124 : NBW. XXX TODO */
/* See enable_capi_mode() */
/* Init_125 : Setup PCI command/status on root complex
* I don't know why the spec does this now and not earlier, so
* to be sure to get it right we might want to move it to the freset
* state machine, though the generic PCI layer will probably do
* this anyway (ie, enable MEM, etc... in the RC)
*/
phb4_pcicfg_write16(&p->phb, 0, PCI_CFG_CMD,
PCI_CFG_CMD_MEM_EN |
PCI_CFG_CMD_BUS_MASTER_EN);
/* Clear errors */
phb4_pcicfg_write16(&p->phb, 0, PCI_CFG_STAT,
PCI_CFG_STAT_SENT_TABORT |
PCI_CFG_STAT_RECV_TABORT |
PCI_CFG_STAT_RECV_MABORT |
PCI_CFG_STAT_SENT_SERR |
PCI_CFG_STAT_RECV_PERR);
/* Init_126..130 - Re-enable error interrupts */
phb4_int_unmask_all(p);
/* Init_131 - Re-enable LEM error mask */
out_be64(p->regs + PHB_LEM_ERROR_MASK, 0x0000000000000000ull);
/* Init_132 - Enable DMA address speculation */
out_be64(p->regs + PHB_TCE_SPEC_CTL, 0x0000000000000000ull);
/* Init_133 - Timeout Control Register 1 */
out_be64(p->regs + PHB_TIMEOUT_CTRL1, 0x0015150000150000ull);
/* Init_134 - Timeout Control Register 2 */
out_be64(p->regs + PHB_TIMEOUT_CTRL2, 0x0000151500000000ull);
/* Init_135 - PBL Timeout Control Register */
out_be64(p->regs + PHB_PBL_TIMEOUT_CTRL, 0x2013000000000000ull);
/* Mark the PHB as functional which enables all the various sequences */
p->broken = false;
PHBDBG(p, "Initialization complete\n");
return;
failed:
PHBERR(p, "Initialization failed\n");
p->broken = true;
}
/* FIXME: Use scoms rather than MMIO incase we are fenced */
static bool phb4_read_capabilities(struct phb4 *p)
{
uint64_t val;
/* XXX Should make sure ETU is out of reset ! */
/* Grab version and fit it in an int */
val = phb4_read_reg_asb(p, PHB_VERSION);
if (val == 0 || val == 0xffffffffffffffffUL) {
PHBERR(p, "Failed to read version, PHB appears broken\n");
return false;
}
p->rev = ((val >> 16) & 0x00ff0000) | (val & 0xffff);
PHBDBG(p, "Core revision 0x%x\n", p->rev);
/* Read EEH capabilities */
val = in_be64(p->regs + PHB_PHB4_EEH_CAP);
if (val == 0xffffffffffffffffUL) {
PHBERR(p, "Failed to read EEH cap, PHB appears broken\n");
return false;
}
p->max_num_pes = val >> 52;
if (p->max_num_pes >= 512) {
p->mrt_size = 16;
p->mbt_size = 32;
p->tvt_size = 1024;
} else {
p->mrt_size = 8;
p->mbt_size = 16;
p->tvt_size = 512;
}
val = in_be64(p->regs + PHB_PHB4_IRQ_CAP);
if (val == 0xffffffffffffffffUL) {
PHBERR(p, "Failed to read IRQ cap, PHB appears broken\n");
return false;
}
p->num_irqs = val & 0xffff;
/* This works for 512 PEs. FIXME calculate for any hardware
* size returned above
*/
p->tbl_peltv_size = PELTV_TABLE_SIZE_MAX;
p->tbl_pest_size = p->max_num_pes*16;
PHBDBG(p, "Found %d max PEs and %d IRQs \n",
p->max_num_pes, p->num_irqs);
return true;
}
static void phb4_allocate_tables(struct phb4 *p)
{
uint32_t i;
/* XXX Our current memalign implementation sucks,
*
* It will do the job, however it doesn't support freeing
* the memory and wastes space by always allocating twice
* as much as requested (size + alignment)
*/
p->tbl_rtt = local_alloc(p->chip_id, RTT_TABLE_SIZE, RTT_TABLE_SIZE);
assert(p->tbl_rtt);
for (i = 0; i < RTT_TABLE_ENTRIES; i++)
p->tbl_rtt[i] = cpu_to_be16(PHB4_RESERVED_PE_NUM(p));
p->tbl_peltv = local_alloc(p->chip_id, p->tbl_peltv_size, p->tbl_peltv_size);
assert(p->tbl_peltv);
memset(p->tbl_peltv, 0, p->tbl_peltv_size);
p->tbl_pest = local_alloc(p->chip_id, p->tbl_pest_size, p->tbl_pest_size);
assert(p->tbl_pest);
memset(p->tbl_pest, 0, p->tbl_pest_size);
}
static void phb4_add_properties(struct phb4 *p)
{
struct dt_node *np = p->phb.dt_node;
uint32_t lsibase, icsp = get_ics_phandle();
uint64_t m32b, m64b, m64s;
/* Add various properties that HB doesn't have to
* add, some of them simply because they result from
* policy decisions made in skiboot rather than in HB
* such as the MMIO windows going to PCI, interrupts,
* etc...
