1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
|
// SPDX-License-Identifier: Apache-2.0
/*
* XIVE2: eXternal Interrupt Virtualization Engine. POWER10 interrupt
* controller
*
* Copyright (c) 2016-2019, IBM Corporation.
*/
#define pr_fmt(fmt) "XIVE: " fmt
#include <skiboot.h>
#include <xscom.h>
#include <chip.h>
#include <io.h>
#include <xive.h>
#include <xive2-regs.h>
#include <xscom-p10-regs.h>
#include <interrupts.h>
#include <timebase.h>
#include <bitmap.h>
#include <buddy.h>
#include <phys-map.h>
#include <p10_stop_api.H>
/* Verbose debug */
#undef XIVE_VERBOSE_DEBUG
/* Extra debug options used in debug builds */
#ifdef DEBUG
#define XIVE_CHECK_LOCKS
#define XIVE_DEBUG_INIT_CACHE_UPDATES
#define XIVE_EXTRA_CHECK_INIT_CACHE
#else
#undef XIVE_CHECK_LOCKS
#undef XIVE_DEBUG_INIT_CACHE_UPDATES
#undef XIVE_EXTRA_CHECK_INIT_CACHE
#endif
/*
* VSDs, blocks, set translation etc...
*
* For the following data structures, the XIVE use a mechanism called
* Virtualization Structure Tables (VST) to manage the memory layout
* and access: ESBs (Event State Buffers), EAS (Event assignment
* structures), ENDs (Event Notification Descriptors) and NVT/NVP
* (Notification Virtual Targets/Processors).
*
* These structures divide those tables into 16 "blocks". Each XIVE
* instance has a definition for all 16 blocks that can either represent
* an actual table in memory or a remote XIVE MMIO port to access a
* block that is owned by that remote XIVE.
*
* Our SW design will consist of allocating one block per chip (and thus
* per XIVE instance) for now, thus giving us up to 16 supported chips in
* the system. We may have to revisit that if we ever support systems with
* more than 16 chips but that isn't on our radar at the moment or if we
* want to do like pHyp on some machines and dedicate 2 blocks per chip
* for some structures.
*
* Thus we need to be careful that we never expose to Linux the concept
* of block and block boundaries, but instead we provide full number ranges
* so that consecutive blocks can be supported.
*
* Similarily, for MMIO access, the BARs support what is called "set
* translation" which allows the BAR to be devided into a certain
* number of sets. Each "set" can be routed to a specific block and
* offset within a block.
*/
#define XIVE_MAX_BLOCKS 16
#define XIVE_VSD_SIZE 8
/*
* Max number of ESBs. (direct table)
*
* The max number of ESBs supported in the P10 MMIO space is 1TB/128K: 8M.
*
* 1M is our current top limit of ESB entries and EAS entries
* pre-allocated per chip. That allocates 256KB per chip for the state
* bits and 8M per chip for the EAS.
*/
#define XIVE_INT_ORDER 20 /* 1M interrupts */
#define XIVE_INT_COUNT (1ul << XIVE_INT_ORDER)
/*
* First interrupt number, also the first logical interrupt number
* allocated by Linux (maximum ISA interrupt number + 1)
*/
#define XIVE_INT_FIRST 0x10
/* Corresponding direct table sizes */
#define XIVE_ESB_SIZE (XIVE_INT_COUNT / 4)
#define XIVE_EAT_SIZE (XIVE_INT_COUNT * 8)
/* Use 64K for everything by default */
#define XIVE_ESB_SHIFT (16 + 1) /* trigger + mgmt pages */
#define XIVE_ESB_PAGE_SIZE (1ul << XIVE_ESB_SHIFT) /* 2 pages */
/*
* Max number of ENDs. (indirect table)
*
* The max number of ENDs supported in the P10 MMIO space is 2TB/128K: 16M.
* Since one END is 32 bytes, a 64K indirect subpage can hold 2K ENDs.
* We need 8192 subpages, ie, 64K of memory for the indirect table.
*/
#define END_PER_PAGE (PAGE_SIZE / sizeof(struct xive_end))
#define XIVE_END_ORDER 23 /* 8M ENDs */
#define XIVE_END_COUNT (1ul << XIVE_END_ORDER)
#define XIVE_END_TABLE_SIZE ((XIVE_END_COUNT / END_PER_PAGE) * XIVE_VSD_SIZE)
#define XIVE_END_SHIFT (16 + 1) /* ESn + ESe pages */
/* One bit per number of priorities configured */
#define xive_end_bitmap_size(x) (XIVE_END_COUNT >> xive_cfg_vp_prio_shift(x))
/* Number of priorities (and thus ENDs) we allocate for each VP */
#define xive_cfg_vp_prio_shift(x) GETFIELD(CQ_XIVE_CFG_VP_INT_PRIO, (x)->config)
#define xive_cfg_vp_prio(x) (1 << xive_cfg_vp_prio_shift(x))
/* Max priority number */
#define xive_max_prio(x) (xive_cfg_vp_prio(x) - 1)
/* Priority used for gather/silent escalation (KVM) */
#define xive_escalation_prio(x) xive_max_prio(x)
/*
* Max number of VPs. (indirect table)
*
* The max number of NVPs we support in our MMIO space is 1TB/128K: 8M.
* Since one NVP is 32 bytes, a 64K indirect subpage can hold 2K NVPs.
* We need 4096 pointers, ie, 32K of memory for the indirect table.
*
* However, we use 8 priorities (by default) per NVP and the number of
* ENDs is configured to 8M. Therefore, our VP space is limited to 1M.
*/
#define VP_PER_PAGE (PAGE_SIZE / sizeof(struct xive_nvp))
#define XIVE_VP_ORDER(x) (XIVE_END_ORDER - xive_cfg_vp_prio_shift(x))
#define XIVE_VP_COUNT(x) (1ul << XIVE_VP_ORDER(x))
#define XIVE_VP_TABLE_SIZE(x) ((XIVE_VP_COUNT(x) / VP_PER_PAGE) * XIVE_VSD_SIZE)
#define XIVE_NVP_SHIFT 17 /* NVPG BAR: two pages, even NVP, odd NVG */
/* VP Space maximums in Gen1 and Gen2 modes */
#define VP_SHIFT_GEN1 19 /* in sync with END_W6_VP_OFFSET_GEN1 */
#define VP_SHIFT_GEN2 24 /* in sync with END_W6_VP_OFFSET */
/*
* VP ids for HW threads.
*
* Depends on the thread id bits configuration of the IC. 8bit is the
* default for P10 and 7bit for p9.
*
* These values are global because they should be common to all chips
*/
static uint32_t xive_threadid_shift;
static uint32_t xive_hw_vp_base;
static uint32_t xive_hw_vp_count;
/*
* The XIVE operation mode indicates the active "API" and corresponds
* to the "version/mode" parameter of the opal_xive_reset() call
*/
static enum {
/* No XICS emulation */
XIVE_MODE_EXPL = OPAL_XIVE_MODE_EXPL, /* default */
XIVE_MODE_NONE,
} xive_mode = XIVE_MODE_NONE;
/*
* The XIVE exploitation mode options indicates the active features and
* is part of the mode parameter of the opal_xive_reset() call
*/
static uint64_t xive_expl_options;
#define XIVE_EXPL_ALL_OPTIONS 0
/*
* Each source controller has one of these. There's one embedded in
* the XIVE struct for IPIs
*/
struct xive_src {
struct irq_source is;
const struct irq_source_ops *orig_ops;
struct xive *xive;
void *esb_mmio;
uint32_t esb_base;
uint32_t esb_shift;
uint32_t flags;
};
struct xive_cpu_state {
struct xive *xive;
void *tm_ring1;
/* Base HW VP and associated queues */
uint32_t vp_blk;
uint32_t vp_idx;
uint32_t end_blk;
uint32_t end_idx; /* Base end index of a block of 8 */
struct lock lock;
};
enum xive_generation {
XIVE_GEN1 = 1, /* P9 compat mode */
XIVE_GEN2 = 2, /* P10 default */
};
enum xive_quirks {
/* HW527671 - 8bits Hardwired Thread Id range not implemented */
XIVE_QUIRK_THREADID_7BITS = 0x00000001,
/* HW542974 - interrupt command priority checker not working properly */
XIVE_QUIRK_BROKEN_PRIO_CHECK = 0x00000002,
};
struct xive {
uint32_t chip_id;
uint32_t block_id;
struct dt_node *x_node;
enum xive_generation generation;
uint64_t capabilities;
uint64_t config;
uint64_t xscom_base;
/* MMIO regions */
void *ic_base;
uint64_t ic_size;
uint32_t ic_shift;
void *ic_tm_direct_base;
void *tm_base;
uint64_t tm_size;
uint32_t tm_shift;
void *nvp_base;
uint64_t nvp_size;
void *esb_base;
uint64_t esb_size;
void *end_base;
uint64_t end_size;
/* Set on XSCOM register access error */
bool last_reg_error;
/* Per-XIVE mutex */
struct lock lock;
/* Pre-allocated tables.
*
* We setup all the VDS for actual tables (ie, by opposition to
* forwarding ports) as either direct pre-allocated or indirect
* and partially populated.
*
* Currently, the ESB and the EAS tables are direct and fully
* pre-allocated based on XIVE_INT_COUNT.
*
* The other tables are indirect, we thus pre-allocate the indirect
* table (ie, pages of pointers) and populate enough of the pages
* for our basic setup using 64K subpages.
*
* The size of the indirect tables are driven by XIVE_VP_COUNT
* and XIVE_END_COUNT. The number of pre-allocated ones are
* driven by xive_hw_vp_count for the HW threads. The number
* of END depends on number of VP.
*/
/* Direct SBE and EAT tables */
void *sbe_base;
void *eat_base;
/* Indirect END table. NULL entries are unallocated, count is
* the numbre of pointers (ie, sub page placeholders).
*/
beint64_t *end_ind_base;
uint32_t end_ind_count;
uint64_t end_ind_size;
/* END allocation bitmap. Each bit represent #priority ENDs */
bitmap_t *end_map;
/* Indirect NVT/VP table. NULL entries are unallocated, count is
* the numbre of pointers (ie, sub page placeholders).
*/
beint64_t *vp_ind_base;
uint32_t vp_ind_count;
uint64_t vp_ind_size;
/* VP space size. Depends on Gen1/2 mode */
uint32_t vp_shift;
/* Pool of donated pages for provisioning indirect END and VP pages */
struct list_head donated_pages;
/* To ease a possible change to supporting more than one block of
* interrupts per chip, we store here the "base" global number
* and max number of interrupts for this chip. The global number
* encompass the block number and index.
*/
uint32_t int_base;
uint32_t int_count;
/* Due to the overlap between IPIs and HW sources in the EAS table,
* we keep some kind of top-down allocator. It is used for HW sources
* to "allocate" interrupt entries and will limit what can be handed
* out as IPIs. Of course this assumes we "allocate" all HW sources
* before we start handing out IPIs.
*
* Note: The numbers here are global interrupt numbers so that we can
* potentially handle more than one block per chip in the future.
*/
uint32_t int_hw_bot; /* Bottom of HW allocation */
uint32_t int_ipi_top; /* Highest IPI handed out so far + 1 */
/* The IPI allocation bitmap */
bitmap_t *ipi_alloc_map;
/* We keep track of which interrupts were ever enabled to
* speed up xive_reset
*/
bitmap_t *int_enabled_map;
/* Embedded source IPIs */
struct xive_src ipis;
/* Embedded escalation interrupts */
struct xive_src esc_irqs;
/* In memory queue overflow */
void *q_ovf;
/* Cache/sync injection */
uint64_t sync_inject_size;
void *sync_inject;
/* INT HW Errata */
uint64_t quirks;
};
/* First XIVE unit configured on the system */
static struct xive *one_xive;
/* Global DT node */
static struct dt_node *xive_dt_node;
/* Block <-> Chip conversions.
*
* As chipIDs may not be within the range of 16 block IDs supported by XIVE,
* we have a 2 way conversion scheme.
*
* From block to chip, use the global table below.
*
* From chip to block, a field in struct proc_chip contains the first block
* of that chip. For now we only support one block per chip but that might
* change in the future
*/
#define XIVE_INVALID_CHIP 0xffffffff
#define XIVE_MAX_CHIPS 16
static uint32_t xive_block_to_chip[XIVE_MAX_CHIPS];
static uint32_t xive_block_count;
static uint32_t xive_chip_to_block(uint32_t chip_id)
{
struct proc_chip *c = get_chip(chip_id);
assert(c);
assert(c->xive);
return c->xive->block_id;
}
/*
* Conversion between GIRQ and block/index.
*
* ------------------------------------
* |000E|BLOC| INDEX|
* ------------------------------------
* 4 4 24
*
* the E bit indicates that this is an escalation interrupt, in
* that case, the BLOC/INDEX represents the END containing the
* corresponding escalation descriptor.
*
* Global interrupt numbers for non-escalation interrupts are thus
* limited to 28 bits.
*/
#define INT_SHIFT 24
#define INT_ESC_SHIFT (INT_SHIFT + 4) /* 4bits block id */
#if XIVE_INT_ORDER > INT_SHIFT
#error "Too many ESBs for IRQ encoding"
#endif
#if XIVE_END_ORDER > INT_SHIFT
#error "Too many ENDs for escalation IRQ number encoding"
#endif
#define GIRQ_TO_BLK(__g) (((__g) >> INT_SHIFT) & 0xf)
#define GIRQ_TO_IDX(__g) ((__g) & ((1 << INT_SHIFT) - 1))
#define BLKIDX_TO_GIRQ(__b,__i) (((uint32_t)(__b)) << INT_SHIFT | (__i))
#define GIRQ_IS_ESCALATION(__g) ((__g) & (1 << INT_ESC_SHIFT))
#define MAKE_ESCALATION_GIRQ(__b,__i)(BLKIDX_TO_GIRQ(__b,__i) | (1 << INT_ESC_SHIFT))
/* Block/IRQ to chip# conversions */
#define PC_BLK_TO_CHIP(__b) (xive_block_to_chip[__b])
#define VC_BLK_TO_CHIP(__b) (xive_block_to_chip[__b])
#define GIRQ_TO_CHIP(__isn) (VC_BLK_TO_CHIP(GIRQ_TO_BLK(__isn)))
/* Routing of physical processors to VPs */
#define PIR2VP_IDX( __pir) (xive_hw_vp_base | P10_PIR2LOCALCPU(__pir))
#define PIR2VP_BLK(__pir) (xive_chip_to_block(P10_PIR2GCID(__pir)))
#define VP2PIR(__blk, __idx) (P10_PIRFROMLOCALCPU(VC_BLK_TO_CHIP(__blk), (__idx) & 0xff))
/* Decoding of OPAL API VP IDs. The VP IDs are encoded as follow
*
* Block group mode:
*
* -----------------------------------
* |GVEOOOOO| INDEX|
* -----------------------------------
* || |
* || Order
* |Virtual
* Group
*
* G (Group) : Set to 1 for a group VP (not currently supported)
* V (Virtual) : Set to 1 for an allocated VP (vs. a physical processor ID)
* E (Error) : Should never be 1, used internally for errors
* O (Order) : Allocation order of the VP block
*
* The conversion is thus done as follow (groups aren't implemented yet)
*
* If V=0, O must be 0 and 24-bit INDEX value is the PIR
* If V=1, the order O group is allocated such that if N is the number of
* chip bits considered for allocation (*)
* then the INDEX is constructed as follow (bit numbers such as 0=LSB)
* - bottom O-N bits is the index within the "VP block"
* - next N bits is the XIVE blockID of the VP
* - the remaining bits is the per-chip "base"
* so the conversion consists of "extracting" the block ID and moving
* down the upper bits by N bits.
*
* In non-block-group mode, the difference is that the blockID is
* on the left of the index (the entire VP block is in a single
* block ID)
*/
#define VP_GROUP_SHIFT 31
#define VP_VIRTUAL_SHIFT 30
#define VP_ERROR_SHIFT 29
#define VP_ORDER_SHIFT 24
#define vp_group(vp) (((vp) >> VP_GROUP_SHIFT) & 1)
#define vp_virtual(vp) (((vp) >> VP_VIRTUAL_SHIFT) & 1)
#define vp_order(vp) (((vp) >> VP_ORDER_SHIFT) & 0x1f)
#define vp_index(vp) ((vp) & ((1 << VP_ORDER_SHIFT) - 1))
/* VP allocation */
static uint32_t xive_chips_alloc_bits = 0;
static struct buddy *xive_vp_buddy;
static struct lock xive_buddy_lock = LOCK_UNLOCKED;
/* VP# decoding/encoding */
static bool xive_decode_vp(uint32_t vp, uint32_t *blk, uint32_t *idx,
uint8_t *order, bool *group)
{
uint32_t o = vp_order(vp);
uint32_t n = xive_chips_alloc_bits;
uint32_t index = vp_index(vp);
uint32_t imask = (1 << (o - n)) - 1;
/* Groups not supported yet */
if (vp_group(vp))
return false;
if (group)
*group = false;
/* PIR case */
if (!vp_virtual(vp)) {
if (find_cpu_by_pir(index) == NULL)
return false;
if (blk)
*blk = PIR2VP_BLK(index);
if (idx)
*idx = PIR2VP_IDX(index);
return true;
}
/* Ensure o > n, we have *at least* 2 VPs per block */
if (o <= n)
return false;
/* Combine the index base and index */
if (idx)
*idx = ((index >> n) & ~imask) | (index & imask);
/* Extract block ID */
if (blk)
*blk = (index >> (o - n)) & ((1 << n) - 1);
/* Return order as well if asked for */
if (order)
*order = o;
return true;
}
static uint32_t xive_encode_vp(uint32_t blk, uint32_t idx, uint32_t order)
{
uint32_t vp = (1 << VP_VIRTUAL_SHIFT) | (order << VP_ORDER_SHIFT);
uint32_t n = xive_chips_alloc_bits;
uint32_t imask = (1 << (order - n)) - 1;
vp |= (idx & ~imask) << n;
vp |= blk << (order - n);
vp |= idx & imask;
return vp;
}
/*
* XSCOM/MMIO helpers
*/
#define XIVE_NO_MMIO -1
#define xive_regw(__x, __r, __v) \
__xive_regw(__x, __r, X_##__r, __v, #__r)
#define xive_regr(__x, __r) \
__xive_regr(__x, __r, X_##__r, #__r)
#define xive_regwx(__x, __r, __v) \
__xive_regw(__x, XIVE_NO_MMIO, X_##__r, __v, #__r)
#define xive_regrx(__x, __r) \
__xive_regr(__x, XIVE_NO_MMIO, X_##__r, #__r)
#ifdef XIVE_VERBOSE_DEBUG
#define xive_vdbg(__x,__fmt,...) prlog(PR_DEBUG,"[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
#define xive_cpu_vdbg(__c,__fmt,...) prlog(PR_DEBUG,"[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
#else
#define xive_vdbg(x,fmt,...) do { } while(0)
#define xive_cpu_vdbg(x,fmt,...) do { } while(0)
#endif
#define xive_dbg(__x,__fmt,...) prlog(PR_DEBUG,"[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
#define xive_cpu_dbg(__c,__fmt,...) prlog(PR_DEBUG,"[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
#define xive_notice(__x,__fmt,...) prlog(PR_NOTICE,"[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
#define xive_cpu_notice(__c,__fmt,...) prlog(PR_NOTICE,"[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
#define xive_warn(__x,__fmt,...) prlog(PR_WARNING,"[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
#define xive_cpu_warn(__c,__fmt,...) prlog(PR_WARNING,"[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
#define xive_err(__x,__fmt,...) prlog(PR_ERR,"[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
#define xive_cpu_err(__c,__fmt,...) prlog(PR_ERR,"[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
/*
* The XIVE subengine being accessed can be deduced from the XSCOM
* reg, and from there, the page offset in the IC BAR.
