1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
|
// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
/*
* This is based on the hostboot ecc code
*
* Copyright 2013-2019 IBM Corp.
*/
#include <stdint.h>
#include <inttypes.h>
#include <string.h>
#include <ccan/endian/endian.h>
#include "libflash.h"
#include "ecc.h"
/* Bit field identifiers for syndrome calculations. */
enum eccbitfields
{
GD = 0xff, //< Good, ECC matches.
UE = 0xfe, //< Uncorrectable.
E0 = 71, //< Error in ECC bit 0
E1 = 70, //< Error in ECC bit 1
E2 = 69, //< Error in ECC bit 2
E3 = 68, //< Error in ECC bit 3
E4 = 67, //< Error in ECC bit 4
E5 = 66, //< Error in ECC bit 5
E6 = 65, //< Error in ECC bit 6
E7 = 64 //< Error in ECC bit 7
/* 0-63 Correctable bit in byte */
};
/*
* Matrix used for ECC calculation.
*
* Each row of this is the set of data word bits that are used for
* the calculation of the corresponding ECC bit. The parity of the
* bitset is the value of the ECC bit.
*
* ie. ECC[n] = eccMatrix[n] & data
*
* Note: To make the math easier (and less shifts in resulting code),
* row0 = ECC7. HW numbering is MSB, order here is LSB.
*
* These values come from the HW design of the ECC algorithm.
*/
static uint64_t eccmatrix[] = {
0x0000e8423c0f99ffull,
0x00e8423c0f99ff00ull,
0xe8423c0f99ff0000ull,
0x423c0f99ff0000e8ull,
0x3c0f99ff0000e842ull,
0x0f99ff0000e8423cull,
0x99ff0000e8423c0full,
0xff0000e8423c0f99ull
};
/**
* Syndrome calculation matrix.
*
* Maps syndrome to flipped bit.
*
* To perform ECC correction, this matrix is a look-up of the bit
* that is bad based on the binary difference of the good and bad
* ECC. This difference is called the "syndrome".
*
* When a particular bit is on in the data, it cause a column from
* eccMatrix being XOR'd into the ECC field. This column is the
* "effect" of each bit. If a bit is flipped in the data then its
* "effect" is missing from the ECC. You can calculate ECC on unknown
* quality data and compare the ECC field between the calculated
* value and the stored value. If the difference is zero, then the
* data is clean. If the difference is non-zero, you look up the
* difference in the syndrome table to identify the "effect" that
* is missing, which is the bit that is flipped.
*
* Notice that ECC bit flips are recorded by a single "effect"
* bit (ie. 0x1, 0x2, 0x4, 0x8 ...) and double bit flips are identified
* by the UE status in the table.
*
* Bits are in MSB order.
*/
static enum eccbitfields syndromematrix[] = {
GD, E7, E6, UE, E5, UE, UE, 47, E4, UE, UE, 37, UE, 35, 39, UE,
E3, UE, UE, 48, UE, 30, 29, UE, UE, 57, 27, UE, 31, UE, UE, UE,
E2, UE, UE, 17, UE, 18, 40, UE, UE, 58, 22, UE, 21, UE, UE, UE,
UE, 16, 49, UE, 19, UE, UE, UE, 23, UE, UE, UE, UE, 20, UE, UE,
E1, UE, UE, 51, UE, 46, 9, UE, UE, 34, 10, UE, 32, UE, UE, 36,
UE, 62, 50, UE, 14, UE, UE, UE, 13, UE, UE, UE, UE, UE, UE, UE,
UE, 61, 8, UE, 41, UE, UE, UE, 11, UE, UE, UE, UE, UE, UE, UE,
15, UE, UE, UE, UE, UE, UE, UE, UE, UE, 12, UE, UE, UE, UE, UE,
E0, UE, UE, 55, UE, 45, 43, UE, UE, 56, 38, UE, 1, UE, UE, UE,
UE, 25, 26, UE, 2, UE, UE, UE, 24, UE, UE, UE, UE, UE, 28, UE,
UE, 59, 54, UE, 42, UE, UE, 44, 6, UE, UE, UE, UE, UE, UE, UE,
5, UE, UE, UE, UE, UE, UE, UE, UE, UE, UE, UE, UE, UE, UE, UE,
UE, 63, 53, UE, 0, UE, UE, UE, 33, UE, UE, UE, UE, UE, UE, UE,
3, UE, UE, 52, UE, UE, UE, UE, UE, UE, UE, UE, UE, UE, UE, UE,
7, UE, UE, UE, UE, UE, UE, UE, UE, 60, UE, UE, UE, UE, UE, UE,
UE, UE, UE, UE, 4, UE, UE, UE, UE, UE, UE, UE, UE, UE, UE, UE,
};
/**
* Create the ECC field corresponding to a 8-byte data field
*
* @data: The 8 byte data to generate ECC for.
* @return: The 1 byte ECC corresponding to the data.
*/
static uint8_t eccgenerate(uint64_t data)
{
int i;
uint8_t result = 0;
for (i = 0; i < 8; i++)
result |= __builtin_parityll(eccmatrix[i] & data) << i;
return result;
}
/**
* Verify the data and ECC match or indicate how they are wrong.
*
* @data: The data to check ECC on.
* @ecc: The [supposed] ECC for the data.