*/
dt_add_property_cells(np, "#address-cells", 3);
dt_add_property_cells(np, "#size-cells", 2);
dt_add_property_cells(np, "#interrupt-cells", 1);
dt_add_property_cells(np, "bus-range", 0, 0xff);
dt_add_property_cells(np, "clock-frequency", 0x200, 0); /* ??? */
dt_add_property_cells(np, "interrupt-parent", icsp);
/* XXX FIXME: add slot-name */
//dt_property_cell("bus-width", 8); /* Figure it out from VPD ? */
/* "ranges", we only expose M32 (PHB4 doesn't do IO)
*
* Note: The kernel expects us to have chopped of 64k from the
* M32 size (for the 32-bit MSIs). If we don't do that, it will
* get confused (OPAL does it)
*/
m32b = cleanup_addr(p->mm1_base);
m64b = cleanup_addr(p->mm0_base);
m64s = p->mm0_size;
dt_add_property_cells(np, "ranges",
/* M32 space */
0x02000000, 0x00000000, M32_PCI_START,
hi32(m32b), lo32(m32b), 0, M32_PCI_SIZE - 0x10000);
/* XXX FIXME: add opal-memwin32, dmawins, etc... */
dt_add_property_u64s(np, "ibm,opal-m64-window", m64b, m64b, m64s);
dt_add_property(np, "ibm,opal-single-pe", NULL, 0);
dt_add_property_cells(np, "ibm,opal-num-pes", p->num_pes);
dt_add_property_cells(np, "ibm,opal-reserved-pe",
PHB4_RESERVED_PE_NUM(p));
dt_add_property_cells(np, "ibm,opal-msi-ranges",
p->base_msi, p->num_irqs - 8);
/* M64 ranges start at 1 as MBT0 is used for M32 */
dt_add_property_cells(np, "ibm,opal-available-m64-ranges",
1, p->mbt_size - 1);
dt_add_property_cells(np, "ibm,supported-tce-sizes",
12, // 4K
16, // 64K
21, // 2M
30); // 1G
/* Tell Linux about alignment limits for segment splits.