*/
static void* xive_ic_page(struct xive *x, uint32_t x_reg)
{
uint64_t pgoff = (x_reg >> 8) & 0x3;
return x->ic_base + (pgoff << x->ic_shift);
}
static void __xive_regw(struct xive *x, uint32_t m_reg, uint32_t x_reg, uint64_t v,
const char *rname)
{
bool use_xscom = (m_reg == XIVE_NO_MMIO) || !x->ic_base;
int64_t rc;
x->last_reg_error = false;
assert(x_reg != 0);
if (use_xscom) {
rc = xscom_write(x->chip_id, x->xscom_base + x_reg, v);
if (rc) {
if (!rname)
rname = "???";
xive_err(x, "Error writing register %s\n", rname);
/* Anything else we can do here ? */
x->last_reg_error = true;
}
} else {
out_be64(xive_ic_page(x, x_reg) + m_reg, v);
}
}
static uint64_t __xive_regr(struct xive *x, uint32_t m_reg, uint32_t x_reg,
const char *rname)
{
bool use_xscom = (m_reg == XIVE_NO_MMIO) || !x->ic_base;
int64_t rc;
uint64_t val;
x->last_reg_error = false;
assert(x_reg != 0);
if (use_xscom) {
rc = xscom_read(x->chip_id, x->xscom_base + x_reg, &val);
if (rc) {
if (!rname)
rname = "???";
xive_err(x, "Error reading register %s\n", rname);
/* Anything else we can do here ? */
x->last_reg_error = true;
return -1ull;
}
} else {
val = in_be64(xive_ic_page(x, x_reg) + m_reg);
}
return val;
}
/* Locate a controller from an IRQ number */
static struct xive *xive_from_isn(uint32_t isn)
{
uint32_t chip_id = GIRQ_TO_CHIP(isn);
struct proc_chip *c = get_chip(chip_id);
if (!c)
return NULL;
return c->xive;
}
static struct xive *xive_from_pc_blk(uint32_t blk)
{
uint32_t chip_id = PC_BLK_TO_CHIP(blk);
struct proc_chip *c = get_chip(chip_id);
if (!c)
return NULL;
return c->xive;
}
static struct xive *xive_from_vc_blk(uint32_t blk)
{
uint32_t chip_id = VC_BLK_TO_CHIP(blk);
struct proc_chip *c = get_chip(chip_id);
if (!c)
return NULL;
return c->xive;
}
static struct xive_end *xive_get_end(struct xive *x, unsigned int idx)
{
struct xive_end *p;
if (idx >= (x->end_ind_count * END_PER_PAGE))
return NULL;
p = (struct xive_end *)(be64_to_cpu(x->end_ind_base[idx / END_PER_PAGE]) &
VSD_ADDRESS_MASK);
if (!p)
return NULL;
return &p[idx % END_PER_PAGE];
}
static struct xive_eas *xive_get_eas(struct xive *x, unsigned int isn)
{
struct xive_eas *eat;
uint32_t idx = GIRQ_TO_IDX(isn);
if (GIRQ_IS_ESCALATION(isn)) {
/* Allright, an escalation EAS is buried inside an END, let's
* try to find it
*/
struct xive_end *end;
if (x->chip_id != VC_BLK_TO_CHIP(GIRQ_TO_BLK(isn))) {
xive_err(x, "%s, ESC ISN 0x%x not on right chip\n",
__func__, isn);
return NULL;
}
end = xive_get_end(x, idx);
if (!end) {
xive_err(x, "%s, ESC ISN 0x%x END not found\n",
__func__, isn);
return NULL;
}
/* If using single-escalation, don't let anybody get
* to the individual escalation interrupts
*/
if (xive_get_field32(END_W0_UNCOND_ESCALATE, end->w0))
return NULL;
/* Grab the escalation END */
return (struct xive_eas *)(char *)&end->w4;
} else {
/* Check the block matches */
if (isn < x->int_base || isn >= x->int_count) {
xive_err(x, "%s, ISN 0x%x not on right chip\n",
__func__, isn);
return NULL;
}
assert (idx < XIVE_INT_COUNT);
/* If we support >1 block per chip, this should still
* work as we are likely to make the table contiguous
* anyway
*/
eat = x->eat_base;
assert(eat);
return eat + idx;
}
}
static struct xive_nvp *xive_get_vp(struct xive *x, unsigned int idx)
{
struct xive_nvp *p;
assert(idx < (x->vp_ind_count * VP_PER_PAGE));
p = (struct xive_nvp *)(be64_to_cpu(x->vp_ind_base[idx / VP_PER_PAGE]) &
VSD_ADDRESS_MASK);
if (!p)
return NULL;
return &p[idx % VP_PER_PAGE];
}
/*
* Store the END base of the VP in W5, using the new architected field
* in P10. Used to be the pressure relief interrupt field on P9.
*/
static void xive_vp_set_end_base(struct xive_nvp *vp,
uint32_t end_blk, uint32_t end_idx)
{
vp->w5 = xive_set_field32(NVP_W5_VP_END_BLOCK, 0, end_blk) |
xive_set_field32(NVP_W5_VP_END_INDEX, 0, end_idx);
/* This is the criteria to know if a VP was allocated */
assert(vp->w5 != 0);
}
static void xive_init_default_vp(struct xive_nvp *vp,
uint32_t end_blk, uint32_t end_idx)
{
memset(vp, 0, sizeof(struct xive_nvp));
xive_vp_set_end_base(vp, end_blk, end_idx);
vp->w0 = xive_set_field32(NVP_W0_VALID, 0, 1);
}
/*
* VPs of the HW threads have their own set of ENDs which is allocated
* when XIVE is initialized. These are tagged with a FIRMWARE bit so
* that they can be identified when the driver is reset (kexec).
*/
static void xive_init_hw_end(struct xive_end *end)
{
memset(end, 0, sizeof(struct xive_end));
end->w0 = xive_set_field32(END_W0_FIRMWARE1, 0, 1);
}
static void *xive_get_donated_page(struct xive *x)
{
return (void *)list_pop_(&x->donated_pages, 0);
}
#define XIVE_ALLOC_IS_ERR(_idx) ((_idx) >= 0xfffffff0)
#define XIVE_ALLOC_NO_SPACE 0xffffffff /* No possible space */
#define XIVE_ALLOC_NO_IND 0xfffffffe /* Indirect need provisioning */
#define XIVE_ALLOC_NO_MEM 0xfffffffd /* Local allocation failed */
static uint32_t xive_alloc_end_set(struct xive *x, bool alloc_indirect)
{
uint32_t ind_idx;
int idx;
int end_base_idx;
xive_vdbg(x, "Allocating END set...\n");
assert(x->end_map);
/* Allocate from the END bitmap. Each bit is 8 ENDs */
idx = bitmap_find_zero_bit(*x->end_map, 0, xive_end_bitmap_size(x));
if (idx < 0) {
xive_dbg(x, "Allocation from END bitmap failed !\n");
return XIVE_ALLOC_NO_SPACE;
}
end_base_idx = idx << xive_cfg_vp_prio_shift(x);
xive_vdbg(x, "Got ENDs 0x%x..0x%x\n", end_base_idx,
end_base_idx + xive_max_prio(x));
/* Calculate the indirect page where the ENDs reside */
ind_idx = end_base_idx / END_PER_PAGE;
/* Is there an indirect page ? If not, check if we can provision it */
if (!x->end_ind_base[ind_idx]) {
/* Default flags */
uint64_t vsd_flags = SETFIELD(VSD_TSIZE, 0ull, 4) |
SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
void *page;
/* If alloc_indirect is set, allocate the memory from OPAL own,
* otherwise try to provision from the donated pool
*/
if (alloc_indirect) {
/* Allocate/provision indirect page during boot only */
xive_vdbg(x, "Indirect empty, provisioning from local pool\n");
page = local_alloc(x->chip_id, PAGE_SIZE, PAGE_SIZE);
if (!page) {
xive_dbg(x, "provisioning failed !\n");
return XIVE_ALLOC_NO_MEM;
}
vsd_flags |= VSD_FIRMWARE;
} else {
xive_vdbg(x, "Indirect empty, provisioning from donated pages\n");
page = xive_get_donated_page(x);
if (!page) {
xive_vdbg(x, "no idirect pages available !\n");
return XIVE_ALLOC_NO_IND;
}
}
memset(page, 0, PAGE_SIZE);
x->end_ind_base[ind_idx] = cpu_to_be64(vsd_flags |
(((uint64_t)page) & VSD_ADDRESS_MASK));
/* Any cache scrub needed ? */
}
bitmap_set_bit(*x->end_map, idx);
return end_base_idx;
}
static void xive_free_end_set(struct xive *x, uint32_t ends)
{
uint32_t idx;
uint8_t prio_mask = xive_max_prio(x);
xive_vdbg(x, "Freeing END 0x%x..0x%x\n", ends, ends + xive_max_prio(x));
assert((ends & prio_mask) == 0);
assert(x->end_map);
idx = ends >> xive_cfg_vp_prio_shift(x);
bitmap_clr_bit(*x->end_map, idx);
}
static bool xive_provision_vp_ind(struct xive *x, uint32_t vp_idx, uint32_t order)
{
uint32_t pbase, pend, i;
pbase = vp_idx / VP_PER_PAGE;
pend = (vp_idx + (1 << order)) / VP_PER_PAGE;
for (i = pbase; i <= pend; i++) {
void *page;
u64 vsd;
/* Already provisioned ? */
if (x->vp_ind_base[i])
continue;
/* Try to grab a donated page */
page = xive_get_donated_page(x);
if (!page)
return false;
/* Install the page */
memset(page, 0, PAGE_SIZE);
vsd = ((uint64_t)page) & VSD_ADDRESS_MASK;
vsd |= SETFIELD(VSD_TSIZE, 0ull, 4);
vsd |= SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
x->vp_ind_base[i] = cpu_to_be64(vsd);
}
return true;
}
static void xive_init_vp_allocator(void)
{
/* Initialize chip alloc bits */
xive_chips_alloc_bits = ilog2(xive_block_count);
prlog(PR_INFO, "%d chips considered for VP allocations\n",
1 << xive_chips_alloc_bits);
/* Allocate a buddy big enough for XIVE_VP_ORDER allocations.
*
* each bit in the buddy represents 1 << xive_chips_alloc_bits
* VPs.
*/
xive_vp_buddy = buddy_create(XIVE_VP_ORDER(one_xive));
assert(xive_vp_buddy);
/*
* We reserve the whole range of VP ids representing HW threads.
*/
assert(buddy_reserve(xive_vp_buddy, xive_hw_vp_base,
xive_threadid_shift));
}
static uint32_t xive_alloc_vps(uint32_t order)
{
uint32_t local_order, i;
int vp;
/* The minimum order is 2 VPs per chip */
if (order < (xive_chips_alloc_bits + 1))
order = xive_chips_alloc_bits + 1;
/* We split the allocation */
local_order = order - xive_chips_alloc_bits;
/* We grab that in the global buddy */
assert(xive_vp_buddy);
lock(&xive_buddy_lock);
vp = buddy_alloc(xive_vp_buddy, local_order);
unlock(&xive_buddy_lock);
if (vp < 0)
return XIVE_ALLOC_NO_SPACE;
/* Provision on every chip considered for allocation */
for (i = 0; i < (1 << xive_chips_alloc_bits); i++) {
struct xive *x = xive_from_pc_blk(i);
bool success;
/* Return internal error & log rather than assert ? */
assert(x);
lock(&x->lock);
success = xive_provision_vp_ind(x, vp, local_order);
unlock(&x->lock);
if (!success) {
lock(&xive_buddy_lock);
buddy_free(xive_vp_buddy, vp, local_order);
unlock(&xive_buddy_lock);
return XIVE_ALLOC_NO_IND;
}
}
/* Encode the VP number. "blk" is 0 as this represents
* all blocks and the allocation always starts at 0
*/
return xive_encode_vp(0, vp, order);
}
static void xive_free_vps(uint32_t vp)
{
uint32_t idx;
uint8_t order, local_order;
assert(xive_decode_vp(vp, NULL, &idx, &order, NULL));
/* We split the allocation */
local_order = order - xive_chips_alloc_bits;
/* Free that in the buddy */
lock(&xive_buddy_lock);
buddy_free(xive_vp_buddy, idx, local_order);
unlock(&xive_buddy_lock);
}
enum xive_cache_type {
xive_cache_easc,
xive_cache_esbc,
xive_cache_endc,
xive_cache_nxc,
};
/*
* Cache update
*/
#define FLUSH_CTRL_POLL_VALID PPC_BIT(0) /* POLL bit is the same for all */
static int64_t __xive_cache_scrub(struct xive *x,
enum xive_cache_type ctype,
uint64_t block, uint64_t idx,
bool want_inval __unused, bool want_disable __unused)
{
uint64_t ctrl_reg, x_ctrl_reg;
uint64_t poll_val, ctrl_val;
#ifdef XIVE_CHECK_LOCKS
assert(lock_held_by_me(&x->lock));
#endif
switch (ctype) {
case xive_cache_easc:
poll_val =
SETFIELD(VC_EASC_FLUSH_POLL_BLOCK_ID, 0ll, block) |
SETFIELD(VC_EASC_FLUSH_POLL_OFFSET, 0ll, idx) |
VC_EASC_FLUSH_POLL_BLOCK_ID_MASK |
VC_EASC_FLUSH_POLL_OFFSET_MASK;
xive_regw(x, VC_EASC_FLUSH_POLL, poll_val);
ctrl_reg = VC_EASC_FLUSH_CTRL;
x_ctrl_reg = X_VC_EASC_FLUSH_CTRL;
break;
case xive_cache_esbc:
poll_val =
SETFIELD(VC_ESBC_FLUSH_POLL_BLOCK_ID, 0ll, block) |
SETFIELD(VC_ESBC_FLUSH_POLL_OFFSET, 0ll, idx) |
VC_ESBC_FLUSH_POLL_BLOCK_ID_MASK |
VC_ESBC_FLUSH_POLL_OFFSET_MASK;
xive_regw(x, VC_ESBC_FLUSH_POLL, poll_val);
ctrl_reg = VC_ESBC_FLUSH_CTRL;
x_ctrl_reg = X_VC_ESBC_FLUSH_CTRL;
break;
case xive_cache_endc:
poll_val =
SETFIELD(VC_ENDC_FLUSH_POLL_BLOCK_ID, 0ll, block) |
SETFIELD(VC_ENDC_FLUSH_POLL_OFFSET, 0ll, idx) |
VC_ENDC_FLUSH_POLL_BLOCK_ID_MASK |
VC_ENDC_FLUSH_POLL_OFFSET_MASK;
xive_regw(x, VC_ENDC_FLUSH_POLL, poll_val);
ctrl_reg = VC_ENDC_FLUSH_CTRL;
x_ctrl_reg = X_VC_ENDC_FLUSH_CTRL;
break;
case xive_cache_nxc:
poll_val =
SETFIELD(PC_NXC_FLUSH_POLL_BLOCK_ID, 0ll, block) |
SETFIELD(PC_NXC_FLUSH_POLL_OFFSET, 0ll, idx) |
PC_NXC_FLUSH_POLL_BLOCK_ID_MASK |
PC_NXC_FLUSH_POLL_OFFSET_MASK;
xive_regw(x, PC_NXC_FLUSH_POLL, poll_val);
ctrl_reg = PC_NXC_FLUSH_CTRL;
x_ctrl_reg = X_PC_NXC_FLUSH_CTRL;
break;
default:
return OPAL_INTERNAL_ERROR;
}
/* XXX Add timeout !!! */
for (;;) {
ctrl_val = __xive_regr(x, ctrl_reg, x_ctrl_reg, NULL);
if (!(ctrl_val & FLUSH_CTRL_POLL_VALID))
break;
/* Small delay */
time_wait(100);
}
sync();
return 0;
}
static int64_t xive_easc_scrub(struct xive *x, uint64_t block, uint64_t idx)
{
return __xive_cache_scrub(x, xive_cache_easc, block, idx, false, false);
}
static int64_t xive_nxc_scrub(struct xive *x, uint64_t block, uint64_t idx)
{
return __xive_cache_scrub(x, xive_cache_nxc, block, idx, false, false);
}
static int64_t xive_nxc_scrub_clean(struct xive *x, uint64_t block, uint64_t idx)
{
return __xive_cache_scrub(x, xive_cache_nxc, block, idx, true, false);
}
static int64_t xive_endc_scrub(struct xive *x, uint64_t block, uint64_t idx)
{
return __xive_cache_scrub(x, xive_cache_endc, block, idx, false, false);
}
#define XIVE_CACHE_WATCH_MAX_RETRIES 10
static int64_t __xive_cache_watch(struct xive *x, enum xive_cache_type ctype,
uint64_t block, uint64_t idx,
uint32_t start_dword, uint32_t dword_count,
beint64_t *new_data, bool light_watch,
bool synchronous)
{
uint64_t sreg, sregx, dreg0, dreg0x;
uint64_t dval0, sval, status;
int64_t i;
int retries = 0;
#ifdef XIVE_CHECK_LOCKS
assert(lock_held_by_me(&x->lock));
#endif
switch (ctype) {
case xive_cache_endc:
sreg = VC_ENDC_WATCH0_SPEC;
sregx = X_VC_ENDC_WATCH0_SPEC;
dreg0 = VC_ENDC_WATCH0_DATA0;
dreg0x = X_VC_ENDC_WATCH0_DATA0;
sval = SETFIELD(VC_ENDC_WATCH_BLOCK_ID, idx, block);
break;
case xive_cache_nxc:
sreg = PC_NXC_WATCH0_SPEC;
sregx = X_PC_NXC_WATCH0_SPEC;
dreg0 = PC_NXC_WATCH0_DATA0;
dreg0x = X_PC_NXC_WATCH0_DATA0;
sval = SETFIELD(PC_NXC_WATCH_BLOCK_ID, idx, block);
break;
default:
return OPAL_INTERNAL_ERROR;
}
/* The full bit is in the same position for ENDC and NXC */
if (!light_watch)
sval |= VC_ENDC_WATCH_FULL;
for (;;) {
/* Write the cache watch spec */
__xive_regw(x, sreg, sregx, sval, NULL);
/* Load data0 register to populate the watch */
dval0 = __xive_regr(x, dreg0, dreg0x, NULL);
/* If new_data is NULL, this is a dummy watch used as a
* workaround for a HW bug
*/
if (!new_data) {
__xive_regw(x, dreg0, dreg0x, dval0, NULL);
return 0;
}
/* Write the words into the watch facility. We write in reverse
* order in case word 0 is part of it as it must be the last
* one written.
*/
for (i = start_dword + dword_count - 1; i >= start_dword ;i--) {
uint64_t dw = be64_to_cpu(new_data[i - start_dword]);
__xive_regw(x, dreg0 + i * 8, dreg0x + i, dw, NULL);
}
/* Write data0 register to trigger the update if word 0 wasn't
* written above
*/
if (start_dword > 0)
__xive_regw(x, dreg0, dreg0x, dval0, NULL);
/* This may not be necessary for light updates (it's possible
* that a sync in sufficient, TBD). Ensure the above is
* complete and check the status of the watch.
*/
status = __xive_regr(x, sreg, sregx, NULL);
/* Bits FULL and CONFLICT are in the same position in
* ENDC and NXC
*/
if (!(status & VC_ENDC_WATCH_FULL) ||
!(status & VC_ENDC_WATCH_CONFLICT))
break;
if (!synchronous)
return OPAL_BUSY;
if (++retries == XIVE_CACHE_WATCH_MAX_RETRIES) {
xive_err(x, "Reached maximum retries %d when doing "
"a %s cache update\n", retries,
ctype == xive_cache_endc ? "ENDC" : "NXC");
return OPAL_BUSY;
}
}
/* Perform a scrub with "want_invalidate" set to false to push the
* cache updates to memory as well
*/
return __xive_cache_scrub(x, ctype, block, idx, false, false);
}
#ifdef XIVE_DEBUG_INIT_CACHE_UPDATES
static bool xive_check_endc_update(struct xive *x, uint32_t idx, struct xive_end *end)
{
struct xive_end *end_p = xive_get_end(x, idx);
struct xive_end end2;
assert(end_p);
end2 = *end_p;
end2.w0 &= ~END_W0_RESERVED;
end2.w1 &= ~END_W1_RESERVED;
end2.w7 &= ~END_W7_F0_RESERVED;
if (memcmp(end, &end2, sizeof(struct xive_end)) != 0) {
xive_err(x, "END update mismatch idx %d\n", idx);
xive_err(x, "want: %08x %08x %08x %08x\n",
end->w0, end->w1, end->w2, end->w3);
xive_err(x, " %08x %08x %08x %08x\n",
end->w4, end->w5, end->w6, end->w7);
xive_err(x, "got : %08x %08x %08x %08x\n",
end2.w0, end2.w1, end2.w2, end2.w3);
xive_err(x, " %08x %08x %08x %08x\n",
end2.w4, end2.w5, end2.w6, end2.w7);
return false;
}
return true;
}
static bool xive_check_nxc_update(struct xive *x, uint32_t idx, struct xive_nvp *vp)
{
struct xive_nvp *vp_p = xive_get_vp(x, idx);
struct xive_nvp vp2;
assert(vp_p);
vp2 = *vp_p;
if (memcmp(vp, &vp2, sizeof(struct xive_nvp)) != 0) {
xive_err(x, "VP update mismatch idx %d\n", idx);
xive_err(x, "want: %08x %08x %08x %08x\n",
vp->w0, vp->w1, vp->w2, vp->w3);
xive_err(x, " %08x %08x %08x %08x\n",
vp->w4, vp->w5, vp->w6, vp->w7);
xive_err(x, "got : %08x %08x %08x %08x\n",
vp2.w0, vp2.w1, vp2.w2, vp2.w3);
xive_err(x, " %08x %08x %08x %08x\n",
vp2.w4, vp2.w5, vp2.w6, vp2.w7);
return false;
}
return true;
}
#else
static inline bool xive_check_endc_update(struct xive *x __unused,
uint32_t idx __unused,
struct xive_end *end __unused)
{
return true;
}
static inline bool xive_check_nxc_update(struct xive *x __unused,
uint32_t idx __unused,
struct xive_nvp *vp __unused)
{
return true;
}
#endif
static int64_t xive_escalation_ive_cache_update(struct xive *x, uint64_t block,
uint64_t idx, struct xive_eas *eas,
bool synchronous)
{
return __xive_cache_watch(x, xive_cache_endc, block, idx,
2, 1, &eas->w, true, synchronous);
}
static int64_t xive_endc_cache_update(struct xive *x, uint64_t block,
uint64_t idx, struct xive_end *end,
bool synchronous)
{
int64_t ret;
ret = __xive_cache_watch(x, xive_cache_endc, block, idx,
0, 4, (beint64_t *)end, false, synchronous);
xive_check_endc_update(x, idx, end);
return ret;
}
static int64_t xive_nxc_cache_update(struct xive *x, uint64_t block,
uint64_t idx, struct xive_nvp *vp,
bool synchronous)
{
int64_t ret;
ret = __xive_cache_watch(x, xive_cache_nxc, block, idx,
0, 4, (beint64_t *)vp, false, synchronous);
xive_check_nxc_update(x, idx, vp);
return ret;
}
/*
* VSD
*/
static bool xive_set_vsd(struct xive *x, uint32_t tbl, uint32_t idx, uint64_t v)
{
/* Set VC subengine */
xive_regw(x, VC_VSD_TABLE_ADDR,
SETFIELD(VC_VSD_TABLE_SELECT, 0ull, tbl) |
SETFIELD(VC_VSD_TABLE_ADDRESS, 0ull, idx));
if (x->last_reg_error)
return false;
xive_regw(x, VC_VSD_TABLE_DATA, v);
if (x->last_reg_error)
return false;
/* also set PC subengine if table is used */
if (tbl == VST_EAS || tbl == VST_ERQ || tbl == VST_IC)
return true;
xive_regw(x, PC_VSD_TABLE_ADDR,
SETFIELD(PC_VSD_TABLE_SELECT, 0ull, tbl) |
SETFIELD(PC_VSD_TABLE_ADDRESS, 0ull, idx));
if (x->last_reg_error)
return false;
xive_regw(x, PC_VSD_TABLE_DATA, v);
if (x->last_reg_error)
return false;
return true;
}
static bool xive_set_local_tables(struct xive *x)
{
uint64_t base, i;
/* These have to be power of 2 sized */
assert(is_pow2(XIVE_ESB_SIZE));
assert(is_pow2(XIVE_EAT_SIZE));
/* All tables set as exclusive */
base = SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
/* ESB: direct mode */
if (!xive_set_vsd(x, VST_ESB, x->block_id, base |
(((uint64_t)x->sbe_base) & VSD_ADDRESS_MASK) |
SETFIELD(VSD_TSIZE, 0ull, ilog2(XIVE_ESB_SIZE) - 12)))
return false;
/* EAS: direct mode */
if (!xive_set_vsd(x, VST_EAS, x->block_id, base |
(((uint64_t)x->eat_base) & VSD_ADDRESS_MASK) |
SETFIELD(VSD_TSIZE, 0ull, ilog2(XIVE_EAT_SIZE) - 12)))
return false;
/* END: indirect mode with 64K subpages */
if (!xive_set_vsd(x, VST_END, x->block_id, base |
(((uint64_t)x->end_ind_base) & VSD_ADDRESS_MASK) |
VSD_INDIRECT | SETFIELD(VSD_TSIZE, 0ull,
ilog2(x->end_ind_size) - 12)))
return false;
/* NVP: indirect mode with 64K subpages */
if (!xive_set_vsd(x, VST_NVP, x->block_id, base |
(((uint64_t)x->vp_ind_base) & VSD_ADDRESS_MASK) |
VSD_INDIRECT | SETFIELD(VSD_TSIZE, 0ull,
ilog2(x->vp_ind_size) - 12)))
return false;
/* NVG: not used */
/* NVC: not used */
/* INT and SYNC: indexed with the Topology# */
if (!xive_set_vsd(x, VST_IC, x->chip_id, base |
(((uint64_t)x->ic_base) & VSD_ADDRESS_MASK) |
SETFIELD(VSD_TSIZE, 0ull, ilog2(x->ic_size) - 12)))
return false;
if (!xive_set_vsd(x, VST_SYNC, x->chip_id, base |
(((uint64_t)x->sync_inject) & VSD_ADDRESS_MASK) |
SETFIELD(VSD_TSIZE, 0ull, ilog2(x->sync_inject_size) - 12)))
return false;
/*
* ERQ: one 64K page for each queue overflow. Indexed with :
*
* 0:IPI, 1:HWD, 2:NxC, 3:INT, 4:OS-Queue, 5:Pool-Queue, 6:Hard-Queue
*/
for (i = 0; i < VC_QUEUE_COUNT; i++) {
u64 addr = ((uint64_t)x->q_ovf) + i * PAGE_SIZE;
u64 cfg, sreg, sregx;
if (!xive_set_vsd(x, VST_ERQ, i, base |
(addr & VSD_ADDRESS_MASK) |
SETFIELD(VSD_TSIZE, 0ull, 4)))
return false;
sreg = VC_QUEUES_CFG_REM0 + i * 8;
sregx = X_VC_QUEUES_CFG_REM0 + i;
cfg = __xive_regr(x, sreg, sregx, NULL);
cfg |= VC_QUEUES_CFG_MEMB_EN;
cfg = SETFIELD(VC_QUEUES_CFG_MEMB_SZ, cfg, 4);
__xive_regw(x, sreg, sregx, cfg, NULL);
}
return true;
}
/*
* IC BAR layout
*
* Page 0: Internal CQ register accesses (reads & writes)
* Page 1: Internal PC register accesses (reads & writes)
* Page 2: Internal VC register accesses (reads & writes)
* Page 3: Internal TCTXT (TIMA) reg accesses (read & writes)
* Page 4: Notify Port page (writes only, w/data),
* Page 5: Reserved
* Page 6: Sync Poll page (writes only, dataless)
* Page 7: Sync Inject page (writes only, dataless)
* Page 8: LSI Trigger page (writes only, dataless)
* Page 9: LSI SB Management page (reads & writes dataless)
* Pages 10-255: Reserved
* Pages 256-383: Direct mapped Thread Context Area (reads & writes)
* covering the 128 threads in P10.
* Pages 384-511: Reserved
*/
#define XIVE_IC_CQ_PGOFF 0
#define XIVE_IC_PC_PGOFF 1
#define XIVE_IC_VC_PGOFF 2
#define XIVE_IC_TCTXT_PGOFF 3
#define XIVE_NOTIFY_PGOFF 4
#define XIVE_SYNC_POLL_PGOFF 6
#define XIVE_SYNC_INJECT_PGOFF 7
#define XIVE_LSI_TRIGGER_PGOFF 8
#define XIVE_LSI_MGMT_PGOFF 9
#define XIVE_IC_TM_DIRECT_PGOFF 256
static bool xive_configure_ic_bars(struct xive *x)
{
uint64_t chip_id = x->chip_id;
uint64_t val;
/* Reset all bars to zero */
xive_regwx(x, CQ_RST_CTL, CQ_RST_PB_BAR_RESET);
/* IC BAR */
phys_map_get(chip_id, XIVE_IC, 0, (uint64_t *)&x->ic_base, &x->ic_size);
val = (uint64_t)x->ic_base | CQ_IC_BAR_VALID | CQ_IC_BAR_64K;
x->ic_shift = 16;
xive_regwx(x, CQ_IC_BAR, val);
if (x->last_reg_error)
return false;
/*
* TM BAR, same address for each chip. Hence we create a fake
* chip 0 and use that for all phys_map_get(XIVE_TM) calls.
*/
phys_map_get(0, XIVE_TM, 0, (uint64_t *)&x->tm_base, &x->tm_size);
val = (uint64_t)x->tm_base | CQ_TM_BAR_VALID | CQ_TM_BAR_64K;
x->tm_shift = 16;
xive_regwx(x, CQ_TM_BAR, val);
if (x->last_reg_error)
return false;
/* IC BAR sub-pages shortcuts */
x->ic_tm_direct_base = x->ic_base +
(XIVE_IC_TM_DIRECT_PGOFF << x->ic_shift);
return true;
}
/*
* NVPG, NVC, ESB, END BARs have common attributes: 64k page and only
* one set covering the whole BAR.
*/
static bool xive_configure_bars(struct xive *x)
{
uint64_t chip_id = x->chip_id;
uint64_t val;
uint64_t esb_size;
uint64_t end_size;
uint64_t nvp_size;
x->nvp_size = XIVE_VP_COUNT(x) << XIVE_NVP_SHIFT;
x->esb_size = XIVE_INT_COUNT << XIVE_ESB_SHIFT;
x->end_size = XIVE_END_COUNT << XIVE_END_SHIFT;
/*
* NVC BAR is not configured because we do not use the XIVE2
* Crowd capability.
*/
/* NVPG BAR: two pages, even NVP, odd NVG */
phys_map_get(chip_id, XIVE_NVPG, 0, (uint64_t *)&x->nvp_base, &nvp_size);
if (x->nvp_size > nvp_size) {
xive_err(x, "NVP table is larger than default: "
"0x%012llx > 0x%012llx\n", x->nvp_size, nvp_size);
return false;
}
val = (uint64_t)x->nvp_base | CQ_BAR_VALID | CQ_BAR_64K |
SETFIELD(CQ_BAR_RANGE, 0ull, ilog2(x->nvp_size) - 24);
xive_regwx(x, CQ_NVPG_BAR, val);
if (x->last_reg_error)
return false;
/* ESB BAR */
phys_map_get(chip_id, XIVE_ESB, 0, (uint64_t *)&x->esb_base, &esb_size);
if (x->esb_size > esb_size) {
xive_err(x, "ESB table is larger than default: "
"0x%012llx > 0x%012llx\n", x->esb_size, esb_size);
return false;
}
val = (uint64_t)x->esb_base | CQ_BAR_VALID | CQ_BAR_64K |
SETFIELD(CQ_BAR_RANGE, 0ull, ilog2(x->esb_size) - 24);
xive_regwx(x, CQ_ESB_BAR, val);
if (x->last_reg_error)
return false;
/* END BAR */
phys_map_get(chip_id, XIVE_END, 0, (uint64_t *)&x->end_base, &end_size);
if (x->end_size > end_size) {
xive_err(x, "END table is larger than default: "
"0x%012llx > 0x%012llx\n", x->end_size, end_size);
return false;
}
val = (uint64_t)x->end_base | CQ_BAR_VALID | CQ_BAR_64K |
SETFIELD(CQ_BAR_RANGE, 0ull, ilog2(x->end_size) - 24);
xive_regwx(x, CQ_END_BAR, val);
if (x->last_reg_error)
return false;
xive_dbg(x, "IC: %14p [0x%012llx]\n", x->ic_base, x->ic_size);
xive_dbg(x, "TM: %14p [0x%012llx]\n", x->tm_base, x->tm_size);
xive_dbg(x, "NVP: %14p [0x%012llx]\n", x->nvp_base, x->nvp_size);
xive_dbg(x, "ESB: %14p [0x%012llx]\n", x->esb_base, x->esb_size);
xive_dbg(x, "END: %14p [0x%012llx]\n", x->end_base, x->end_size);
xive_dbg(x, "OVF: %14p [0x%012x]\n", x->q_ovf,
VC_QUEUE_COUNT * PAGE_SIZE);
return true;
}
static void xive_dump_mmio(struct xive *x)
{
prlog(PR_DEBUG, " CQ_CFG_PB_GEN = %016llx\n",
in_be64(x->ic_base + CQ_CFG_PB_GEN));
prlog(PR_DEBUG, " CQ_MSGSND = %016llx\n",
in_be64(x->ic_base + CQ_MSGSND));
}
static const struct {
uint64_t bitmask;
const char *name;
} xive_capabilities[] = {
{ CQ_XIVE_CAP_PHB_PQ_DISABLE, "PHB PQ disable mode support" },
{ CQ_XIVE_CAP_PHB_ABT, "PHB address based trigger mode support" },
{ CQ_XIVE_CAP_EXPLOITATION_MODE, "Exploitation mode" },
{ CQ_XIVE_CAP_STORE_EOI, "StoreEOI mode support" },
{ CQ_XIVE_CAP_VP_SAVE_RESTORE, "VP Context Save and Restore" },
};
static void xive_dump_capabilities(struct xive *x, uint64_t cap_val)
{
int i;
xive_dbg(x, "capabilities: %016llx\n", cap_val);
xive_dbg(x, "\tVersion: %lld\n",
GETFIELD(CQ_XIVE_CAP_VERSION, cap_val));
xive_dbg(x, "\tUser interrupt priorities: [ 1 - %d ]\n",
1 << GETFIELD(CQ_XIVE_CAP_USER_INT_PRIO, cap_val));
xive_dbg(x, "\tVP interrupt priorities: [ %d - 8 ]\n",
1 << GETFIELD(CQ_XIVE_CAP_VP_INT_PRIO, cap_val));
xive_dbg(x, "\tExtended Blockid bits: %lld\n",
4 + GETFIELD(CQ_XIVE_CAP_BLOCK_ID_WIDTH, cap_val));
for (i = 0; i < ARRAY_SIZE(xive_capabilities); i++) {
if (xive_capabilities[i].bitmask & cap_val)
xive_dbg(x, "\t%s\n", xive_capabilities[i].name);
}
}
static const struct {
uint64_t bitmask;
const char *name;
} xive_configs[] = {
{ CQ_XIVE_CFG_GEN1_TIMA_OS, "Gen1 mode TIMA OS" },
{ CQ_XIVE_CFG_GEN1_TIMA_HYP, "Gen1 mode TIMA Hyp" },
{ CQ_XIVE_CFG_GEN1_TIMA_HYP_BLK0, "Gen1 mode TIMA General Hypervisor Block0" },
{ CQ_XIVE_CFG_GEN1_TIMA_CROWD_DIS, "Gen1 mode TIMA Crowd disable" },
{ CQ_XIVE_CFG_GEN1_END_ESX, "Gen1 mode END ESx" },
{ CQ_XIVE_CFG_EN_VP_SAVE_RESTORE, "VP Context Save and Restore" },
{ CQ_XIVE_CFG_EN_VP_SAVE_REST_STRICT, "VP Context Save and Restore strict" },
};
static void xive_dump_configuration(struct xive *x, const char *prefix,
uint64_t cfg_val)
{
int i ;
xive_dbg(x, "%s configuration: %016llx\n", prefix, cfg_val);
xive_dbg(x, "\tHardwired Thread Id range: %lld bits\n",
7 + GETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE, cfg_val));
xive_dbg(x, "\tUser Interrupt priorities: [ 1 - %d ]\n",
1 << GETFIELD(CQ_XIVE_CFG_USER_INT_PRIO, cfg_val));
xive_dbg(x, "\tVP Interrupt priorities: [ 0 - %d ]\n", xive_max_prio(x));
xive_dbg(x, "\tBlockId bits: %lld bits\n",
4 + GETFIELD(CQ_XIVE_CFG_BLOCK_ID_WIDTH, cfg_val));
if (CQ_XIVE_CFG_HYP_HARD_BLKID_OVERRIDE & cfg_val)
xive_dbg(x, "\tHardwired BlockId: %lld\n",
GETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, cfg_val));
for (i = 0; i < ARRAY_SIZE(xive_configs); i++) {
if (xive_configs[i].bitmask & cfg_val)
xive_dbg(x, "\t%s\n", xive_configs[i].name);
}
}
/*
* Default XIVE configuration
*/
#define XIVE_CONFIGURATION \
(SETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE, 0ull, CQ_XIVE_CFG_THREADID_8BITS) | \
SETFIELD(CQ_XIVE_CFG_VP_INT_PRIO, 0ull, CQ_XIVE_CFG_INT_PRIO_8))
/*
* Gen1 configuration for tests (QEMU)
*/
#define XIVE_CONFIGURATION_GEN1 \
(SETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE, 0ull, CQ_XIVE_CFG_THREADID_7BITS) | \
SETFIELD(CQ_XIVE_CFG_VP_INT_PRIO, 0ull, CQ_XIVE_CFG_INT_PRIO_8) | \
CQ_XIVE_CFG_GEN1_TIMA_OS | \
CQ_XIVE_CFG_GEN1_TIMA_HYP | \
CQ_XIVE_CFG_GEN1_TIMA_HYP_BLK0 | \
CQ_XIVE_CFG_GEN1_TIMA_CROWD_DIS | \
CQ_XIVE_CFG_GEN1_END_ESX)
static bool xive_has_cap(struct xive *x, uint64_t cap)
{
return !!x && !!(x->capabilities & cap);
}
#define XIVE_CAN_STORE_EOI(x) xive_has_cap(x, CQ_XIVE_CAP_STORE_EOI)
static bool xive_cfg_save_restore(struct xive *x)
{
return !!(x->config & CQ_XIVE_CFG_EN_VP_SAVE_RESTORE);
}
/*
* When PQ_disable is available, configure the ESB cache to improve
* performance for PHB ESBs.
*
* split_mode :
* 1/3rd of the cache is reserved for PHB ESBs and the rest to
* IPIs. This is sufficient to keep all the PHB ESBs in cache and
* avoid ESB cache misses during IO interrupt processing.
*
* hash_array_enable :
* Internal cache hashing optimization. The hash_array tracks for
* ESBs where the original trigger came from so that we avoid
* getting the EAS into the cache twice.