*
* XXX We currently only expose splits of 1 and "num PEs",
*/
dt_add_property_cells(np, "ibm,opal-m64-segment-splits",
/* Full split, number of segments: */
p->num_pes,
/* Encoding passed to the enable call */
OPAL_ENABLE_M64_SPLIT,
/* Alignement/size restriction in #bits*/
/* XXX VERIFY VALUE */
12,
/* Unused */
0,
/* single PE, number of segments: */
1,
/* Encoding passed to the enable call */
OPAL_ENABLE_M64_NON_SPLIT,
/* Alignement/size restriction in #bits*/
/* XXX VERIFY VALUE */
12,
/* Unused */
0);
/* The interrupt maps will be generated in the RC node by the
* PCI code based on the content of this structure:
*/
lsibase = p->base_lsi;
p->phb.lstate.int_size = 2;
p->phb.lstate.int_val[0][0] = lsibase + PHB4_LSI_PCIE_INTA;
p->phb.lstate.int_val[0][1] = 1;
p->phb.lstate.int_val[1][0] = lsibase + PHB4_LSI_PCIE_INTB;
p->phb.lstate.int_val[1][1] = 1;
p->phb.lstate.int_val[2][0] = lsibase + PHB4_LSI_PCIE_INTC;
p->phb.lstate.int_val[2][1] = 1;
p->phb.lstate.int_val[3][0] = lsibase + PHB4_LSI_PCIE_INTD;
p->phb.lstate.int_val[3][1] = 1;
p->phb.lstate.int_parent[0] = icsp;
p->phb.lstate.int_parent[1] = icsp;
p->phb.lstate.int_parent[2] = icsp;
p->phb.lstate.int_parent[3] = icsp;
/* Indicators for variable tables */
dt_add_property_cells(np, "ibm,opal-rtt-table",
hi32((u64) p->tbl_rtt), lo32((u64) p->tbl_rtt), RTT_TABLE_SIZE);
dt_add_property_cells(np, "ibm,opal-peltv-table",
hi32((u64) p->tbl_peltv), lo32((u64) p->tbl_peltv),
p->tbl_peltv_size);
dt_add_property_cells(np, "ibm,opal-pest-table",
hi32((u64)p->tbl_pest), lo32((u64)p->tbl_pest), p->tbl_pest_size);
dt_add_property_cells(np, "ibm,phb-diag-data-size",
sizeof(struct OpalIoPhb4ErrorData));
if (is_phb4()) {
/* Indicate to Linux that CAPP timebase sync is supported */
dt_add_property_string(np, "ibm,capp-timebase-sync", NULL);
/* Tell Linux Compare/Mask indication values */
dt_add_property_cells(np, "ibm,phb-indications", CAPIIND, ASNIND,
NBWIND);
}
}
static bool phb4_calculate_windows(struct phb4 *p)
{
const struct dt_property *prop;
/* Get PBCQ MMIO windows from device-tree */
prop = dt_require_property(p->phb.dt_node,
"ibm,mmio-windows", -1);
assert(prop->len >= (2 * sizeof(uint64_t)));
p->mm0_base = dt_property_get_u64(prop, 0);
p->mm0_size = dt_property_get_u64(prop, 1);
if (prop->len > 16) {
p->mm1_base = dt_property_get_u64(prop, 2);
p->mm1_size = dt_property_get_u64(prop, 3);
}
/* Sort them so that 0 is big and 1 is small */
if (p->mm1_size && p->mm1_size > p->mm0_size) {
uint64_t b = p->mm0_base;
uint64_t s = p->mm0_size;
p->mm0_base = p->mm1_base;
p->mm0_size = p->mm1_size;
p->mm1_base = b;
p->mm1_size = s;
}
/* If 1 is too small, ditch it */
if (p->mm1_size < M32_PCI_SIZE)
p->mm1_size = 0;
/* If 1 doesn't exist, carve it out of 0 */
if (p->mm1_size == 0) {
p->mm0_size /= 2;
p->mm1_base = p->mm0_base + p->mm0_size;
p->mm1_size = p->mm0_size;
}
/* Crop mm1 to our desired size */
if (p->mm1_size > M32_PCI_SIZE)
p->mm1_size = M32_PCI_SIZE;
return true;
}
static void phb4_err_interrupt(struct irq_source *is, uint32_t isn)
{
struct phb4 *p = is->data;
PHBDBG(p, "Got interrupt 0x%08x\n", isn);
/* mask the interrupt conditions to prevent it from re-firing */
phb4_int_mask_active(p);
/* Update pending event */
opal_update_pending_evt(OPAL_EVENT_PCI_ERROR,
OPAL_EVENT_PCI_ERROR);
/* If the PHB is broken, go away */
if (p->broken)
return;
/*
* Mark the PHB has pending error so that the OS
* can handle it at late point.
*/
phb4_set_err_pending(p, true);
}
static uint64_t phb4_lsi_attributes(struct irq_source *is __unused,
uint32_t isn __unused)
{
#ifndef DISABLE_ERR_INTS
struct phb4 *p = is->data;
uint32_t idx = isn - p->base_lsi;
if (idx == PHB4_LSI_PCIE_INF || idx == PHB4_LSI_PCIE_ER)
return IRQ_ATTR_TARGET_OPAL | IRQ_ATTR_TARGET_RARE | IRQ_ATTR_TYPE_LSI;
#endif
return IRQ_ATTR_TARGET_LINUX;
}
static char *phb4_lsi_name(struct irq_source *is, uint32_t isn)
{
struct phb4 *p = is->data;
uint32_t idx = isn - p->base_lsi;
char buf[32];
if (idx == PHB4_LSI_PCIE_INF)
snprintf(buf, 32, "phb#%04x-inf", p->phb.opal_id);
else if (idx == PHB4_LSI_PCIE_ER)
snprintf(buf, 32, "phb#%04x-err", p->phb.opal_id);
else
assert(0); /* PCIe LSIs should never be directed to OPAL */
return strdup(buf);
}
static const struct irq_source_ops phb4_lsi_ops = {
.interrupt = phb4_err_interrupt,
.attributes = phb4_lsi_attributes,
.name = phb4_lsi_name,
};
static __be64 lane_eq_default[8] = {
CPU_TO_BE64(0x5454545454545454UL), CPU_TO_BE64(0x5454545454545454UL),
CPU_TO_BE64(0x5454545454545454UL), CPU_TO_BE64(0x5454545454545454UL),
CPU_TO_BE64(0x7777777777777777UL), CPU_TO_BE64(0x7777777777777777UL),
CPU_TO_BE64(0x7777777777777777UL), CPU_TO_BE64(0x7777777777777777UL),
};
static __be64 lane_eq_phb5_default[8] = {
CPU_TO_BE64(0x4444444444444444UL), CPU_TO_BE64(0x4444444444444444UL),
CPU_TO_BE64(0x4444444444444444UL), CPU_TO_BE64(0x4444444444444444UL),
CPU_TO_BE64(0x4444444444444444UL), CPU_TO_BE64(0x4444444444444444UL),
CPU_TO_BE64(0x9999999999999999UL), CPU_TO_BE64(0x9999999999999999UL),
};
static void phb4_create(struct dt_node *np)
{
const struct dt_property *prop;
struct phb4 *p;
struct pci_slot *slot;
size_t lane_eq_len, lane_eq_len_req;
struct dt_node *iplp;
char *path;
uint32_t irq_base, irq_flags;
int i, eq_reg_count;
int chip_id;
chip_id = dt_prop_get_u32(np, "ibm,chip-id");
p = local_alloc(chip_id, sizeof(struct phb4), 8);
assert(p);
memset(p, 0x0, sizeof(struct phb4));
/* Populate base stuff */
p->index = dt_prop_get_u32(np, "ibm,phb-index");
p->chip_id = chip_id;
p->pec = dt_prop_get_u32(np, "ibm,phb-pec-index");
p->regs = (void *)dt_get_address(np, 0, NULL);
p->int_mmio = (void *)dt_get_address(np, 1, NULL);
p->phb.dt_node = np;
p->phb.ops = &phb4_ops;
p->phb.phb_type = phb_type_pcie_v4;
p->phb.scan_map = 0x1; /* Only device 0 to scan */
if (!phb4_calculate_windows(p))
return;
/* Get the various XSCOM register bases from the device-tree */
prop = dt_require_property(np, "ibm,xscom-bases", 5 * sizeof(uint32_t));
p->pe_xscom = dt_property_get_cell(prop, 0);
p->pe_stk_xscom = dt_property_get_cell(prop, 1);
p->pci_xscom = dt_property_get_cell(prop, 2);
p->pci_stk_xscom = dt_property_get_cell(prop, 3);
p->etu_xscom = dt_property_get_cell(prop, 4);
/*
* We skip the initial PERST assertion requested by the generic code
* when doing a cold boot because we are coming out of cold boot already
* so we save boot time that way. The PERST state machine will still
* handle waiting for the link to come up, it will just avoid actually
* asserting & deasserting the PERST output
*
* For a hot IPL, we still do a PERST
*
* Note: In absence of property (ie, FSP-less), we stick to the old
* behaviour and set skip_perst to true
*/
p->skip_perst = true; /* Default */
iplp = dt_find_by_path(dt_root, "ipl-params/ipl-params");
if (iplp) {
const char *ipl_type = dt_prop_get_def(iplp, "cec-major-type", NULL);