*/
static void xive_config_esb_cache(struct xive *x)
{
uint64_t val = xive_regr(x, VC_ESBC_CFG);
if (xive_has_cap(x, CQ_XIVE_CAP_PHB_PQ_DISABLE)) {
val |= VC_ESBC_CFG_SPLIT_MODE | VC_ESBC_CFG_HASH_ARRAY_ENABLE;
val = SETFIELD(VC_ESBC_CFG_MAX_ENTRIES_IN_MODIFIED, val, 0xE);
xive_dbg(x, "ESB cache configured with split mode "
"and hash array. VC_ESBC_CFG=%016llx\n", val);
} else
val &= ~VC_ESBC_CFG_SPLIT_MODE;
xive_regw(x, VC_ESBC_CFG, val);
}
static void xive_config_fused_core(struct xive *x)
{
uint64_t val = xive_regr(x, TCTXT_CFG);
if (this_cpu()->is_fused_core) {
val |= TCTXT_CFG_FUSE_CORE_EN;
xive_dbg(x, "configured for fused cores. "
"PC_TCTXT_CFG=%016llx\n", val);
} else
val &= ~TCTXT_CFG_FUSE_CORE_EN;
xive_regw(x, TCTXT_CFG, val);
}
static void xive_config_reduced_priorities_fixup(struct xive *x)
{
if (xive_cfg_vp_prio_shift(x) < CQ_XIVE_CFG_INT_PRIO_8 &&
x->quirks & XIVE_QUIRK_BROKEN_PRIO_CHECK) {
uint64_t val = xive_regr(x, PC_ERR1_CFG1);
val &= ~PC_ERR1_CFG1_INTERRUPT_INVALID_PRIO;
xive_dbg(x, "workaround for reduced priorities. "
"PC_ERR1_CFG1=%016llx\n", val);
xive_regw(x, PC_ERR1_CFG1, val);
}
}
static bool xive_config_init(struct xive *x)
{
x->capabilities = xive_regr(x, CQ_XIVE_CAP);
xive_dump_capabilities(x, x->capabilities);
x->generation = GETFIELD(CQ_XIVE_CAP_VERSION, x->capabilities);
/*
* Allow QEMU to override version for tests
*/
if (x->generation != XIVE_GEN2 && !chip_quirk(QUIRK_QEMU)) {
xive_err(x, "Invalid XIVE controller version %d\n",
x->generation);
return false;
}
x->config = xive_regr(x, CQ_XIVE_CFG);
xive_dump_configuration(x, "default", x->config);
/* Start with default settings */
x->config = x->generation == XIVE_GEN1 ? XIVE_CONFIGURATION_GEN1 :
XIVE_CONFIGURATION;
if (x->quirks & XIVE_QUIRK_THREADID_7BITS)
x->config = SETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE, x->config,
CQ_XIVE_CFG_THREADID_7BITS);
/*
* Hardwire the block ID. The default value is the topology ID
* of the chip which is different from the block.
*/
x->config |= CQ_XIVE_CFG_HYP_HARD_BLKID_OVERRIDE |
SETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, 0ull, x->block_id);
/*
* Enable "VP Context Save and Restore" by default. it is
* compatible with KVM which currently does the context
* save&restore in the entry/exit path of the vCPU
*/
if (x->capabilities & CQ_XIVE_CAP_VP_SAVE_RESTORE)
x->config |= CQ_XIVE_CFG_EN_VP_SAVE_RESTORE;
xive_dump_configuration(x, "new", x->config);
xive_regw(x, CQ_XIVE_CFG, x->config);
if (xive_regr(x, CQ_XIVE_CFG) != x->config) {
xive_err(x, "configuration setting failed\n");
}
/*
* Disable error reporting in the FIR for info errors from the VC.
*/
xive_regw(x, CQ_FIRMASK_OR, CQ_FIR_VC_INFO_ERROR_0_2);
/*
* Mask CI Load and Store to bad location, as IPI trigger
* pages may be mapped to user space, and a read on the
* trigger page causes a checkstop
*/
xive_regw(x, CQ_FIRMASK_OR, CQ_FIR_PB_RCMDX_CI_ERR1);
/*
* VP space settings. P9 mode is 19bits.
*/
x->vp_shift = x->generation == XIVE_GEN1 ?
VP_SHIFT_GEN1 : VP_SHIFT_GEN2;
/*
* VP ids for HW threads. These values are hardcoded in the
* CAM line of the HW context
*
* POWER10 |chip|0000000000000001|threadid|
* 28bits 4 16 8
*
* POWER9 |chip|000000000001|thrdid |
* 23bits 4 12 7
*/
/* TODO (cosmetic): set VP ids for HW threads only once */
xive_threadid_shift = 7 + GETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE,
x->config);
xive_hw_vp_base = 1 << xive_threadid_shift;
xive_hw_vp_count = 1 << xive_threadid_shift;
xive_dbg(x, "store EOI is %savailable\n",
XIVE_CAN_STORE_EOI(x) ? "" : "not ");
xive_config_fused_core(x);
xive_config_esb_cache(x);
xive_config_reduced_priorities_fixup(x);
return true;
}
/* Set Translation tables : 1 block per chip */
static bool xive_setup_set_xlate(struct xive *x)
{
unsigned int i;
/* Configure ESBs */
xive_regw(x, CQ_TAR,
CQ_TAR_AUTOINC | SETFIELD(CQ_TAR_SELECT, 0ull, CQ_TAR_ESB));
if (x->last_reg_error)
return false;
for (i = 0; i < XIVE_MAX_BLOCKS; i++) {
xive_regw(x, CQ_TDR, CQ_TDR_VALID |
SETFIELD(CQ_TDR_BLOCK_ID, 0ull, x->block_id));
if (x->last_reg_error)
return false;
}
/* Configure ENDs */
xive_regw(x, CQ_TAR,
CQ_TAR_AUTOINC | SETFIELD(CQ_TAR_SELECT, 0ull, CQ_TAR_END));
if (x->last_reg_error)
return false;
for (i = 0; i < XIVE_MAX_BLOCKS; i++) {
xive_regw(x, CQ_TDR, CQ_TDR_VALID |
SETFIELD(CQ_TDR_BLOCK_ID, 0ull, x->block_id));
if (x->last_reg_error)
return false;
}
/* Configure NVPs */
xive_regw(x, CQ_TAR,
CQ_TAR_AUTOINC | SETFIELD(CQ_TAR_SELECT, 0ull, CQ_TAR_NVPG));
if (x->last_reg_error)
return false;
for (i = 0; i < XIVE_MAX_BLOCKS; i++) {
xive_regw(x, CQ_TDR, CQ_TDR_VALID |
SETFIELD(CQ_TDR_BLOCK_ID, 0ull, x->block_id));
if (x->last_reg_error)
return false;
}
return true;
}
static bool xive_prealloc_tables(struct xive *x)
{
uint32_t i;
uint32_t pbase, pend;
/* ESB has 4 entries per byte */
x->sbe_base = local_alloc(x->chip_id, XIVE_ESB_SIZE, XIVE_ESB_SIZE);
if (!x->sbe_base) {
xive_err(x, "Failed to allocate SBE\n");
return false;
}
/* PQs are initialized to 0b01 which corresponds to "ints off" */
memset(x->sbe_base, 0x55, XIVE_ESB_SIZE);
xive_dbg(x, "SBE at %p size 0x%lx\n", x->sbe_base, XIVE_ESB_SIZE);
/* EAS entries are 8 bytes */
x->eat_base = local_alloc(x->chip_id, XIVE_EAT_SIZE, XIVE_EAT_SIZE);
if (!x->eat_base) {
xive_err(x, "Failed to allocate EAS\n");
return false;
}
/*
* We clear the entries (non-valid). They will be initialized
* when actually used
*/
memset(x->eat_base, 0, XIVE_EAT_SIZE);
xive_dbg(x, "EAT at %p size 0x%lx\n", x->eat_base, XIVE_EAT_SIZE);
/* Indirect END table. Limited to one top page. */
x->end_ind_size = ALIGN_UP(XIVE_END_TABLE_SIZE, PAGE_SIZE);
if (x->end_ind_size > PAGE_SIZE) {
xive_err(x, "END indirect table is too big !\n");
return false;
}
x->end_ind_base = local_alloc(x->chip_id, x->end_ind_size,
x->end_ind_size);
if (!x->end_ind_base) {
xive_err(x, "Failed to allocate END indirect table\n");
return false;
}
memset(x->end_ind_base, 0, x->end_ind_size);
xive_dbg(x, "ENDi at %p size 0x%llx #%ld entries\n", x->end_ind_base,
x->end_ind_size, XIVE_END_COUNT);
x->end_ind_count = XIVE_END_TABLE_SIZE / XIVE_VSD_SIZE;
/* Indirect VP table. Limited to one top page. */
x->vp_ind_size = ALIGN_UP(XIVE_VP_TABLE_SIZE(x), PAGE_SIZE);
if (x->vp_ind_size > PAGE_SIZE) {
xive_err(x, "VP indirect table is too big !\n");
return false;
}
x->vp_ind_base = local_alloc(x->chip_id, x->vp_ind_size,
x->vp_ind_size);
if (!x->vp_ind_base) {
xive_err(x, "Failed to allocate VP indirect table\n");
return false;
}
xive_dbg(x, "VPi at %p size 0x%llx #%ld entries\n", x->vp_ind_base,
x->vp_ind_size, XIVE_VP_COUNT(x));
x->vp_ind_count = XIVE_VP_TABLE_SIZE(x) / XIVE_VSD_SIZE;
memset(x->vp_ind_base, 0, x->vp_ind_size);
/* Allocate pages for the VP ids representing HW threads */
pbase = xive_hw_vp_base / VP_PER_PAGE;
pend = (xive_hw_vp_base + xive_hw_vp_count) / VP_PER_PAGE;
xive_dbg(x, "Allocating pages %d to %d of VPs (for %d VPs)\n",
pbase, pend, xive_hw_vp_count);
for (i = pbase; i <= pend; i++) {
void *page;
u64 vsd;
/* Indirect entries have a VSD format */
page = local_alloc(x->chip_id, PAGE_SIZE, PAGE_SIZE);
if (!page) {
xive_err(x, "Failed to allocate VP page\n");
return false;
}
xive_dbg(x, "VP%d at %p size 0x%x\n", i, page, PAGE_SIZE);
memset(page, 0, PAGE_SIZE);
vsd = ((uint64_t)page) & VSD_ADDRESS_MASK;
vsd |= SETFIELD(VSD_TSIZE, 0ull, 4);
vsd |= SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
vsd |= VSD_FIRMWARE;
x->vp_ind_base[i] = cpu_to_be64(vsd);
}
/*
* Allocate page for cache and sync injection (512 * 128 hw
* threads) + one extra page for future use
*/
x->sync_inject_size = PAGE_SIZE + PAGE_SIZE;
x->sync_inject = local_alloc(x->chip_id, x->sync_inject_size,
x->sync_inject_size);
if (!x->sync_inject) {
xive_err(x, "Failed to allocate sync pages\n");
return false;
}
/*
* The Memory Coherence Directory uses 16M "granule" to track
* shared copies of a cache line. If any cache line within the
* 16M range gets touched by someone outside of the group, the
* MCD forces accesses to any cache line within the range to
* include everyone that might have a shared copy.
*/
#define QUEUE_OVF_ALIGN (16 << 20) /* MCD granule size */
/*
* Allocate the queue overflow pages and use a 16M alignment
* to avoid sharing with other structures and reduce traffic
* on the PowerBus.
*/
x->q_ovf = local_alloc(x->chip_id, VC_QUEUE_COUNT * PAGE_SIZE,
QUEUE_OVF_ALIGN);
if (!x->q_ovf) {
xive_err(x, "Failed to allocate queue overflow\n");
return false;
}
return true;
}
static void xive_add_provisioning_properties(void)
{
beint32_t chips[XIVE_MAX_CHIPS];
uint32_t i, count;
dt_add_property_cells(xive_dt_node,
"ibm,xive-provision-page-size", PAGE_SIZE);
count = 1 << xive_chips_alloc_bits;
for (i = 0; i < count; i++)
chips[i] = cpu_to_be32(xive_block_to_chip[i]);
dt_add_property(xive_dt_node, "ibm,xive-provision-chips",
chips, 4 * count);
}
static void xive_create_mmio_dt_node(struct xive *x)
{
uint64_t tb = (uint64_t)x->tm_base;
uint32_t stride = 1u << x->tm_shift;
xive_dt_node = dt_new_addr(dt_root, "interrupt-controller", tb);
assert(xive_dt_node);
dt_add_property_u64s(xive_dt_node, "reg",
tb + 0 * stride, stride,
tb + 1 * stride, stride,
tb + 2 * stride, stride,
tb + 3 * stride, stride);
dt_add_property_strings(xive_dt_node, "compatible",
"ibm,opal-xive-pe", "ibm,opal-xive-vc",
"ibm,opal-intc");
dt_add_property(xive_dt_node, "interrupt-controller", NULL, 0);
dt_add_property_cells(xive_dt_node, "#address-cells", 0);
dt_add_property_cells(xive_dt_node, "#interrupt-cells", 2);
dt_add_property_cells(xive_dt_node, "ibm,xive-eq-sizes",
12, 16, 21, 24);
dt_add_property_cells(xive_dt_node, "ibm,xive-#priorities",
xive_cfg_vp_prio(x));
dt_add_property(xive_dt_node, "single-escalation-support", NULL, 0);
if (XIVE_CAN_STORE_EOI(x))
dt_add_property(xive_dt_node, "store-eoi", NULL, 0);
if (xive_cfg_save_restore(x))
dt_add_property(xive_dt_node, "vp-save-restore", NULL, 0);
xive_add_provisioning_properties();
}
uint32_t xive2_get_phandle(void)
{
if (!xive_dt_node)
return 0;
return xive_dt_node->phandle;
}
static void xive_setup_forward_ports(struct xive *x, struct proc_chip *remote_chip)
{
struct xive *remote_xive = remote_chip->xive;
uint64_t base = SETFIELD(VSD_MODE, 0ull, VSD_MODE_FORWARD);
if (!xive_set_vsd(x, VST_ESB, remote_xive->block_id,
base | ((uint64_t)remote_xive->esb_base) |
SETFIELD(VSD_TSIZE, 0ull, ilog2(x->esb_size) - 12)))
goto error;
/* EAS: No remote */
if (!xive_set_vsd(x, VST_END, remote_xive->block_id,
base | ((uint64_t)remote_xive->end_base) |
SETFIELD(VSD_TSIZE, 0ull, ilog2(x->end_size) - 12)))
goto error;
if (!xive_set_vsd(x, VST_NVP, remote_xive->block_id,
base | ((uint64_t)remote_xive->nvp_base) |
SETFIELD(VSD_TSIZE, 0ull, ilog2(x->nvp_size) - 12)))
goto error;
/* NVG: not used */
/* NVC: not used */
if (!xive_set_vsd(x, VST_IC, remote_xive->chip_id,
base | ((uint64_t)remote_xive->ic_base) |
SETFIELD(VSD_TSIZE, 0ull, ilog2(x->ic_size) - 12)))
goto error;
if (!xive_set_vsd(x, VST_SYNC, remote_xive->chip_id,
base | ((uint64_t)remote_xive->sync_inject) |
SETFIELD(VSD_TSIZE, 0ull, ilog2(x->sync_inject_size) - 12)))
goto error;
/* ERQ: No remote */
return;
error:
xive_err(x, "Failure configuring forwarding ports\n");
}
static void late_init_one_xive(struct xive *x)
{
struct proc_chip *chip;
/* We need to setup the cross-chip forward ports. Let's
* iterate all chip and set them up accordingly
*/
for_each_chip(chip) {
/* We skip ourselves or chips without a xive */
if (chip->xive == x || !chip->xive)
continue;
/* Setup our forward ports to that chip */
xive_setup_forward_ports(x, chip);
}
}
static bool xive_check_ipi_free(struct xive *x, uint32_t irq, uint32_t count)
{
uint32_t i, idx = GIRQ_TO_IDX(irq);
for (i = 0; i < count; i++)
if (bitmap_tst_bit(*x->ipi_alloc_map, idx + i))
return false;
return true;
}
uint32_t xive2_alloc_hw_irqs(uint32_t chip_id, uint32_t count,
uint32_t align)
{
struct proc_chip *chip = get_chip(chip_id);
struct xive *x;
uint32_t base, i;
assert(chip);
assert(is_pow2(align));
x = chip->xive;
assert(x);
lock(&x->lock);
/* Allocate the HW interrupts */
base = x->int_hw_bot - count;
base &= ~(align - 1);
if (base < x->int_ipi_top) {
xive_err(x,
"HW alloc request for %d interrupts aligned to %d failed\n",
count, align);
unlock(&x->lock);
return XIVE_IRQ_ERROR;
}
if (!xive_check_ipi_free(x, base, count)) {
xive_err(x, "HWIRQ boot allocator request overlaps dynamic allocator\n");
unlock(&x->lock);
return XIVE_IRQ_ERROR;
}
x->int_hw_bot = base;
/* Initialize the corresponding EAS entries to sane defaults,
* IE entry is valid, not routed and masked, EQ data is set
* to the GIRQ number.
*/
for (i = 0; i < count; i++) {
struct xive_eas *eas = xive_get_eas(x, base + i);
eas->w = xive_set_field64(EAS_VALID, 0, 1) |
xive_set_field64(EAS_MASKED, 0, 1) |
xive_set_field64(EAS_END_DATA, 0, base + i);
}
unlock(&x->lock);
return base;
}
uint32_t xive2_alloc_ipi_irqs(uint32_t chip_id, uint32_t count,
uint32_t align)
{
struct proc_chip *chip = get_chip(chip_id);
struct xive *x;
uint32_t base, i;
assert(chip);
assert(is_pow2(align));
x = chip->xive;
assert(x);
lock(&x->lock);
/* Allocate the IPI interrupts */
base = x->int_ipi_top + (align - 1);
base &= ~(align - 1);
if (base >= x->int_hw_bot) {
xive_err(x,
"IPI alloc request for %d interrupts aligned to %d failed\n",
count, align);
unlock(&x->lock);
return XIVE_IRQ_ERROR;
}
if (!xive_check_ipi_free(x, base, count)) {
xive_err(x, "IPI boot allocator request overlaps dynamic allocator\n");
unlock(&x->lock);
return XIVE_IRQ_ERROR;
}
x->int_ipi_top = base + count;
/* Initialize the corresponding EAS entries to sane defaults,
* IE entry is valid, not routed and masked, END data is set
* to the GIRQ number.
*/
for (i = 0; i < count; i++) {
struct xive_eas *eas = xive_get_eas(x, base + i);
eas->w = xive_set_field64(EAS_VALID, 0, 1) |
xive_set_field64(EAS_MASKED, 0, 1) |
xive_set_field64(EAS_END_DATA, 0, base + i);
}
unlock(&x->lock);
return base;
}
void *xive2_get_trigger_port(uint32_t girq)
{
uint32_t idx = GIRQ_TO_IDX(girq);
struct xive *x;
/* Find XIVE on which the EAS resides */
x = xive_from_isn(girq);
if (!x)
return NULL;
if (GIRQ_IS_ESCALATION(girq)) {
/* There is no trigger page for escalation interrupts */
return NULL;
} else {
/* Make sure it's an IPI on that chip */
if (girq < x->int_base ||
girq >= x->int_ipi_top)
return NULL;
return x->esb_base + idx * XIVE_ESB_PAGE_SIZE;
}
}
/*
* Notify Port page (writes only, w/data), separated into two
* categories, both sent to VC:
* - IPI queue (Addr bit 52 = 0) (for NPU)
* - HW queue (Addr bit 52 = 1)
*/
uint64_t xive2_get_notify_port(uint32_t chip_id, uint32_t ent)
{
struct proc_chip *chip = get_chip(chip_id);
struct xive *x;
uint32_t offset = 0;
assert(chip);
x = chip->xive;
assert(x);
/* This is where we can assign a different HW queue to a different
* source by offsetting into the cache lines of the notify port
*
* For now we keep it very basic, this will have to be looked at
* again on real HW with some proper performance analysis.
*
* Here's what Florian says on the matter:
*
* <<
* The first 2k of the notify port page can all be used for PCIe triggers
*
* However the idea would be that we try to use the first 4 cache lines to
* balance the PCIe Interrupt requests to use the least used snoop buses
* (we went from 2 to 4 snoop buses for P9). snoop 0 is heavily used
* (I think TLBIs are using that in addition to the normal addresses),
* snoop 3 is used for all Int commands, so I think snoop 2 (CL 2 in the
* page) is the least used overall. So we probably should that one for
* the Int commands from PCIe.