if (ipl_type && (!strcmp(ipl_type, "hot")))
p->skip_perst = false;
}
/* By default link is assumed down */
p->has_link = false;
/* We register the PHB before we initialize it so we
* get a useful OPAL ID for it
*/
pci_register_phb(&p->phb, phb4_get_opal_id(p->chip_id, p->index));
/* Create slot structure */
slot = phb4_slot_create(&p->phb);
if (!slot)
PHBERR(p, "Cannot create PHB slot\n");
/* Hello ! */
path = dt_get_path(np);
PHBINF(p, "Found %s @%p\n", path, p->regs);
PHBINF(p, " M32 [0x%016llx..0x%016llx]\n",
p->mm1_base, p->mm1_base + p->mm1_size - 1);
PHBINF(p, " M64 [0x%016llx..0x%016llx]\n",
p->mm0_base, p->mm0_base + p->mm0_size - 1);
free(path);
/* Find base location code from root node */
p->phb.base_loc_code = dt_prop_get_def(dt_root,
"ibm,io-base-loc-code", NULL);
if (!p->phb.base_loc_code)
PHBDBG(p, "Base location code not found !\n");
/*
* Grab CEC IO VPD load info from the root of the device-tree,
* on P8 there's a single such VPD for the whole machine
*/
prop = dt_find_property(dt_root, "ibm,io-vpd");
if (!prop) {
/* LX VPD Lid not already loaded */
if (platform.vpd_iohub_load)
platform.vpd_iohub_load(dt_root);
}
/* Obtain informatin about the PHB from the hardware directly */
if (!phb4_read_capabilities(p))
goto failed;
p->max_link_speed = phb4_get_max_link_speed(p, np);
p->max_link_width = phb4_get_max_link_width(p);
PHBINF(p, "Max link speed: GEN%i, max link width %i\n",
p->max_link_speed, p->max_link_width);
/* Check for lane equalization values from HB or HDAT */
p->lane_eq_en = true;
p->lane_eq = dt_prop_get_def_size(np, "ibm,lane-eq", NULL, &lane_eq_len);
if (is_phb5())
eq_reg_count = 8;
else
eq_reg_count = 6;
lane_eq_len_req = eq_reg_count * 8;
if (p->lane_eq) {
if (lane_eq_len < lane_eq_len_req) {
PHBERR(p, "Device-tree has ibm,lane-eq too short: %ld"
" (want %ld)\n", lane_eq_len, lane_eq_len_req);
p->lane_eq = NULL;
}
} else {
PHBDBG(p, "Using default lane equalization settings\n");
if (is_phb5())
p->lane_eq = lane_eq_phb5_default;
else
p->lane_eq = lane_eq_default;
}
if (p->lane_eq) {
PHBDBG(p, "Override lane equalization settings:\n");
for (i = 0 ; i < lane_eq_len_req/(8 * 2) ; i++)
PHBDBG(p, " 0x%016llx 0x%016llx\n",
be64_to_cpu(p->lane_eq[2 * i]),
be64_to_cpu(p->lane_eq[2 * i + 1]));
}
/* Allocate a block of interrupts. We need to know if it needs
* 2K or 4K interrupts ... for now we just use 4K but that
* needs to be fixed
*/
if (is_phb5())
irq_base = xive2_alloc_hw_irqs(p->chip_id, p->num_irqs, p->num_irqs);
else
irq_base = xive_alloc_hw_irqs(p->chip_id, p->num_irqs, p->num_irqs);
if (irq_base == XIVE_IRQ_ERROR) {
PHBERR(p, "Failed to allocate %d interrupt sources\n",
p->num_irqs);
goto failed;
}
p->base_msi = irq_base;
p->base_lsi = irq_base + p->num_irqs - 8;
p->num_pes = p->max_num_pes;
/* Allocate the SkiBoot internal in-memory tables for the PHB */
phb4_allocate_tables(p);
phb4_add_properties(p);
/* Clear IODA3 cache */
phb4_init_ioda_cache(p);
/* Get the HW up and running */
phb4_init_hw(p);
/* init capp that might get attached to the phb */
if (is_phb4())
phb4_init_capp(p);
/* Compute XIVE source flags depending on PHB revision */
irq_flags = 0;
if (phb_can_store_eoi(p))
irq_flags |= XIVE_SRC_STORE_EOI;
else
irq_flags |= XIVE_SRC_TRIGGER_PAGE;
if (is_phb5()) {
/*
* Register sources with XIVE. If offloading is on, use the
* ESB pages of the XIVE IC for the MSI sources instead of the
* ESB pages of the PHB.
*/
if (phb_pq_disable(p) || phb_abt_mode(p)) {
xive2_register_esb_source(p->base_msi, p->num_irqs - 8);
} else {
xive2_register_hw_source(p->base_msi,
p->num_irqs - 8, 16,
p->int_mmio, irq_flags,
NULL, NULL);
}
/*
* LSI sources always use the ESB pages of the PHB.
*/
xive2_register_hw_source(p->base_lsi, 8, 16,
p->int_mmio + ((p->num_irqs - 8) << 16),
XIVE_SRC_LSI | irq_flags, p, &phb4_lsi_ops);
} else {
/* Register all interrupt sources with XIVE */
xive_register_hw_source(p->base_msi, p->num_irqs - 8, 16,
p->int_mmio, irq_flags, NULL, NULL);
xive_register_hw_source(p->base_lsi, 8, 16,
p->int_mmio + ((p->num_irqs - 8) << 16),
XIVE_SRC_LSI, p, &phb4_lsi_ops);
}
/* Platform additional setup */
if (platform.pci_setup_phb)
platform.pci_setup_phb(&p->phb, p->index);
dt_add_property_string(np, "status", "okay");
return;
failed:
p->broken = true;
/* Tell Linux it's broken */
dt_add_property_string(np, "status", "error");
}
static void phb4_probe_stack(struct dt_node *stk_node, uint32_t pec_index,
uint32_t nest_base, uint32_t pci_base)
{
enum phys_map_type phys_mmio64, phys_mmio32, phys_xive_esb, phys_reg_spc;
uint32_t pci_stack, nest_stack, etu_base, gcid, phb_num, stk_index;
uint64_t val, phb_bar = 0, irq_bar = 0, bar_en;
uint64_t mmio0_bar = 0, mmio0_bmask, mmio0_sz;
uint64_t mmio1_bar = 0, mmio1_bmask, mmio1_sz;
void *foo;
__be64 mmio_win[4];
unsigned int mmio_win_sz;
struct dt_node *np;
char *path;
uint64_t capp_ucode_base;
unsigned int max_link_speed;
int rc;
assert(is_phb5() || is_phb4()); /* Sanity check */
gcid = dt_get_chip_id(stk_node);
stk_index = dt_prop_get_u32(stk_node, "reg");
phb_num = dt_prop_get_u32(stk_node, "ibm,phb-index");
path = dt_get_path(stk_node);
if (is_phb5()) {
phys_mmio64 = PHB5_64BIT_MMIO;
phys_mmio32 = PHB5_32BIT_MMIO;
phys_xive_esb = PHB5_XIVE_ESB;
phys_reg_spc = PHB5_REG_SPC;
prlog(PR_INFO, "PHB: Chip %d Found PHB5 PBCQ%d Stack %d at %s\n",
gcid, pec_index, stk_index, path);
} else {
phys_mmio64 = PHB4_64BIT_MMIO;
phys_mmio32 = PHB4_32BIT_MMIO;
phys_xive_esb = PHB4_XIVE_ESB;
phys_reg_spc = PHB4_REG_SPC;
prlog(PR_INFO, "PHB: Chip %d Found PHB4 PBCQ%d Stack %d at %s\n",
gcid, pec_index, stk_index, path);
}
free(path);
pci_stack = pci_base + 0x40 * (stk_index + 1);
nest_stack = nest_base + 0x40 * (stk_index + 1);
etu_base = pci_base + 0x100 + 0x40 * stk_index;
prlog(PR_DEBUG, "PHB[%d:%d] X[PE]=0x%08x/0x%08x X[PCI]=0x%08x/0x%08x X[ETU]=0x%08x\n",
gcid, phb_num, nest_base, nest_stack, pci_base, pci_stack, etu_base);
/* Default BAR enables */
bar_en = 0;
/* Initialize PHB register BAR */
phys_map_get(gcid, phys_reg_spc, phb_num, &phb_bar, NULL);
rc = xscom_write(gcid, nest_stack + XPEC_NEST_STK_PHB_REG_BAR,
phb_bar << 8);
/* A scom error here probably indicates a defective/garded PHB */
if (rc != OPAL_SUCCESS) {