*
* In addition, our EAS cache supports hashing to provide "private" cache
* areas for the PHBs in the shared 1k EAS cache. This allows e.g. to avoid
* that one "thrashing" PHB thrashes the EAS cache for everyone, or provide
* a PHB with a private area that would allow high cache hits in case of a
* device using very few interrupts. The hashing is based on the offset within
* the cache line. So using that, you can e.g. set the EAS cache up so that
* IPIs use 512 entries, the x16 PHB uses 256 entries and the x8 PHBs 128
* entries each - or IPIs using all entries and sharing with PHBs, so PHBs
* would use 512 entries and 256 entries respectively.
*
* This is a tuning we would probably do later in the lab, but as a "prep"
* we should set up the different PHBs such that they are using different
* 8B-aligned offsets within the cache line, so e.g.
* PH4_0 addr 0x100 (CL 2 DW0
* PH4_1 addr 0x108 (CL 2 DW1)
* PH4_2 addr 0x110 (CL 2 DW2)
* etc.
* >>
*
* I'm using snoop1 for PHB0 and snoop2 for everybody else.
*/
/* Florian adds :
*
* we just set them up for a start to have different offsets
* within the cache line so that we could use the allocation
* restrictions that can be enforced in the interrupt
* controller
*
* P10 might now be randomizing the cache line bits in HW to
* balance snoop bus usage
*/
switch(ent) {
case XIVE_HW_SRC_PHBn(0):
offset = 0x800;
break;
case XIVE_HW_SRC_PHBn(1):
offset = 0x908;
break;
case XIVE_HW_SRC_PHBn(2):
offset = 0x910;
break;
case XIVE_HW_SRC_PHBn(3):
offset = 0x918;
break;
case XIVE_HW_SRC_PHBn(4):
offset = 0x920;
break;
case XIVE_HW_SRC_PHBn(5):
offset = 0x928;
break;
case XIVE_HW_SRC_PSI:
offset = 0x930;
break;
default:
assert(false);
return 0;
}
return ((uint64_t)x->ic_base) +
(XIVE_NOTIFY_PGOFF << x->ic_shift) + offset;
}
/* Manufacture the powerbus packet bits 32:63 */
__attrconst uint32_t xive2_get_notify_base(uint32_t girq)
{
return (GIRQ_TO_BLK(girq) << 28) | GIRQ_TO_IDX(girq);
}
static bool xive_get_irq_targetting(uint32_t isn, uint32_t *out_target,
uint8_t *out_prio, uint32_t *out_lirq)
{
struct xive_eas *eas;
struct xive *x, *end_x;
struct xive_end *end;
uint32_t end_blk, end_idx;
uint32_t vp_blk, vp_idx;
uint32_t prio, server;
bool is_escalation = GIRQ_IS_ESCALATION(isn);
/* Find XIVE on which the EAS resides */
x = xive_from_isn(isn);
if (!x)
return false;
/* Grab the EAS */
eas = xive_get_eas(x, isn);
if (!eas)
return false;
if (!xive_get_field64(EAS_VALID, eas->w) && !is_escalation) {
xive_err(x, "ISN %x lead to invalid EAS !\n", isn);
return false;
}
if (out_lirq)
*out_lirq = xive_get_field64(EAS_END_DATA, eas->w);
/* Find the END and its xive instance */
end_blk = xive_get_field64(EAS_END_BLOCK, eas->w);
end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
end_x = xive_from_vc_blk(end_blk);
/* This can fail if the interrupt hasn't been initialized yet
* but it should also be masked, so fail silently
*/
if (!end_x)
goto pick_default;
end = xive_get_end(end_x, end_idx);
if (!end)
goto pick_default;
/* XXX Check valid and format 0 */
/* No priority conversion, return the actual one ! */
if (xive_get_field64(EAS_MASKED, eas->w))
prio = 0xff;
else
prio = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
if (out_prio)
*out_prio = prio;
vp_blk = xive_get_field32(END_W6_VP_BLOCK, end->w6);
vp_idx = xive_get_field32(END_W6_VP_OFFSET, end->w6);
server = VP2PIR(vp_blk, vp_idx);
if (out_target)
*out_target = server;
xive_vdbg(end_x, "END info for ISN %x: prio=%d, server=0x%x (VP %x/%x)\n",
isn, prio, server, vp_blk, vp_idx);
return true;
pick_default:
xive_vdbg(end_x, "END info for ISN %x: Using masked defaults\n", isn);
if (out_prio)
*out_prio = 0xff;
/* Pick a random default, me will be fine ... */
if (out_target)
*out_target = mfspr(SPR_PIR);
return true;
}
static inline bool xive_end_for_target(uint32_t target, uint8_t prio,
uint32_t *out_end_blk,
uint32_t *out_end_idx)
{
struct xive *x;
struct xive_nvp *vp;
uint32_t vp_blk, vp_idx;
uint32_t end_blk, end_idx;
if (prio > xive_max_prio(one_xive))
return false;
/* Get the VP block/index from the target word */
if (!xive_decode_vp(target, &vp_blk, &vp_idx, NULL, NULL))
return false;
/* Grab the target VP's XIVE */
x = xive_from_pc_blk(vp_blk);
if (!x)
return false;
/* Find the VP structrure where we stashed the END number */
vp = xive_get_vp(x, vp_idx);
if (!vp)
return false;
end_blk = xive_get_field32(NVP_W5_VP_END_BLOCK, vp->w5);
end_idx = xive_get_field32(NVP_W5_VP_END_INDEX, vp->w5);
/* Currently the END block and VP block should be the same */
if (end_blk != vp_blk) {
xive_err(x, "end_blk != vp_blk (%d vs. %d) for target 0x%08x/%d\n",
end_blk, vp_blk, target, prio);
assert(false);
}
if (out_end_blk)
*out_end_blk = end_blk;
if (out_end_idx)
*out_end_idx = end_idx + prio;
return true;
}
static int64_t xive_set_irq_targetting(uint32_t isn, uint32_t target,
uint8_t prio, uint32_t lirq,
bool synchronous)
{
struct xive *x;
struct xive_eas *eas, new_eas;
uint32_t end_blk, end_idx;
bool is_escalation = GIRQ_IS_ESCALATION(isn);
int64_t rc;
/* Find XIVE on which the EAS resides */
x = xive_from_isn(isn);
if (!x)
return OPAL_PARAMETER;
/* Grab the EAS */
eas = xive_get_eas(x, isn);
if (!eas)
return OPAL_PARAMETER;
if (!xive_get_field64(EAS_VALID, eas->w) && !is_escalation) {
xive_err(x, "ISN %x lead to invalid EAS !\n", isn);
return OPAL_PARAMETER;
}
lock(&x->lock);
/* Read existing EAS */
new_eas = *eas;
/* Are we masking ? */
if (prio == 0xff && !is_escalation) {
new_eas.w = xive_set_field64(EAS_MASKED, new_eas.w, 1);
xive_vdbg(x, "ISN %x masked !\n", isn);
/* Put prio 7 in the END */
prio = xive_max_prio(x);
} else {
/* Unmasking */
new_eas.w = xive_set_field64(EAS_MASKED, new_eas.w, 0);
xive_vdbg(x, "ISN %x unmasked !\n", isn);
/* For normal interrupt sources, keep track of which ones
* we ever enabled since the last reset
*/
if (!is_escalation)
bitmap_set_bit(*x->int_enabled_map, GIRQ_TO_IDX(isn));
}
/* If prio isn't 0xff, re-target the EAS. First find the END
* correponding to the target
*/
if (prio != 0xff) {
if (!xive_end_for_target(target, prio, &end_blk, &end_idx)) {
xive_err(x, "Can't find END for target/prio 0x%x/%d\n",
target, prio);
unlock(&x->lock);
return OPAL_PARAMETER;
}
/* Try to update it atomically to avoid an intermediary
* stale state
*/
new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
}
new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, lirq);
xive_vdbg(x,"ISN %x routed to end %x/%x lirq=%08x EAS=%016llx !\n",
isn, end_blk, end_idx, lirq, new_eas.w);
/* Updating the cache differs between real EAS and escalation
* EAS inside an END
*/
if (is_escalation) {
rc = xive_escalation_ive_cache_update(x, x->block_id,
GIRQ_TO_IDX(isn), &new_eas, synchronous);
} else {
sync();
*eas = new_eas;
rc = xive_easc_scrub(x, x->block_id, GIRQ_TO_IDX(isn));
}
unlock(&x->lock);
return rc;
}
static void xive_update_irq_mask(struct xive_src *s, uint32_t idx, bool masked)
{
void *mmio_base = s->esb_mmio + (1ul << s->esb_shift) * idx;
uint32_t offset;
/* XXX FIXME: A quick mask/umask can make us shoot an interrupt
* more than once to a queue. We need to keep track better
*/
if (s->flags & XIVE_SRC_EOI_PAGE1)
mmio_base += 1ull << (s->esb_shift - 1);
if (masked)
offset = XIVE_ESB_SET_PQ_01;
else
offset = XIVE_ESB_SET_PQ_00;
in_be64(mmio_base + offset);
}
#define XIVE_SYNC_IPI 0x000
#define XIVE_SYNC_HW 0x080
#define XIVE_SYNC_NxC 0x100
#define XIVE_SYNC_INT 0x180
#define XIVE_SYNC_OS_ESC 0x200
#define XIVE_SYNC_POOL_ESC 0x280
#define XIVE_SYNC_HARD_ESC 0x300
static int64_t xive_sync(struct xive *x __unused)
{
uint64_t r;
void *sync_base;
lock(&x->lock);
sync_base = x->ic_base + (XIVE_SYNC_POLL_PGOFF << x->ic_shift);
out_be64(sync_base + XIVE_SYNC_IPI, 0);
out_be64(sync_base + XIVE_SYNC_HW, 0);
out_be64(sync_base + XIVE_SYNC_NxC, 0);
out_be64(sync_base + XIVE_SYNC_INT, 0);
out_be64(sync_base + XIVE_SYNC_OS_ESC, 0);
out_be64(sync_base + XIVE_SYNC_POOL_ESC, 0);
out_be64(sync_base + XIVE_SYNC_HARD_ESC, 0);
/* XXX Add timeout */
for (;;) {
r = xive_regr(x, VC_ENDC_SYNC_DONE);
if ((r & VC_ENDC_SYNC_POLL_DONE) == VC_ENDC_SYNC_POLL_DONE)
break;
cpu_relax();
}
xive_regw(x, VC_ENDC_SYNC_DONE, r & ~VC_ENDC_SYNC_POLL_DONE);
/*
* Do a read after clearing the sync done bit to prevent any
* race between CI write and next sync command
*/
xive_regr(x, VC_ENDC_SYNC_DONE);
unlock(&x->lock);
return 0;
}
static int64_t __xive_set_irq_config(struct irq_source *is, uint32_t girq,
uint64_t vp, uint8_t prio, uint32_t lirq,
bool update_esb, bool sync)
{
struct xive_src *s = container_of(is, struct xive_src, is);
uint32_t old_target, vp_blk;
u8 old_prio;
int64_t rc;
/* Grab existing target */
if (!xive_get_irq_targetting(girq, &old_target, &old_prio, NULL))
return OPAL_PARAMETER;
/* Let XIVE configure the END. We do the update without the
* synchronous flag, thus a cache update failure will result
* in us returning OPAL_BUSY
*/
rc = xive_set_irq_targetting(girq, vp, prio, lirq, false);
if (rc)
return rc;
/* Do we need to update the mask ? */
if (old_prio != prio && (old_prio == 0xff || prio == 0xff)) {
/* The source has special variants of masking/unmasking */
if (update_esb) {
/* Ensure it's enabled/disabled in the source
* controller
*/
xive_update_irq_mask(s, girq - s->esb_base,
prio == 0xff);
}
}
/*
* Synchronize the source and old target XIVEs to ensure that
* all pending interrupts to the old target have reached their
* respective queue.
*
* WARNING: This assumes the VP and it's queues are on the same
* XIVE instance !
*/
if (!sync)
return OPAL_SUCCESS;
xive_sync(s->xive);
if (xive_decode_vp(old_target, &vp_blk, NULL, NULL, NULL)) {
struct xive *x = xive_from_pc_blk(vp_blk);
if (x)
xive_sync(x);
}
return OPAL_SUCCESS;
}
static int64_t xive_set_irq_config(uint32_t girq, uint64_t vp, uint8_t prio,
uint32_t lirq, bool update_esb)
{
struct irq_source *is = irq_find_source(girq);
return __xive_set_irq_config(is, girq, vp, prio, lirq, update_esb,
true);
}
static void xive_source_interrupt(struct irq_source *is, uint32_t isn)
{
struct xive_src *s = container_of(is, struct xive_src, is);
if (!s->orig_ops || !s->orig_ops->interrupt)
return;
s->orig_ops->interrupt(is, isn);
}
static uint64_t xive_source_attributes(struct irq_source *is, uint32_t isn)
{
struct xive_src *s = container_of(is, struct xive_src, is);
if (!s->orig_ops || !s->orig_ops->attributes)
return IRQ_ATTR_TARGET_LINUX;
return s->orig_ops->attributes(is, isn);
}
static char *xive_source_name(struct irq_source *is, uint32_t isn)
{
struct xive_src *s = container_of(is, struct xive_src, is);
if (!s->orig_ops || !s->orig_ops->name)
return NULL;
return s->orig_ops->name(is, isn);
}
void xive2_source_mask(struct irq_source *is, uint32_t isn)
{
struct xive_src *s = container_of(is, struct xive_src, is);
xive_update_irq_mask(s, isn - s->esb_base, true);
}
static const struct irq_source_ops xive_irq_source_ops = {
.interrupt = xive_source_interrupt,
.attributes = xive_source_attributes,
.name = xive_source_name,
};
static void __xive_register_source(struct xive *x, struct xive_src *s,
uint32_t base, uint32_t count,
uint32_t shift, void *mmio, uint32_t flags,
bool secondary, void *data,
const struct irq_source_ops *orig_ops)
{
s->esb_base = base;
s->esb_shift = shift;
s->esb_mmio = mmio;
s->flags = flags;
s->orig_ops = orig_ops;
s->xive = x;
s->is.start = base;
s->is.end = base + count;
s->is.ops = &xive_irq_source_ops;
s->is.data = data;
__register_irq_source(&s->is, secondary);
}
void xive2_register_hw_source(uint32_t base, uint32_t count, uint32_t shift,
void *mmio, uint32_t flags, void *data,
const struct irq_source_ops *ops)
{
struct xive_src *s;
struct xive *x = xive_from_isn(base);
assert(x);
s = malloc(sizeof(struct xive_src));
assert(s);
__xive_register_source(x, s, base, count, shift, mmio, flags,
false, data, ops);
}
static void __xive2_register_esb_source(uint32_t base, uint32_t count,
void *data, const struct irq_source_ops *ops)
{
struct xive_src *s;
struct xive *x = xive_from_isn(base);
uint32_t base_idx = GIRQ_TO_IDX(base);
void *mmio_base;
uint32_t flags = XIVE_SRC_EOI_PAGE1 | XIVE_SRC_TRIGGER_PAGE;
assert(x);
s = malloc(sizeof(struct xive_src));
assert(s);
if (XIVE_CAN_STORE_EOI(x))
flags |= XIVE_SRC_STORE_EOI;
/* Callbacks assume the MMIO base corresponds to the first
* interrupt of that source structure so adjust it
*/
mmio_base = x->esb_base + (1ul << XIVE_ESB_SHIFT) * base_idx;
__xive_register_source(x, s, base, count, XIVE_ESB_SHIFT, mmio_base,
flags, false, data, ops);
}
/*
* Check that IPI sources have interrupt numbers in the IPI interrupt
* number range
*/
void xive2_register_ipi_source(uint32_t base, uint32_t count, void *data,
const struct irq_source_ops *ops)
{
struct xive *x = xive_from_isn(base);
assert(x);
assert(base >= x->int_base && (base + count) <= x->int_ipi_top);
__xive2_register_esb_source(base, count, data, ops);
}
/*
* Some HW sources (PHB) can disable the use of their own ESB pages
* and offload all the checks on ESB pages of the IC. The interrupt
* numbers are not necessarily in the IPI range.
*/
void xive2_register_esb_source(uint32_t base, uint32_t count)
{
__xive2_register_esb_source(base, count, NULL, NULL);
}
uint64_t xive2_get_esb_base(uint32_t base)
{
struct xive *x = xive_from_isn(base);
uint32_t base_idx = GIRQ_TO_IDX(base);
assert(x);
return (uint64_t) x->esb_base + (1ul << XIVE_ESB_SHIFT) * base_idx;
}
static void xive_set_quirks(struct xive *x, struct proc_chip *chip __unused)
{
uint64_t quirks = 0;
/* This extension is dropped for P10 */
if (proc_gen == proc_gen_p10)
quirks |= XIVE_QUIRK_THREADID_7BITS;
/* Broken check on invalid priority when reduced priorities is in use */
if (proc_gen == proc_gen_p10)
quirks |= XIVE_QUIRK_BROKEN_PRIO_CHECK;
xive_dbg(x, "setting XIVE quirks to %016llx\n", quirks);
x->quirks = quirks;
}
static struct xive *init_one_xive(struct dt_node *np)
{
struct xive *x;
struct proc_chip *chip;
uint32_t flags;
x = zalloc(sizeof(struct xive));
assert(x);
x->x_node = np;
x->xscom_base = dt_get_address(np, 0, NULL);
x->chip_id = dt_get_chip_id(np);
/* "Allocate" a new block ID for the chip */
x->block_id = xive_block_count++;
assert (x->block_id < XIVE_MAX_CHIPS);
xive_block_to_chip[x->block_id] = x->chip_id;
init_lock(&x->lock);
chip = get_chip(x->chip_id);
assert(chip);
xive_notice(x, "Initializing XIVE block ID %d...\n", x->block_id);
chip->xive = x;
xive_set_quirks(x, chip);
list_head_init(&x->donated_pages);
/* Base interrupt numbers and allocator init */
x->int_base = BLKIDX_TO_GIRQ(x->block_id, 0);
x->int_count = x->int_base + XIVE_INT_COUNT;
x->int_hw_bot = x->int_count;
x->int_ipi_top = x->int_base;
if (x->int_ipi_top < XIVE_INT_FIRST)
x->int_ipi_top = XIVE_INT_FIRST;
/* Allocate a few bitmaps */
x->end_map = local_alloc(x->chip_id, BITMAP_BYTES(xive_end_bitmap_size(x)), PAGE_SIZE);
assert(x->end_map);
memset(x->end_map, 0, BITMAP_BYTES(xive_end_bitmap_size(x)));
/*
* Allocate END index 0 to make sure it can not be used as an
* END base for a VP. This is the criteria to know if a VP was
* allocated.
*/
bitmap_set_bit(*x->end_map, 0);
x->int_enabled_map = local_alloc(x->chip_id, BITMAP_BYTES(XIVE_INT_COUNT), PAGE_SIZE);
assert(x->int_enabled_map);
memset(x->int_enabled_map, 0, BITMAP_BYTES(XIVE_INT_COUNT));
x->ipi_alloc_map = local_alloc(x->chip_id, BITMAP_BYTES(XIVE_INT_COUNT), PAGE_SIZE);
assert(x->ipi_alloc_map);
memset(x->ipi_alloc_map, 0, BITMAP_BYTES(XIVE_INT_COUNT));
xive_dbg(x, "Handling interrupts [%08x..%08x]\n",
x->int_base, x->int_count - 1);
/* Setup the IC BARs */
if (!xive_configure_ic_bars(x))
goto fail;
/* Some basic global inits such as page sizes etc... */
if (!xive_config_init(x))
goto fail;
/* Configure the set translations for MMIO */
if (!xive_setup_set_xlate(x))
goto fail;
/* Dump some MMIO registers for diagnostics */
xive_dump_mmio(x);
/* Pre-allocate a number of tables */
if (!xive_prealloc_tables(x))
goto fail;
/* Setup the XIVE structures BARs */
if (!xive_configure_bars(x))
goto fail;
/*
* Configure local tables in VSDs (forward ports will be
* handled later)
*/
if (!xive_set_local_tables(x))
goto fail;
/* Register built-in source controllers (aka IPIs) */
flags = XIVE_SRC_EOI_PAGE1 | XIVE_SRC_TRIGGER_PAGE;
if (XIVE_CAN_STORE_EOI(x))
flags |= XIVE_SRC_STORE_EOI;
__xive_register_source(x, &x->ipis, x->int_base,
x->int_hw_bot - x->int_base, XIVE_ESB_SHIFT,
x->esb_base, flags, true, NULL, NULL);
/* Register escalation sources (ENDs)
*
* The ESe PQ bits are used for coalescing and the END ESB for
* interrupt management. The word 4&5 of the END is the EAS
* for the escalation source and the indexing is the same as
* the END.