prerror("PHB[%d:%d] Unable to set PHB BAR. Error=%d\n",
gcid, phb_num, rc);
return;
}
bar_en |= XPEC_NEST_STK_BAR_EN_PHB;
/* Same with INT BAR (ESB) */
phys_map_get(gcid, phys_xive_esb, phb_num, &irq_bar, NULL);
xscom_write(gcid, nest_stack + XPEC_NEST_STK_IRQ_BAR, irq_bar << 8);
bar_en |= XPEC_NEST_STK_BAR_EN_INT;
/* Same with MMIO windows */
phys_map_get(gcid, phys_mmio64, phb_num, &mmio0_bar, &mmio0_sz);
mmio0_bmask = (~(mmio0_sz - 1)) & 0x00FFFFFFFFFFFFFFULL;
xscom_write(gcid, nest_stack + XPEC_NEST_STK_MMIO_BAR0, mmio0_bar << 8);
xscom_write(gcid, nest_stack + XPEC_NEST_STK_MMIO_BAR0_MASK, mmio0_bmask << 8);
phys_map_get(gcid, phys_mmio32, phb_num, &mmio1_bar, &mmio1_sz);
mmio1_bmask = (~(mmio1_sz - 1)) & 0x00FFFFFFFFFFFFFFULL;
xscom_write(gcid, nest_stack + XPEC_NEST_STK_MMIO_BAR1, mmio1_bar << 8);
xscom_write(gcid, nest_stack + XPEC_NEST_STK_MMIO_BAR1_MASK, mmio1_bmask << 8);
/* Build MMIO windows list */
mmio_win_sz = 0;
if (mmio0_bar) {
mmio_win[mmio_win_sz++] = cpu_to_be64(mmio0_bar);
mmio_win[mmio_win_sz++] = cpu_to_be64(mmio0_sz);
bar_en |= XPEC_NEST_STK_BAR_EN_MMIO0;
}
if (mmio1_bar) {
mmio_win[mmio_win_sz++] = cpu_to_be64(mmio1_bar);
mmio_win[mmio_win_sz++] = cpu_to_be64(mmio1_sz);
bar_en |= XPEC_NEST_STK_BAR_EN_MMIO1;
}
/* Set the appropriate enables */
xscom_read(gcid, nest_stack + XPEC_NEST_STK_BAR_EN, &val);
val |= bar_en;
xscom_write(gcid, nest_stack + XPEC_NEST_STK_BAR_EN, val);
/* No MMIO windows ? Barf ! */
if (mmio_win_sz == 0) {
prerror("PHB[%d:%d] No MMIO windows enabled !\n", gcid, phb_num);
return;
}
/* Clear errors in PFIR and NFIR */
xscom_write(gcid, pci_stack + XPEC_PCI_STK_PCI_FIR, 0);
xscom_write(gcid, nest_stack + XPEC_NEST_STK_PCI_NFIR, 0);
/* Check ETU reset */
xscom_read(gcid, pci_stack + XPEC_PCI_STK_ETU_RESET, &val);
prlog_once(PR_DEBUG, "ETU reset: %llx\n", val);
xscom_write(gcid, pci_stack + XPEC_PCI_STK_ETU_RESET, 0);
time_wait_ms(1);
// show we can read phb mmio space
foo = (void *)(phb_bar + 0x800); // phb version register
prlog_once(PR_DEBUG, "Version reg: 0x%016llx\n", in_be64(foo));
/* Create PHB node */
np = dt_new_addr(dt_root, "pciex", phb_bar);
if (!np)
return;
if (is_phb5())
dt_add_property_strings(np, "compatible", "ibm,power10-pciex", "ibm,ioda3-phb");
else
dt_add_property_strings(np, "compatible", "ibm,power9-pciex", "ibm,ioda3-phb");
dt_add_property_strings(np, "device_type", "pciex");
dt_add_property_u64s(np, "reg",
phb_bar, 0x1000,
irq_bar, 0x10000000);
/* Everything else is handled later by skiboot, we just
* stick a few hints here
*/
dt_add_property_cells(np, "ibm,xscom-bases",
nest_base, nest_stack, pci_base, pci_stack, etu_base);
dt_add_property(np, "ibm,mmio-windows", mmio_win, 8 * mmio_win_sz);
dt_add_property_cells(np, "ibm,phb-index", phb_num);
dt_add_property_cells(np, "ibm,phb-pec-index", pec_index);