*
* This is an OPAL primary source, IPIs are secondary.
*/
__xive_register_source(x, &x->esc_irqs,
MAKE_ESCALATION_GIRQ(x->block_id, 0),
XIVE_END_COUNT, XIVE_END_SHIFT,
x->end_base, XIVE_SRC_EOI_PAGE1,
false, NULL, NULL);
return x;
fail:
xive_err(x, "Initialization failed...\n");
/* Should this be fatal ? */
//assert(false);
return NULL;
}
static void xive_reset_enable_thread(struct cpu_thread *c)
{
struct proc_chip *chip = get_chip(c->chip_id);
struct xive *x = chip->xive;
uint32_t fc, bit;
uint64_t enable;
/* Get fused core number */
fc = (c->pir >> 3) & 0xf;
/* Get bit in register */
bit = c->pir & 0x3f;
/* Get which register to access */
if (fc < 8) {
xive_regw(x, TCTXT_EN0_RESET, PPC_BIT(bit));
xive_regw(x, TCTXT_EN0_SET, PPC_BIT(bit));
enable = xive_regr(x, TCTXT_EN0);
if (!(enable & PPC_BIT(bit)))
xive_cpu_err(c, "Failed to enable thread\n");
} else {
xive_regw(x, TCTXT_EN1_RESET, PPC_BIT(bit));
xive_regw(x, TCTXT_EN1_SET, PPC_BIT(bit));
enable = xive_regr(x, TCTXT_EN1);
if (!(enable & PPC_BIT(bit)))
xive_cpu_err(c, "Failed to enable thread\n");
}
}
void xive2_cpu_callin(struct cpu_thread *cpu)
{
struct xive_cpu_state *xs = cpu->xstate;
uint8_t old_w2 __unused, w2 __unused;
if (!xs)
return;
/* Reset the HW thread context and enable it */
xive_reset_enable_thread(cpu);
/* Set VT to 1 */
old_w2 = in_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2);
out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2, 0x80);
w2 = in_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2);
xive_cpu_vdbg(cpu, "Initialized TIMA VP=%x/%x W01=%016llx W2=%02x->%02x\n",
xs->vp_blk, xs->vp_idx,
in_be64(xs->tm_ring1 + TM_QW3_HV_PHYS),
old_w2, w2);
}
#ifdef XIVE_EXTRA_CHECK_INIT_CACHE
#define CHECK_INIT_CACHE_LOOP 0x100
static void xive_special_cache_check(struct xive *x, uint32_t blk, uint32_t idx)
{
struct xive_nvp vp = {0};
uint32_t i;
/*
* SIMICS checks the value of reserved fields
*/
if (chip_quirk(QUIRK_SIMICS))
return;
for (i = 0; i < CHECK_INIT_CACHE_LOOP; i++) {
struct xive_nvp *vp_m = xive_get_vp(x, idx);
memset(vp_m, (~i) & 0xff, sizeof(*vp_m));
vp_m->w0 = xive_set_field32(NVP_W0_VALID, vp_m->w0, 0);
sync();
vp.w1 = (i << 16) | i;
assert(!xive_nxc_cache_update(x, blk, idx, &vp, true));
if (!xive_check_nxc_update(x, idx, &vp)) {
xive_dbg(x, "NXC update test failed at %d iterations\n", i);
return;
}
}
xive_dbg(x, "NXC update test passed for %d/0x%x\n", blk, idx);
}
#else
static inline void xive_special_cache_check(struct xive *x __unused,
uint32_t blk __unused,
uint32_t idx __unused)
{
}
#endif
static void xive_init_cpu_exploitation(struct xive_cpu_state *xs)
{
struct xive_end end;
struct xive_nvp vp;
struct xive *x_vp, *x_end;
int i;
/* Grab the XIVE where the VP resides. It could be different from
* the local chip XIVE if not using block group mode
*/
x_vp = xive_from_pc_blk(xs->vp_blk);
assert(x_vp);
/* Grab the XIVE where the END resides. It should be the same
* as the VP.
*/
x_end = xive_from_vc_blk(xs->end_blk);
assert(x_end);
xive_init_hw_end(&end);
/* Use the cache watch to update all ENDs reserved for HW VPs */
lock(&x_end->lock);
for (i = 0; i < xive_cfg_vp_prio(x_end); i++)
xive_endc_cache_update(x_end, xs->end_blk, xs->end_idx + i,
&end, true);
unlock(&x_end->lock);
/* Initialize/enable the VP */
xive_init_default_vp(&vp, xs->end_blk, xs->end_idx);
/* Use the cache watch to write it out */
lock(&x_vp->lock);
xive_special_cache_check(x_vp, xs->vp_blk, xs->vp_idx);
xive_nxc_cache_update(x_vp, xs->vp_blk, xs->vp_idx, &vp, true);
unlock(&x_vp->lock);
}
static void xive_configure_ex_special_bar(struct xive *x, struct cpu_thread *c)
{
uint64_t xa, val;
int64_t rc;
xive_cpu_vdbg(c, "Setting up special BAR\n");
xa = XSCOM_ADDR_P10_NCU(pir_to_core_id(c->pir), P10_NCU_SPEC_BAR);
val = (uint64_t)x->tm_base | P10_NCU_SPEC_BAR_ENABLE;
if (x->tm_shift == 16)
val |= P10_NCU_SPEC_BAR_256K;
xive_cpu_vdbg(c, "NCU_SPEC_BAR_XA[%08llx]=%016llx\n", xa, val);
rc = xscom_write(c->chip_id, xa, val);
if (rc) {
xive_cpu_err(c, "Failed to setup NCU_SPEC_BAR\n");
/* XXXX what do do now ? */
}
}
void xive2_late_init(void)
{
struct cpu_thread *c;
prlog(PR_INFO, "SLW: Configuring self-restore for NCU_SPEC_BAR\n");
for_each_present_cpu(c) {
if(cpu_is_thread0(c)) {
struct proc_chip *chip = get_chip(c->chip_id);
struct xive *x = chip->xive;
uint64_t xa, val, rc;
xa = XSCOM_ADDR_P10_NCU(pir_to_core_id(c->pir), P10_NCU_SPEC_BAR);
val = (uint64_t)x->tm_base | P10_NCU_SPEC_BAR_ENABLE;
/* Bail out if wakeup engine has already failed */
if (wakeup_engine_state != WAKEUP_ENGINE_PRESENT) {
prlog(PR_ERR, "XIVE proc_stop_api fail detected\n");
break;
}
rc = proc_stop_save_scom((void *)chip->homer_base, xa, val,
PROC_STOP_SCOM_REPLACE, PROC_STOP_SECTION_L3);
if (rc) {
xive_cpu_err(c, "proc_stop_save_scom failed for NCU_SPEC_BAR rc=%lld\n",
rc);
wakeup_engine_state = WAKEUP_ENGINE_FAILED;
}
}
}
}
static void xive_provision_cpu(struct xive_cpu_state *xs, struct cpu_thread *c)
{
struct xive *x;
/* VP ids for HW threads are pre-allocated */
xs->vp_blk = PIR2VP_BLK(c->pir);
xs->vp_idx = PIR2VP_IDX(c->pir);
/* For now we use identical block IDs for VC and PC but that might
* change. We allocate the ENDs on the same XIVE as the VP.
*/
xs->end_blk = xs->vp_blk;
/* Grab the XIVE where the END resides. It could be different from
* the local chip XIVE if not using block group mode
*/
x = xive_from_vc_blk(xs->end_blk);
assert(x);
/* Allocate a set of ENDs for that VP */
xs->end_idx = xive_alloc_end_set(x, true);
assert(!XIVE_ALLOC_IS_ERR(xs->end_idx));
}
static void xive_init_cpu(struct cpu_thread *c)
{
struct proc_chip *chip = get_chip(c->chip_id);
struct xive *x = chip->xive;
struct xive_cpu_state *xs;
if (!x)
return;
/*
* Each core pair (EX) needs this special BAR setup to have the
* right powerbus cycle for the TM area (as it has the same address
* on all chips so it's somewhat special).
*
* Because we don't want to bother trying to figure out which core
* of a pair is present we just do the setup for each of them, which
* is harmless.
*/
if (cpu_is_thread0(c) || cpu_is_core_chiplet_primary(c))
xive_configure_ex_special_bar(x, c);
/* Initialize the state structure */
c->xstate = xs = local_alloc(c->chip_id, sizeof(struct xive_cpu_state), 1);
assert(xs);
memset(xs, 0, sizeof(struct xive_cpu_state));
xs->xive = x;
init_lock(&xs->lock);
/* Shortcut to TM HV ring */
xs->tm_ring1 = x->tm_base + (1u << x->tm_shift);
/* Provision a VP id and some ENDs for a HW thread */
xive_provision_cpu(xs, c);
xive_init_cpu_exploitation(xs);
}
static uint64_t xive_convert_irq_flags(uint64_t iflags)
{
uint64_t oflags = 0;
if (iflags & XIVE_SRC_STORE_EOI)
oflags |= OPAL_XIVE_IRQ_STORE_EOI2;
/* OPAL_XIVE_IRQ_TRIGGER_PAGE is only meant to be set if
* the interrupt has a *separate* trigger page.
*/
if ((iflags & XIVE_SRC_EOI_PAGE1) &&
(iflags & XIVE_SRC_TRIGGER_PAGE))
oflags |= OPAL_XIVE_IRQ_TRIGGER_PAGE;
if (iflags & XIVE_SRC_LSI)
oflags |= OPAL_XIVE_IRQ_LSI;
return oflags;
}
static int64_t opal_xive_get_irq_info(uint32_t girq,
beint64_t *out_flags,
beint64_t *out_eoi_page,
beint64_t *out_trig_page,
beint32_t *out_esb_shift,
beint32_t *out_src_chip)
{
struct irq_source *is = irq_find_source(girq);
struct xive_src *s = container_of(is, struct xive_src, is);
uint32_t idx;
uint64_t mm_base;
uint64_t eoi_page = 0, trig_page = 0;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (is == NULL || out_flags == NULL)
return OPAL_PARAMETER;
assert(is->ops == &xive_irq_source_ops);
if (out_flags)
*out_flags = cpu_to_be64(xive_convert_irq_flags(s->flags));
idx = girq - s->esb_base;
if (out_esb_shift)
*out_esb_shift = cpu_to_be32(s->esb_shift);
mm_base = (uint64_t)s->esb_mmio + (1ull << s->esb_shift) * idx;
/* The EOI page can either be the first or second page */
if (s->flags & XIVE_SRC_EOI_PAGE1) {
uint64_t p1off = 1ull << (s->esb_shift - 1);
eoi_page = mm_base + p1off;
} else
eoi_page = mm_base;
/* The trigger page, if it exists, is always the first page */
if (s->flags & XIVE_SRC_TRIGGER_PAGE)
trig_page = mm_base;
if (out_eoi_page)
*out_eoi_page = cpu_to_be64(eoi_page);
if (out_trig_page)
*out_trig_page = cpu_to_be64(trig_page);
if (out_src_chip)
*out_src_chip = cpu_to_be32(GIRQ_TO_CHIP(girq));
return OPAL_SUCCESS;
}
static int64_t opal_xive_get_irq_config(uint32_t girq,
beint64_t *out_vp,
uint8_t *out_prio,
beint32_t *out_lirq)
{
uint32_t vp;
uint32_t lirq;
uint8_t prio;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (xive_get_irq_targetting(girq, &vp, &prio, &lirq)) {
*out_vp = cpu_to_be64(vp);
*out_prio = prio;
*out_lirq = cpu_to_be32(lirq);
return OPAL_SUCCESS;
} else
return OPAL_PARAMETER;
}
static int64_t opal_xive_set_irq_config(uint32_t girq,
uint64_t vp,
uint8_t prio,
uint32_t lirq)
{
/*
* This variant is meant for a XIVE-aware OS, thus it will
* *not* affect the ESB state of the interrupt. If used with
* a prio of FF, the EAS will be masked. In that case the
* races have to be handled by the OS.
*/
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
return xive_set_irq_config(girq, vp, prio, lirq, false);
}
static int64_t opal_xive_get_queue_info(uint64_t vp, uint32_t prio,
beint64_t *out_qpage,
beint64_t *out_qsize,
beint64_t *out_qeoi_page,
beint32_t *out_escalate_irq,
beint64_t *out_qflags)
{
uint32_t blk, idx;
struct xive *x;
struct xive_end *end;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (!xive_end_for_target(vp, prio, &blk, &idx))
return OPAL_PARAMETER;
x = xive_from_vc_blk(blk);
if (!x)
return OPAL_PARAMETER;
end = xive_get_end(x, idx);
if (!end)
return OPAL_PARAMETER;
if (out_escalate_irq) {
uint32_t esc_idx = idx;
/* If escalations are routed to a single queue, fix up
* the escalation interrupt number here.
*/
if (xive_get_field32(END_W0_UNCOND_ESCALATE, end->w0))
esc_idx |= xive_escalation_prio(x);
*out_escalate_irq =
cpu_to_be32(MAKE_ESCALATION_GIRQ(blk, esc_idx));
}
/* If this is a single-escalation gather queue, that's all
* there is to return
*/
if (xive_get_field32(END_W0_SILENT_ESCALATE, end->w0)) {
if (out_qflags)
*out_qflags = 0;
if (out_qpage)
*out_qpage = 0;
if (out_qsize)
*out_qsize = 0;
if (out_qeoi_page)
*out_qeoi_page = 0;
return OPAL_SUCCESS;
}
if (out_qpage) {
if (xive_get_field32(END_W0_ENQUEUE, end->w0))
*out_qpage = cpu_to_be64(
((uint64_t)xive_get_field32(END_W2_EQ_ADDR_HI, end->w2) << 32) |
xive_get_field32(END_W3_EQ_ADDR_LO, end->w3));
else
*out_qpage = 0;
}
if (out_qsize) {
if (xive_get_field32(END_W0_ENQUEUE, end->w0))
*out_qsize = cpu_to_be64(xive_get_field32(END_W3_QSIZE, end->w3) + 12);
else
*out_qsize = 0;
}
if (out_qeoi_page) {
*out_qeoi_page = cpu_to_be64(
(uint64_t)x->end_base + idx * XIVE_ESB_PAGE_SIZE);
}
if (out_qflags) {
*out_qflags = 0;
if (xive_get_field32(END_W0_VALID, end->w0))
*out_qflags |= cpu_to_be64(OPAL_XIVE_EQ_ENABLED);
if (xive_get_field32(END_W0_UCOND_NOTIFY, end->w0))
*out_qflags |= cpu_to_be64(OPAL_XIVE_EQ_ALWAYS_NOTIFY);
if (xive_get_field32(END_W0_ESCALATE_CTL, end->w0))
*out_qflags |= cpu_to_be64(OPAL_XIVE_EQ_ESCALATE);
}
return OPAL_SUCCESS;
}
static void xive_cleanup_end(struct xive_end *end)
{
end->w0 = xive_set_field32(END_W0_FIRMWARE1, 0, xive_end_is_firmware1(end));
end->w1 = xive_set_field32(END_W1_ESe_Q, 0, 1) |
xive_set_field32(END_W1_ESn_Q, 0, 1);
end->w2 = end->w3 = end->w4 = end->w5 = end->w6 = end->w7 = 0;
}
static int64_t opal_xive_set_queue_info(uint64_t vp, uint32_t prio,
uint64_t qpage,
uint64_t qsize,
uint64_t qflags)
{
uint32_t blk, idx;
struct xive *x;
struct xive_end *old_end;
struct xive_end end;
uint32_t vp_blk, vp_idx;
bool group;
int64_t rc;
if (!xive_end_for_target(vp, prio, &blk, &idx))
return OPAL_PARAMETER;
x = xive_from_vc_blk(blk);
if (!x)
return OPAL_PARAMETER;
old_end = xive_get_end(x, idx);
if (!old_end)
return OPAL_PARAMETER;
/* If this is a silent escalation queue, it cannot be
* configured directly
*/
if (xive_get_field32(END_W0_SILENT_ESCALATE, old_end->w0))
return OPAL_PARAMETER;
/* This shouldn't fail or xive_end_for_target would have
* failed already
*/
if (!xive_decode_vp(vp, &vp_blk, &vp_idx, NULL, &group))
return OPAL_PARAMETER;
/*
* Make a local copy which we will later try to commit using
* the cache watch facility
*/
end = *old_end;
if (qflags & OPAL_XIVE_EQ_ENABLED) {
switch(qsize) {
/* Supported sizes */
case 12:
case 16:
case 21:
case 24:
end.w3 = cpu_to_be32(qpage & END_W3_EQ_ADDR_LO);
end.w2 = cpu_to_be32((qpage >> 32) & END_W2_EQ_ADDR_HI);
end.w3 = xive_set_field32(END_W3_QSIZE, end.w3, qsize - 12);
end.w0 = xive_set_field32(END_W0_ENQUEUE, end.w0, 1);
break;
case 0:
end.w2 = end.w3 = 0;
end.w0 = xive_set_field32(END_W0_ENQUEUE, end.w0, 0);
break;
default:
return OPAL_PARAMETER;
}
/* Ensure the priority and target are correctly set (they will
* not be right after allocation
*/
end.w6 = xive_set_field32(END_W6_VP_BLOCK, 0, vp_blk) |
xive_set_field32(END_W6_VP_OFFSET, 0, vp_idx);
end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0, prio);
/* XXX Handle group i bit when needed */
/* Always notify flag */
if (qflags & OPAL_XIVE_EQ_ALWAYS_NOTIFY)
end.w0 = xive_set_field32(END_W0_UCOND_NOTIFY, end.w0, 1);
else
end.w0 = xive_set_field32(END_W0_UCOND_NOTIFY, end.w0, 0);
/* Escalation flag */
if (qflags & OPAL_XIVE_EQ_ESCALATE)
end.w0 = xive_set_field32(END_W0_ESCALATE_CTL, end.w0, 1);
else
end.w0 = xive_set_field32(END_W0_ESCALATE_CTL, end.w0, 0);
/* Unconditionally clear the current queue pointer, set
* generation to 1 and disable escalation interrupts.
*/
end.w1 = xive_set_field32(END_W1_GENERATION, 0, 1) |
xive_set_field32(END_W1_ES, 0, xive_get_field32(END_W1_ES, old_end->w1));
/* Enable. We always enable backlog for an enabled queue
* otherwise escalations won't work.
*/
end.w0 = xive_set_field32(END_W0_VALID, end.w0, 1);
end.w0 = xive_set_field32(END_W0_BACKLOG, end.w0, 1);
} else
xive_cleanup_end(&end);
/* Update END, non-synchronous */
lock(&x->lock);
rc = xive_endc_cache_update(x, blk, idx, &end, false);
unlock(&x->lock);
return rc;
}
static int64_t opal_xive_get_queue_state(uint64_t vp, uint32_t prio,
beint32_t *out_qtoggle,
beint32_t *out_qindex)
{
uint32_t blk, idx;
struct xive *x;
struct xive_end *end;
int64_t rc;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (!out_qtoggle || !out_qindex ||
!xive_end_for_target(vp, prio, &blk, &idx))
return OPAL_PARAMETER;
x = xive_from_vc_blk(blk);
if (!x)
return OPAL_PARAMETER;
end = xive_get_end(x, idx);
if (!end)
return OPAL_PARAMETER;
/* Scrub the queue */
lock(&x->lock);
rc = xive_endc_scrub(x, blk, idx);
unlock(&x->lock);
if (rc)
return rc;
/* We don't do disable queues */
if (!xive_get_field32(END_W0_VALID, end->w0))
return OPAL_WRONG_STATE;
*out_qtoggle = cpu_to_be32(xive_get_field32(END_W1_GENERATION, end->w1));
*out_qindex = cpu_to_be32(xive_get_field32(END_W1_PAGE_OFF, end->w1));
return OPAL_SUCCESS;
}
static int64_t opal_xive_set_queue_state(uint64_t vp, uint32_t prio,
uint32_t qtoggle, uint32_t qindex)
{
uint32_t blk, idx;
struct xive *x;
struct xive_end *end, new_end;
int64_t rc;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (!xive_end_for_target(vp, prio, &blk, &idx))
return OPAL_PARAMETER;
x = xive_from_vc_blk(blk);
if (!x)
return OPAL_PARAMETER;
end = xive_get_end(x, idx);
if (!end)
return OPAL_PARAMETER;
/* We don't do disable queues */
if (!xive_get_field32(END_W0_VALID, end->w0))
return OPAL_WRONG_STATE;
new_end = *end;
new_end.w1 = xive_set_field32(END_W1_GENERATION, new_end.w1, qtoggle);
new_end.w1 = xive_set_field32(END_W1_PAGE_OFF, new_end.w1, qindex);
lock(&x->lock);
rc = xive_endc_cache_update(x, blk, idx, &new_end, false);
unlock(&x->lock);
return rc;
}
static int64_t opal_xive_donate_page(uint32_t chip_id, uint64_t addr)
{
struct proc_chip *c = get_chip(chip_id);
struct list_node *n;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (!c)
return OPAL_PARAMETER;
if (!c->xive)
return OPAL_PARAMETER;
if (addr & 0xffff)
return OPAL_PARAMETER;
n = (struct list_node *)addr;
lock(&c->xive->lock);
list_add(&c->xive->donated_pages, n);
unlock(&c->xive->lock);
return OPAL_SUCCESS;
}
static int64_t opal_xive_get_vp_info(uint64_t vp_id,
beint64_t *out_flags,
beint64_t *out_cam_value,
beint64_t *out_report_cl_pair,
beint32_t *out_chip_id)
{
struct xive *x;
struct xive_nvp *vp;
uint32_t blk, idx;
bool group;
if (!xive_decode_vp(vp_id, &blk, &idx, NULL, &group))
return OPAL_PARAMETER;
/* We don't do groups yet */
if (group)
return OPAL_PARAMETER;
x = xive_from_pc_blk(blk);
if (!x)
return OPAL_PARAMETER;
vp = xive_get_vp(x, idx);
if (!vp)
return OPAL_PARAMETER;
if (out_flags) {
uint32_t end_blk, end_idx;
struct xive_end *end;
struct xive *end_x;
*out_flags = 0;
/*
* We would like to a way to stash a SW bit in the VP
* to know whether silent escalation is enabled or
* not, but unlike what happens with ENDs, the PC
* cache watch doesn't implement the reserved bit in
* the VPs... so we have to go look at END 7 instead.
*/
/* Grab END for prio 7 to check for silent escalation */
if (!xive_end_for_target(vp_id, xive_escalation_prio(x),
&end_blk, &end_idx))
return OPAL_PARAMETER;
end_x = xive_from_vc_blk(end_blk);
if (!end_x)
return OPAL_PARAMETER;
end = xive_get_end(x, end_idx);
if (!end)
return OPAL_PARAMETER;
if (xive_get_field32(NVP_W0_VALID, vp->w0))
*out_flags |= cpu_to_be64(OPAL_XIVE_VP_ENABLED);
if (xive_cfg_save_restore(x))
*out_flags |= cpu_to_be64(OPAL_XIVE_VP_SAVE_RESTORE);
if (xive_get_field32(END_W0_SILENT_ESCALATE, end->w0))
*out_flags |= cpu_to_be64(OPAL_XIVE_VP_SINGLE_ESCALATION);
}
if (out_cam_value) {
uint64_t cam_value;
cam_value = (blk << x->vp_shift) | idx;
/*
* If save-restore is enabled, force the CAM line
* value with the H bit.
*/
if (xive_cfg_save_restore(x))
cam_value |= TM10_QW1W2_HO;
*out_cam_value = cpu_to_be64(cam_value);
}
if (out_report_cl_pair) {
uint64_t report_cl_pair;
report_cl_pair = ((uint64_t)(be32_to_cpu(vp->w6) & 0x0fffffff)) << 32;
report_cl_pair |= be32_to_cpu(vp->w7) & 0xffffff00;
*out_report_cl_pair = cpu_to_be64(report_cl_pair);
}
if (out_chip_id)
*out_chip_id = cpu_to_be32(xive_block_to_chip[blk]);
return OPAL_SUCCESS;
}
static int64_t xive_setup_silent_gather(uint64_t vp_id, bool enable)
{
uint32_t blk, idx, i;
struct xive_end *end_orig;
struct xive_end end;
struct xive *x;
int64_t rc;
/* Get base END block */
if (!xive_end_for_target(vp_id, 0, &blk, &idx)) {
prlog(PR_ERR, "%s: Invalid VP 0x%08llx\n", __func__, vp_id);
return OPAL_PARAMETER;
}
x = xive_from_vc_blk(blk);
if (!x) {
prlog(PR_ERR, "%s: VP 0x%08llx has invalid block %d\n", __func__,
vp_id, blk);
return OPAL_PARAMETER;
}
/* Grab prio 7 */
end_orig = xive_get_end(x, idx + xive_escalation_prio(x));
if (!end_orig) {
xive_err(x, "Failed to get silent gather END 0x%x for VP 0x%08llx\n",
idx + xive_escalation_prio(x), vp_id);
return OPAL_PARAMETER;
}
/* If trying to enable silent gather, make sure prio 7 is not
* already enabled as a normal queue
*/
if (enable && xive_get_field32(END_W0_VALID, end_orig->w0) &&
!xive_get_field32(END_W0_SILENT_ESCALATE, end_orig->w0)) {
xive_err(x, "silent gather END 0x%x already in use\n",
idx + xive_escalation_prio(x));
return OPAL_PARAMETER;
}
end = *end_orig;
if (enable) {
/* W0: Enabled and "s" set, no other bit */
end.w0 = xive_set_field32(END_W0_FIRMWARE1, end.w0, 0);
end.w0 = xive_set_field32(END_W0_VALID, end.w0, 1);
end.w0 = xive_set_field32(END_W0_SILENT_ESCALATE, end.w0, 1);
end.w0 = xive_set_field32(END_W0_ESCALATE_CTL, end.w0, 1);
end.w0 = xive_set_field32(END_W0_BACKLOG, end.w0, 1);
/* Set new "N" for END escalation (vs. ESB) */
end.w0 = xive_set_field32(END_W0_ESCALATE_END, end.w0, 1);
/* W1: Mark ESn as 01, ESe as 00 */
end.w1 = xive_set_field32(END_W1_ESn_P, end.w1, 0);
end.w1 = xive_set_field32(END_W1_ESn_Q, end.w1, 1);
end.w1 = xive_set_field32(END_W1_ESe, end.w1, 0);
} else if (xive_get_field32(END_W0_SILENT_ESCALATE, end.w0))
xive_cleanup_end(&end);
if (!memcmp(end_orig, &end, sizeof(end)))
rc = 0;
else
rc = xive_endc_cache_update(x, blk, idx + xive_escalation_prio(x),
&end, false);
if (rc)
return rc;
/* Mark/unmark all other prios with the new "u" bit and update
* escalation
*/
for (i = 0; i < xive_cfg_vp_prio(x); i++) {
if (i == xive_escalation_prio(x))
continue;
end_orig = xive_get_end(x, idx + i);
if (!end_orig)
continue;
end = *end_orig;
if (enable) {
/* Set "u" bit */
end.w0 = xive_set_field32(END_W0_UNCOND_ESCALATE, end.w0, 1);
/* Set new "N" for END escalation (vs. ESB) */
/* TODO (Gen2+) : use ESB escalation configuration */
end.w0 = xive_set_field32(END_W0_ESCALATE_END, end.w0, 1);
/* Re-route escalation interrupt (previous
* route is lost !) to the gather queue
*/
end.w4 = xive_set_field32(END_W4_END_BLOCK, end.w4, blk);
end.w4 = xive_set_field32(END_W4_ESC_END_INDEX,
end.w4, idx + xive_escalation_prio(x));
} else if (xive_get_field32(END_W0_UNCOND_ESCALATE, end.w0)) {
/* Clear the "u" bit, disable escalations if it was set */
end.w0 = xive_set_field32(END_W0_UNCOND_ESCALATE, end.w0, 0);
end.w0 = xive_set_field32(END_W0_ESCALATE_CTL, end.w0, 0);
}
if (!memcmp(end_orig, &end, sizeof(end)))
continue;
rc = xive_endc_cache_update(x, blk, idx + i, &end, false);
if (rc)
break;
}
return rc;
}
static int64_t opal_xive_set_vp_info(uint64_t vp_id,
uint64_t flags,
uint64_t report_cl_pair)
{
struct xive *x;
struct xive_nvp *vp, vp_new;
uint32_t blk, idx;
bool group;
int64_t rc;
if (!xive_decode_vp(vp_id, &blk, &idx, NULL, &group))
return OPAL_PARAMETER;
/* We don't do groups yet */
if (group)
return OPAL_PARAMETER;
if (report_cl_pair & 0xff)
return OPAL_PARAMETER;
x = xive_from_pc_blk(blk);
if (!x)
return OPAL_PARAMETER;
vp = xive_get_vp(x, idx);
if (!vp)
return OPAL_PARAMETER;
/* Consistency check. */
if ((flags & OPAL_XIVE_VP_SAVE_RESTORE) && !xive_cfg_save_restore(x))
return OPAL_PARAMETER;
lock(&x->lock);
vp_new = *vp;
if (flags & OPAL_XIVE_VP_ENABLED) {
vp_new.w0 = xive_set_field32(NVP_W0_VALID, vp_new.w0, 1);
vp_new.w6 = cpu_to_be32(report_cl_pair >> 32);
vp_new.w7 = cpu_to_be32(report_cl_pair & 0xffffffff);
if (flags & OPAL_XIVE_VP_SINGLE_ESCALATION)
rc = xive_setup_silent_gather(vp_id, true);
else
rc = xive_setup_silent_gather(vp_id, false);
/*
* Prepare NVP to be HW owned for automatic save-restore
*/
if (xive_cfg_save_restore(x)) {
/*
* Set NVP privilege level. Default to OS.
* This check only makes sense for KVM guests
* currently. We would need an extra flag to
* distinguish from pool level.
*/
vp_new.w0 = xive_set_field32(NVP_W0_VPRIV, vp_new.w0, 0);
vp_new.w2 = xive_set_field32(NVP_W2_CPPR, vp_new.w2, 0xFF);
vp_new.w0 = xive_set_field32(NVP_W0_HW, vp_new.w0, 1);
}
} else {
/*
* TODO (kvm): disabling a VP invalidates the associated ENDs.
*
* The loads then return all 1s which can be an issue for the
* Linux code to handle.
*/
vp_new.w0 = vp_new.w6 = vp_new.w7 = 0;
rc = xive_setup_silent_gather(vp_id, false);
}
if (rc) {
if (rc != OPAL_BUSY)
xive_dbg(x, "Silent gather setup failed with err %lld\n", rc);
goto bail;
}
rc = xive_nxc_cache_update(x, blk, idx, &vp_new, false);
if (rc)
goto bail;
/* When disabling, we scrub clean (invalidate the entry) so
* we can avoid cache ops in alloc/free
*/
if (!(flags & OPAL_XIVE_VP_ENABLED))
xive_nxc_scrub_clean(x, blk, idx);
bail:
unlock(&x->lock);
return rc;
}
static int64_t opal_xive_get_vp_state(uint64_t vp_id, beint64_t *out_state)
{
struct xive *x;
struct xive_nvp *vp;
uint32_t blk, idx;
int64_t rc;
bool group;
if (!out_state || !xive_decode_vp(vp_id, &blk, &idx, NULL, &group))
return OPAL_PARAMETER;
if (group)
return OPAL_PARAMETER;
x = xive_from_pc_blk(blk);
if (!x)
return OPAL_PARAMETER;
vp = xive_get_vp(x, idx);
if (!vp)
return OPAL_PARAMETER;
/* Scrub the vp */
lock(&x->lock);
rc = xive_nxc_scrub(x, blk, idx);
unlock(&x->lock);
if (rc)
return rc;
if (!xive_get_field32(NVP_W0_VALID, vp->w0))
return OPAL_WRONG_STATE;
/*
* return a state matching the layout of WORD 0-1 of the TIMA
* as this is expected by current implementation.
*/
*out_state = cpu_to_be64(((uint64_t) 0x0) << 54 |
(uint64_t)xive_get_field32(NVP_W2_CPPR, vp->w2) << 48 |
(uint64_t)xive_get_field32(NVP_W2_IPB, vp->w2) << 40 |
(uint64_t)xive_get_field32(NVP_W2_LSMFB, vp->w2) << 32);
return OPAL_SUCCESS;
}
static void *xive_cpu_get_tima(struct cpu_thread *c)
{
struct xive_cpu_state *xs = c->xstate;
struct xive *x = xs->xive;
return x->ic_tm_direct_base + ((c->pir & 0xff) << x->ic_shift);
}
static void xive_cleanup_cpu_tima(struct cpu_thread *c)
{
struct xive_cpu_state *xs __unused = c->xstate;
void *cpu_tm_base = xive_cpu_get_tima(c);
uint8_t old_w2 __unused, w2 __unused;
/* Reset the HW context */
xive_reset_enable_thread(c);
/* Set VT to 1 */
old_w2 = in_8(cpu_tm_base + TM_QW3_HV_PHYS + TM_WORD2);
out_8(cpu_tm_base + TM_QW3_HV_PHYS + TM_WORD2, 0x80);
w2 = in_8(cpu_tm_base + TM_QW3_HV_PHYS + TM_WORD2);
/* Dump HV state */
xive_cpu_vdbg(c, "[reset] VP TIMA VP=%x/%x W01=%016llx W2=%02x->%02x\n",
xs->vp_blk, xs->vp_idx,
in_be64(cpu_tm_base + TM_QW3_HV_PHYS),
old_w2, w2);
}
static int64_t xive_vc_ind_cache_kill(struct xive *x, uint64_t type)
{
uint64_t val;
/* We clear the whole thing */
xive_regw(x, VC_AT_MACRO_KILL_MASK, 0);
xive_regw(x, VC_AT_MACRO_KILL, VC_AT_MACRO_KILL_VALID |
SETFIELD(VC_AT_MACRO_KILL_VSD, 0ull, type));
/* XXX Add timeout */
for (;;) {
val = xive_regr(x, VC_AT_MACRO_KILL);
if (!(val & VC_AT_MACRO_KILL_VALID))
break;
}
return 0;
}
static int64_t xive_pc_ind_cache_kill(struct xive *x)
{
uint64_t val;
/* We clear the whole thing */
xive_regw(x, PC_AT_KILL_MASK, 0);
xive_regw(x, PC_AT_KILL, PC_AT_KILL_VALID |
SETFIELD(VC_AT_MACRO_KILL_VSD, 0ull, VST_NVP));
/* XXX Add timeout */
for (;;) {
val = xive_regr(x, PC_AT_KILL);
if (!(val & PC_AT_KILL_VALID))
break;
}
return 0;
}
static void xive_cleanup_vp_ind(struct xive *x)
{
int i;
xive_dbg(x, "Cleaning up %d VP ind entries...\n", x->vp_ind_count);
for (i = 0; i < x->vp_ind_count; i++) {
if (be64_to_cpu(x->vp_ind_base[i]) & VSD_FIRMWARE) {
xive_dbg(x, " %04x ... skip (firmware)\n", i);
continue;
}
if (x->vp_ind_base[i] != 0) {
x->vp_ind_base[i] = 0;
xive_dbg(x, " %04x ... cleaned\n", i);
}
}
xive_pc_ind_cache_kill(x);
}
static void xive_cleanup_end_ind(struct xive *x)
{
int i;
xive_dbg(x, "Cleaning up %d END ind entries...\n", x->end_ind_count);
for (i = 0; i < x->end_ind_count; i++) {
if (be64_to_cpu(x->end_ind_base[i]) & VSD_FIRMWARE) {
xive_dbg(x, " %04x ... skip (firmware)\n", i);
continue;
}
if (x->end_ind_base[i] != 0) {
x->end_ind_base[i] = 0;
xive_dbg(x, " %04x ... cleaned\n", i);
}
}
xive_vc_ind_cache_kill(x, VST_END);
}
static void xive_reset_one(struct xive *x)
{
struct cpu_thread *c;
bool end_firmware;
int i;
xive_notice(x, "Resetting one xive...\n");
lock(&x->lock);
/* Check all interrupts are disabled */
i = bitmap_find_one_bit(*x->int_enabled_map, 0, XIVE_INT_COUNT);
if (i >= 0)
xive_warn(x, "Interrupt %d (and maybe more) not disabled"
" at reset !\n", i);
/* Reset IPI allocation */
xive_dbg(x, "freeing alloc map %p/%p\n",
x->ipi_alloc_map, *x->ipi_alloc_map);
memset(x->ipi_alloc_map, 0, BITMAP_BYTES(XIVE_INT_COUNT));
xive_dbg(x, "Resetting ENDs...\n");
/* Reset all allocated ENDs and free the user ones */
bitmap_for_each_one(*x->end_map, xive_end_bitmap_size(x), i) {
struct xive_end end0;
struct xive_end *end;
int j;
if (i == 0)
continue;
end_firmware = false;
for (j = 0; j < xive_cfg_vp_prio(x); j++) {
uint32_t idx = (i << xive_cfg_vp_prio_shift(x)) | j;
end = xive_get_end(x, idx);
if (!end)
continue;
/* We need to preserve the firmware bit, otherwise
* we will incorrectly free the ENDs that are reserved
* for the physical CPUs
*/
if (xive_get_field32(END_W0_VALID, end->w0)) {
if (!xive_end_is_firmware1(end))
xive_dbg(x, "END 0x%x:0x%x is valid at reset: %08x %08x\n",
x->block_id, idx, end->w0, end->w1);
end0 = *end;
xive_cleanup_end(&end0);
xive_endc_cache_update(x, x->block_id, idx, &end0, true);
}
if (xive_end_is_firmware1(end))
end_firmware = true;
}
if (!end_firmware)
bitmap_clr_bit(*x->end_map, i);
}
/* Take out all VPs from HW and reset all CPPRs to 0 */
for_each_present_cpu(c) {
if (c->chip_id != x->chip_id)
continue;
if (!c->xstate)
continue;
xive_cleanup_cpu_tima(c);
}
/* Reset all user-allocated VPs. This is inefficient, we should
* either keep a bitmap of allocated VPs or add an iterator to
* the buddy which is trickier but doable.