dt_add_property_cells(np, "ibm,phb-stack", stk_node->phandle);
dt_add_property_cells(np, "ibm,phb-stack-index", stk_index);
dt_add_property_cells(np, "ibm,chip-id", gcid);
/* read the hub-id out of the pbcq node */
if (dt_has_node_property(stk_node->parent, "ibm,hub-id", NULL)) {
uint32_t hub_id;
hub_id = dt_prop_get_u32(stk_node->parent, "ibm,hub-id");
dt_add_property_cells(np, "ibm,hub-id", hub_id);
}
if (dt_has_node_property(stk_node->parent, "ibm,loc-code", NULL)) {
const char *lc = dt_prop_get(stk_node->parent, "ibm,loc-code");
dt_add_property_string(np, "ibm,loc-code", lc);
}
if (dt_has_node_property(stk_node, "ibm,lane-eq", NULL)) {
size_t leq_size;
const void *leq = dt_prop_get_def_size(stk_node, "ibm,lane-eq",
NULL, &leq_size);
if (leq != NULL && leq_size >= 6 * 8)
dt_add_property(np, "ibm,lane-eq", leq, leq_size);
}
if (dt_has_node_property(stk_node, "ibm,capp-ucode", NULL)) {
capp_ucode_base = dt_prop_get_u32(stk_node, "ibm,capp-ucode");
dt_add_property_cells(np, "ibm,capp-ucode", capp_ucode_base);
}
if (dt_has_node_property(stk_node, "ibm,max-link-speed", NULL)) {
max_link_speed = dt_prop_get_u32(stk_node, "ibm,max-link-speed");
dt_add_property_cells(np, "ibm,max-link-speed", max_link_speed);
}
if (is_phb4())
dt_add_property_cells(np, "ibm,capi-flags",
OPAL_PHB_CAPI_FLAG_SNOOP_CONTROL);
add_chip_dev_associativity(np);
}
static void phb4_probe_pbcq(struct dt_node *pbcq)
{
uint32_t nest_base, pci_base, pec_index;
struct dt_node *stk;
/* REMOVEME: force this for now until we stabalise PCIe */
verbose_eeh = 1;
nest_base = dt_get_address(pbcq, 0, NULL);
pci_base = dt_get_address(pbcq, 1, NULL);
pec_index = dt_prop_get_u32(pbcq, "ibm,pec-index");
dt_for_each_child(pbcq, stk) {
if (dt_node_is_enabled(stk))
phb4_probe_stack(stk, pec_index, nest_base, pci_base);
}
}
void probe_phb4(void)
{
struct dt_node *np;
const char *s;
pci_eeh_mmio = !nvram_query_eq_dangerous("pci-eeh-mmio", "disabled");
pci_retry_all = nvram_query_eq_dangerous("pci-retry-all", "true");
s = nvram_query_dangerous("phb-rx-err-max");
if (s) {
rx_err_max = atoi(s);
/* Clip to uint8_t used by hardware */
rx_err_max = MAX(rx_err_max, 0);
rx_err_max = MIN(rx_err_max, 255);
}
if (is_phb5()) {
prlog(PR_DEBUG, "PHB5: Maximum RX errors during training: %d\n", rx_err_max);
/* Look for PBCQ XSCOM nodes */
dt_for_each_compatible(dt_root, np, "ibm,power10-pbcq")
phb4_probe_pbcq(np);
/* Look for newly created PHB nodes */
dt_for_each_compatible(dt_root, np, "ibm,power10-pciex")
phb4_create(np);
} else {
prlog(PR_DEBUG, "PHB4: Maximum RX errors during training: %d\n", rx_err_max);
/* Look for PBCQ XSCOM nodes */
dt_for_each_compatible(dt_root, np, "ibm,power9-pbcq")
phb4_probe_pbcq(np);
/* Look for newly created PHB nodes */
dt_for_each_compatible(dt_root, np, "ibm,power9-pciex")
phb4_create(np);
}
}
|