*/
for (i = 0; i < XIVE_VP_COUNT(x); i++) {
struct xive_nvp *vp;
struct xive_nvp vp0 = {0};
/* Ignore the physical CPU VPs */
if (i >= xive_hw_vp_count &&
i < (xive_hw_vp_base + xive_hw_vp_count))
continue;
/* Is the VP valid ? */
vp = xive_get_vp(x, i);
if (!vp || !xive_get_field32(NVP_W0_VALID, vp->w0))
continue;
/* Clear it */
xive_dbg(x, "VP 0x%x:0x%x is valid at reset\n", x->block_id, i);
xive_nxc_cache_update(x, x->block_id, i, &vp0, true);
}
/* Forget about remaining donated pages */
list_head_init(&x->donated_pages);
/* And cleanup donated indirect VP and END pages */
xive_cleanup_vp_ind(x);
xive_cleanup_end_ind(x);
/* The rest must not be called with the lock held */
unlock(&x->lock);
/* Re-configure VPs */
for_each_present_cpu(c) {
struct xive_cpu_state *xs = c->xstate;
if (c->chip_id != x->chip_id || !xs)
continue;
xive_init_cpu_exploitation(xs);
}
}
static void xive_reset_mask_source_cb(struct irq_source *is,
void *data __unused)
{
struct xive_src *s = container_of(is, struct xive_src, is);
struct xive *x;
uint32_t isn;
if (is->ops != &xive_irq_source_ops)
return;
/* Skip escalation sources */
if (GIRQ_IS_ESCALATION(is->start))
return;
x = s->xive;
/* Iterate all interrupts */
for (isn = is->start; isn < is->end; isn++) {
/* Has it ever been enabled ? */
if (!bitmap_tst_bit(*x->int_enabled_map, GIRQ_TO_IDX(isn)))
continue;
/* Mask it and clear the enabled map bit */
xive_vdbg(x, "[reset] disabling source 0x%x\n", isn);
__xive_set_irq_config(is, isn, 0, 0xff, isn, true, false);
bitmap_clr_bit(*x->int_enabled_map, GIRQ_TO_IDX(isn));
}
}
void xive2_cpu_reset(void)
{
struct cpu_thread *c = this_cpu();
struct xive_cpu_state *xs = c->xstate;
out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_CPPR, 0);
in_be64(xs->tm_ring1 + TM_SPC_PULL_POOL_CTX);
}
static int64_t __xive_reset(uint64_t mode)
{
struct proc_chip *chip;
xive_mode = mode;
/* Mask all interrupt sources */
irq_for_each_source(xive_reset_mask_source_cb, NULL);
/* For each XIVE do a sync... */
for_each_chip(chip) {
if (!chip->xive)
continue;
xive_sync(chip->xive);
}
/* For each XIVE reset everything else... */
for_each_chip(chip) {
if (!chip->xive)
continue;
xive_reset_one(chip->xive);
}
/* Cleanup global VP allocator */
buddy_reset(xive_vp_buddy);
/*
* We reserve the whole range of VP ids for HW threads.
*/
assert(buddy_reserve(xive_vp_buddy, xive_hw_vp_base, xive_threadid_shift));
return OPAL_SUCCESS;
}
/* Called by fast reboot */
int64_t xive2_reset(void)
{
if (xive_mode == XIVE_MODE_NONE)
return OPAL_SUCCESS;
return __xive_reset(XIVE_MODE_EXPL);
}
static int64_t opal_xive_reset(uint64_t mode)
{
prlog(PR_DEBUG, "XIVE reset. mode = %llx\n", mode);
if (!(mode & XIVE_MODE_EXPL)) {
prlog(PR_NOTICE, "No emulation mode. XIVE exploitation mode "
"is the default\n");
}
xive_expl_options = mode & ~XIVE_MODE_EXPL;
if (xive_expl_options & ~XIVE_EXPL_ALL_OPTIONS) {
prerror("invalid XIVE exploitation mode option %016llx\n",
xive_expl_options);
return OPAL_PARAMETER;
}
return __xive_reset(XIVE_MODE_EXPL);
}
static int64_t opal_xive_free_vp_block(uint64_t vp_base)
{
uint32_t blk, idx, i, j, count;
uint8_t order;
bool group;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (!xive_decode_vp(vp_base, &blk, &idx, &order, &group))
return OPAL_PARAMETER;
if (group)
return OPAL_PARAMETER;
if (blk)
return OPAL_PARAMETER;
if (order < (xive_chips_alloc_bits + 1))
return OPAL_PARAMETER;
if (idx & ((1 << (order - xive_chips_alloc_bits)) - 1))
return OPAL_PARAMETER;
count = 1 << order;
for (i = 0; i < count; i++) {
uint32_t vp_id = vp_base + i;
uint32_t blk, idx, end_blk, end_idx;
struct xive *x;
struct xive_nvp *vp;
if (!xive_decode_vp(vp_id, &blk, &idx, NULL, NULL)) {
prerror("Couldn't decode VP id %u\n", vp_id);
return OPAL_INTERNAL_ERROR;
}
x = xive_from_pc_blk(blk);
if (!x) {
prerror("Instance not found for deallocated VP"
" block %d\n", blk);
return OPAL_INTERNAL_ERROR;
}
vp = xive_get_vp(x, idx);
if (!vp) {
prerror("VP not found for deallocation !");
return OPAL_INTERNAL_ERROR;
}
/* VP must be disabled */
if (xive_get_field32(NVP_W0_VALID, vp->w0)) {
prlog(PR_ERR, "freeing active VP %d\n", vp_id);
return OPAL_XIVE_FREE_ACTIVE;
}
/* Not populated */
if (vp->w5 == 0)
continue;
end_blk = xive_get_field32(NVP_W5_VP_END_BLOCK, vp->w5);
end_idx = xive_get_field32(NVP_W5_VP_END_INDEX, vp->w5);
lock(&x->lock);
/* Ensure ENDs are disabled and cleaned up. Ideally the caller
* should have done it but we double check it here
*/
for (j = 0; j < xive_cfg_vp_prio(x); j++) {
struct xive *end_x = xive_from_vc_blk(end_blk);
struct xive_end end, *orig_end = xive_get_end(end_x, end_idx + j);
if (!xive_get_field32(END_W0_VALID, orig_end->w0))
continue;
prlog(PR_WARNING, "freeing VP %d with queue %d active\n",
vp_id, j);
end = *orig_end;
xive_cleanup_end(&end);
xive_endc_cache_update(x, end_blk, end_idx + j, &end, true);
}
/* Mark it not populated so we don't try to free it again */
vp->w5 = 0;
if (end_blk != blk) {
prerror("Block mismatch trying to free ENDs\n");
unlock(&x->lock);
return OPAL_INTERNAL_ERROR;
}
xive_free_end_set(x, end_idx);
unlock(&x->lock);
}
xive_free_vps(vp_base);
return OPAL_SUCCESS;
}
static int64_t opal_xive_alloc_vp_block(uint32_t alloc_order)
{
uint32_t vp_base, ends, count, i;
int64_t rc;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
prlog(PR_TRACE, "opal_xive_alloc_vp_block(%d)\n", alloc_order);
vp_base = xive_alloc_vps(alloc_order);
if (XIVE_ALLOC_IS_ERR(vp_base)) {
if (vp_base == XIVE_ALLOC_NO_IND)
return OPAL_XIVE_PROVISIONING;
return OPAL_RESOURCE;
}
/* Allocate ENDs and initialize VPs */
count = 1 << alloc_order;
for (i = 0; i < count; i++) {
uint32_t vp_id = vp_base + i;
uint32_t blk, idx;
struct xive *x;
struct xive_nvp *vp;
if (!xive_decode_vp(vp_id, &blk, &idx, NULL, NULL)) {
prerror("Couldn't decode VP id %u\n", vp_id);
return OPAL_INTERNAL_ERROR;
}
x = xive_from_pc_blk(blk);
if (!x) {
prerror("Instance not found for allocated VP"
" block %d\n", blk);
rc = OPAL_INTERNAL_ERROR;
goto fail;
}
vp = xive_get_vp(x, idx);
if (!vp) {
prerror("VP not found after allocation !");
rc = OPAL_INTERNAL_ERROR;
goto fail;
}
/* Allocate ENDs, if fails, free the VPs and return */
lock(&x->lock);
ends = xive_alloc_end_set(x, false);
unlock(&x->lock);
if (XIVE_ALLOC_IS_ERR(ends)) {
if (ends == XIVE_ALLOC_NO_IND)
rc = OPAL_XIVE_PROVISIONING;
else
rc = OPAL_RESOURCE;
goto fail;
}
/* Initialize the VP structure. We don't use a cache watch
* as we have made sure when freeing the entries to scrub
* it out of the cache.
*/
memset(vp, 0, sizeof(*vp));
/* Store the END base of the VP in W5 (new in p10) */
xive_vp_set_end_base(vp, blk, ends);
}
return vp_base;
fail:
opal_xive_free_vp_block(vp_base);
return rc;
}
static int64_t xive_try_allocate_irq(struct xive *x)
{
int idx, base_idx, max_count, girq;
struct xive_eas *eas;
lock(&x->lock);
base_idx = x->int_ipi_top - x->int_base;
max_count = x->int_hw_bot - x->int_ipi_top;
idx = bitmap_find_zero_bit(*x->ipi_alloc_map, base_idx, max_count);
if (idx < 0) {
unlock(&x->lock);
return OPAL_RESOURCE;
}
bitmap_set_bit(*x->ipi_alloc_map, idx);
girq = x->int_base + idx;
/* Mark the EAS valid. Don't bother with the HW cache, it's
* still masked anyway, the cache will be updated when unmasked
* and configured.
*/
eas = xive_get_eas(x, girq);
if (!eas) {
bitmap_clr_bit(*x->ipi_alloc_map, idx);
unlock(&x->lock);
return OPAL_PARAMETER;
}
eas->w = xive_set_field64(EAS_VALID, 0, 1) |
xive_set_field64(EAS_MASKED, 0, 1) |
xive_set_field64(EAS_END_DATA, 0, girq);
unlock(&x->lock);
return girq;
}
static int64_t opal_xive_allocate_irq(uint32_t chip_id)
{
struct proc_chip *chip;
bool try_all = false;
int64_t rc;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (chip_id == OPAL_XIVE_ANY_CHIP) {
try_all = true;
chip_id = this_cpu()->chip_id;
}
chip = get_chip(chip_id);
if (!chip)
return OPAL_PARAMETER;
/* Try initial target chip */
if (!chip->xive)
rc = OPAL_PARAMETER;
else
rc = xive_try_allocate_irq(chip->xive);
if (rc >= 0 || !try_all)
return rc;
/* Failed and we try all... do so */
for_each_chip(chip) {
if (!chip->xive)
continue;
rc = xive_try_allocate_irq(chip->xive);
if (rc >= 0)
break;
}
return rc;
}
static int64_t opal_xive_free_irq(uint32_t girq)
{
struct irq_source *is = irq_find_source(girq);
struct xive_src *s = container_of(is, struct xive_src, is);
struct xive *x = xive_from_isn(girq);
struct xive_eas *eas;
uint32_t idx;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (!x || !is)
return OPAL_PARAMETER;
idx = GIRQ_TO_IDX(girq);
lock(&x->lock);
eas = xive_get_eas(x, girq);
if (!eas) {
unlock(&x->lock);
return OPAL_PARAMETER;
}
/* Mask the interrupt source */
xive_update_irq_mask(s, girq - s->esb_base, true);
/* Mark the EAS masked and invalid */
eas->w = xive_set_field64(EAS_VALID, 0, 1) |
xive_set_field64(EAS_MASKED, 0, 1);
xive_easc_scrub(x, x->block_id, idx);
/* Free it */
if (!bitmap_tst_bit(*x->ipi_alloc_map, idx)) {
unlock(&x->lock);
return OPAL_PARAMETER;
}
bitmap_clr_bit(*x->ipi_alloc_map, idx);
bitmap_clr_bit(*x->int_enabled_map, idx);
unlock(&x->lock);
return OPAL_SUCCESS;
}
static int64_t opal_xive_dump_tm(uint32_t offset, const char *n, uint32_t pir)
{
struct cpu_thread *c = find_cpu_by_pir(pir);
struct xive_cpu_state *xs;
struct xive *x;
void *cpu_tm_base;
uint64_t v0,v1;
if (!c)
return OPAL_PARAMETER;
xs = c->xstate;
if (!xs || !xs->tm_ring1)
return OPAL_INTERNAL_ERROR;
x = xs->xive;
cpu_tm_base = xive_cpu_get_tima(c);
lock(&x->lock);
v0 = in_be64(cpu_tm_base + offset);
if (offset == TM_QW3_HV_PHYS) {
v1 = in_8(cpu_tm_base + offset + 8);
v1 <<= 56;
} else {
v1 = in_be32(cpu_tm_base + offset + 8);
v1 <<= 32;
}
prlog(PR_INFO, "CPU[%04x]: TM state for QW %s\n", pir, n);
prlog(PR_INFO, "CPU[%04x]: NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
" W2 W3\n", pir);
prlog(PR_INFO, "CPU[%04x]: %02x %02x %02x %02x %02x "
"%02x %02x %02x %08x %08x\n", pir,
(uint8_t)(v0 >> 58) & 0xff, (uint8_t)(v0 >> 48) & 0xff,
(uint8_t)(v0 >> 40) & 0xff, (uint8_t)(v0 >> 32) & 0xff,
(uint8_t)(v0 >> 24) & 0xff, (uint8_t)(v0 >> 16) & 0xff,
(uint8_t)(v0 >> 8) & 0xff, (uint8_t)(v0 ) & 0xff,
(uint32_t)(v1 >> 32) & 0xffffffff,
(uint32_t)(v1 & 0xffffffff));
unlock(&x->lock);
return OPAL_SUCCESS;
}
static int64_t opal_xive_dump_vp(uint32_t vp_id)
{
uint32_t blk, idx;
uint8_t order;
bool group;
struct xive *x;
struct xive_nvp *vp;
uint32_t *vpw;
if (!xive_decode_vp(vp_id, &blk, &idx, &order, &group))
return OPAL_PARAMETER;
x = xive_from_vc_blk(blk);
if (!x)
return OPAL_PARAMETER;
vp = xive_get_vp(x, idx);
if (!vp)
return OPAL_PARAMETER;
lock(&x->lock);
xive_nxc_scrub_clean(x, blk, idx);
vpw = ((uint32_t *)vp) + (group ? 8 : 0);
prlog(PR_INFO, "VP[%08x]: 0..3: %08x %08x %08x %08x\n", vp_id,
vpw[0], vpw[1], vpw[2], vpw[3]);
prlog(PR_INFO, "VP[%08x]: 4..7: %08x %08x %08x %08x\n", vp_id,
vpw[4], vpw[5], vpw[6], vpw[7]);
unlock(&x->lock);
return OPAL_SUCCESS;
}
static int64_t opal_xive_sync_irq_src(uint32_t girq)
{
struct xive *x = xive_from_isn(girq);
if (!x)
return OPAL_PARAMETER;
return xive_sync(x);
}
static int64_t opal_xive_sync_irq_target(uint32_t girq)
{
uint32_t target, vp_blk;
struct xive *x;
if (!xive_get_irq_targetting(girq, &target, NULL, NULL))
return OPAL_PARAMETER;
if (!xive_decode_vp(target, &vp_blk, NULL, NULL, NULL))
return OPAL_PARAMETER;
x = xive_from_pc_blk(vp_blk);
if (!x)
return OPAL_PARAMETER;
return xive_sync(x);
}
static int64_t opal_xive_sync(uint32_t type, uint32_t id)
{
int64_t rc = OPAL_SUCCESS;;
if (type & XIVE_SYNC_EAS)
rc = opal_xive_sync_irq_src(id);
if (rc)
return rc;
if (type & XIVE_SYNC_QUEUE)
rc = opal_xive_sync_irq_target(id);
if (rc)
return rc;
/* Add more ... */
return rc;
}
static int64_t opal_xive_dump(uint32_t type, uint32_t id)
{
switch (type) {
case XIVE_DUMP_TM_HYP:
return opal_xive_dump_tm(TM_QW3_HV_PHYS, "PHYS", id);
case XIVE_DUMP_TM_POOL:
return opal_xive_dump_tm(TM_QW2_HV_POOL, "POOL", id);
case XIVE_DUMP_TM_OS:
return opal_xive_dump_tm(TM_QW1_OS, "OS ", id);
case XIVE_DUMP_TM_USER:
return opal_xive_dump_tm(TM_QW0_USER, "USER", id);
case XIVE_DUMP_VP:
return opal_xive_dump_vp(id);
default:
return OPAL_PARAMETER;
}
}
static void xive_init_globals(void)
{
uint32_t i;
for (i = 0; i < XIVE_MAX_CHIPS; i++)
xive_block_to_chip[i] = XIVE_INVALID_CHIP;
}
/*
* The global availability of some capabilities used in other drivers
* (PHB, PSI) is deduced from the capabilities of the first XIVE chip
* of the system. It should be common to all chips.
*/
bool xive2_cap_phb_pq_disable(void)
{
return xive_has_cap(one_xive, CQ_XIVE_CAP_PHB_PQ_DISABLE);
}
bool xive2_cap_phb_abt(void)
{
if (!xive_has_cap(one_xive, CQ_XIVE_CAP_PHB_ABT))
return false;
/*
* We need 'PQ disable' to use ABT mode, else the OS will use
* two different sets of ESB pages (PHB and IC) to control the
* interrupt sources. Can not work.
*/
if (!xive2_cap_phb_pq_disable()) {
prlog_once(PR_ERR, "ABT mode is set without PQ disable. "
"Ignoring bogus configuration\n");
return false;
}
return true;
}
bool xive2_cap_store_eoi(void)
{
return xive_has_cap(one_xive, CQ_XIVE_CAP_STORE_EOI);
}
void xive2_init(void)
{
struct dt_node *np;
struct proc_chip *chip;
struct cpu_thread *cpu;
bool first = true;
/* Look for xive nodes and do basic inits */
dt_for_each_compatible(dt_root, np, "ibm,power10-xive-x") {
struct xive *x;
/* Initialize some global stuff */
if (first)
xive_init_globals();
/* Create/initialize the xive instance */
x = init_one_xive(np);
if (first)
one_xive = x;
first = false;
}
if (first)
return;
/*
* P8 emulation is not supported on P10 anymore. Exploitation
* is the default XIVE mode. We might introduce a GEN2 mode.
*/
xive_mode = XIVE_MODE_EXPL;
/* Init VP allocator */
xive_init_vp_allocator();
/* Create a device-tree node for Linux use */
xive_create_mmio_dt_node(one_xive);
/* Some inits must be done after all xive have been created
* such as setting up the forwarding ports
*/
for_each_chip(chip) {
if (chip->xive)
late_init_one_xive(chip->xive);
}
/* Initialize per-cpu structures */
for_each_present_cpu(cpu) {
xive_init_cpu(cpu);
}
/* Calling boot CPU */
xive2_cpu_callin(this_cpu());
/* Register XIVE exploitation calls */
opal_register(OPAL_XIVE_RESET, opal_xive_reset, 1);
opal_register(OPAL_XIVE_GET_IRQ_INFO, opal_xive_get_irq_info, 6);
opal_register(OPAL_XIVE_GET_IRQ_CONFIG, opal_xive_get_irq_config, 4);
opal_register(OPAL_XIVE_SET_IRQ_CONFIG, opal_xive_set_irq_config, 4);
opal_register(OPAL_XIVE_GET_QUEUE_INFO, opal_xive_get_queue_info, 7);
opal_register(OPAL_XIVE_SET_QUEUE_INFO, opal_xive_set_queue_info, 5);
opal_register(OPAL_XIVE_DONATE_PAGE, opal_xive_donate_page, 2);
opal_register(OPAL_XIVE_ALLOCATE_IRQ, opal_xive_allocate_irq, 1);
opal_register(OPAL_XIVE_FREE_IRQ, opal_xive_free_irq, 1);
opal_register(OPAL_XIVE_ALLOCATE_VP_BLOCK, opal_xive_alloc_vp_block, 1);
opal_register(OPAL_XIVE_FREE_VP_BLOCK, opal_xive_free_vp_block, 1);
opal_register(OPAL_XIVE_GET_VP_INFO, opal_xive_get_vp_info, 5);
opal_register(OPAL_XIVE_SET_VP_INFO, opal_xive_set_vp_info, 3);
opal_register(OPAL_XIVE_SYNC, opal_xive_sync, 2);
opal_register(OPAL_XIVE_DUMP, opal_xive_dump, 2);
opal_register(OPAL_XIVE_GET_QUEUE_STATE, opal_xive_get_queue_state, 4);
opal_register(OPAL_XIVE_SET_QUEUE_STATE, opal_xive_set_queue_state, 4);
opal_register(OPAL_XIVE_GET_VP_STATE, opal_xive_get_vp_state, 2);
}
|