*
* @return: eccBitfield or 0-64.
*
* @retval GD - Indicates the data is good (matches ECC).
* @retval UE - Indicates the data is uncorrectable.
* @retval all others - Indication of which bit is incorrect.
*/
static enum eccbitfields eccverify(uint64_t data, uint8_t ecc)
{
return syndromematrix[eccgenerate(data) ^ ecc];
}
/* IBM bit ordering */
static inline uint64_t eccflipbit(uint64_t data, uint8_t bit)
{
if (bit > 63)
return data;
return data ^ (1ul << (63 - bit));
}
static int eccbyte(beint64_t *dst, struct ecc64 *src)
{
uint8_t ecc, badbit;
uint64_t data;
data = be64_to_cpu(src->data);
ecc = src->ecc;
badbit = eccverify(data, ecc);
if (badbit == UE) {
FL_ERR("ECC: uncorrectable error: %016llx %02x\n", (unsigned long long int)data, ecc);
return badbit;
}
if (badbit <= UE)
FL_INF("ECC: correctable error: %i\n", badbit);
if (badbit < 64)
*dst = cpu_to_be64(eccflipbit(data, badbit));
else
*dst = cpu_to_be64(data);
return 0;
}
static beint64_t *inc_beint64_by(const void *p, uint64_t i)
{
return (beint64_t *)(((char *)p) + i);
}
static uint64_t *inc_uint64_by(const void *p, uint64_t i)
{
return (uint64_t *)(((char *)p) + i);
}
static struct ecc64 *inc_ecc64_by(struct ecc64 *p, uint64_t i)
{
return (struct ecc64 *)(((char *)p) + i);
}
static uint64_t whole_ecc_bytes(uint64_t i)
{
return i & ~(BYTES_PER_ECC - 1);
}
static uint64_t whole_ecc_structs(uint64_t i)
{
return whole_ecc_bytes(i) >> 3;
}
/**
* Copy data from an input buffer with ECC to an output buffer without ECC.
* Correct it along the way and check for errors.
*
* @dst: destination buffer without ECC
* @src: source buffer with ECC
* @len: number of bytes of data to copy (without ecc).
* Must be 8 byte aligned.
*
* @return: Success or error
*
* @retval: 0 - success
* @retfal: other - fail
*/
int memcpy_from_ecc(beint64_t *dst, struct ecc64 *src, uint64_t len)
{
uint32_t i;
if (len & 0x7) {
/* TODO: we could probably handle this */
FL_ERR("ECC data length must be 8 byte aligned length:%" PRIx64 "\n",
len);
return -1;
}
/* Handle in chunks of 8 bytes, so adjust the length */
len >>= 3;
for (i = 0; i < len; i++) {
int rc;
rc = eccbyte(dst, src + i);
if (rc)
return rc;
dst++;
}
return 0;
}
/**
* Copy data from an input buffer with ECC to an output buffer without ECC.
* Correct it along the way and check for errors.
*
* Unlike memcmp_from_ecc() which requires that the first byte into
* dst be the first byte in src (which must also be aligned to a
* struct ecc64 struct boundary) this function can cope with the first
* byte in dst not being the first byte in src.
*
* Note: src MUST still be aligned to a struct ecc64 otherwise ECC
* calculations are impossible.
*
* The alignment parameter species the number of bytes present at the
* start of src that should be skipped and not written to dst. Once
* again, these bytes must be in src otherwise the ECC cannot be
* checked.
*
* len also doesn't have any value limitation for this function. Of
* course src must contain an exact multiple of struct ecc64 otherwise
* ECC calculation cannot be performed but this function won't copy
* the entirety of the last src data word if len is not mutiple of 8
*
* @dst: destination buffer without ECC
* @src: source buffer with ECC
* @len: number of bytes of data to copy (without ecc).
* @alignment: number of leading bytes in src which shouldn't be
* copied to dst
* @return: Success or error
*
* @retval: 0 - success
* @retfal: other - fail
*/
int memcpy_from_ecc_unaligned(beint64_t *dst, struct ecc64 *src,
uint64_t len, uint8_t alignment)
{
char data[BYTES_PER_ECC];
uint8_t bytes_wanted;
int rc;
if (alignment > 8)
return -1;
bytes_wanted = BYTES_PER_ECC - alignment;
/*
* Only actually do the first calculation if an alignment is
* required - otherwise jump straight to memcpy_from_ecc()
*/
if (alignment) {
rc = eccbyte((beint64_t *)data, src);
if (rc)
return rc;
memcpy(dst, &data[alignment], bytes_wanted);
src = inc_ecc64_by(src, sizeof(struct ecc64));
dst = inc_beint64_by(dst, bytes_wanted);
len -= bytes_wanted;
}
if (len >= BYTES_PER_ECC) {
rc = memcpy_from_ecc(dst, src, whole_ecc_bytes(len));
if (rc)
return rc;
/*
* It helps to let the compiler to the pointer arithmetic
* here, (dst and src are different types)
*/
dst += whole_ecc_structs(len);
src += whole_ecc_structs(len);
len -= whole_ecc_bytes(len);
}
if (len) {
rc = eccbyte((beint64_t *)data, src);
if (rc)
return rc;
memcpy(dst, data, len);
}
return 0;
}
/**
* Copy data from an input buffer without ECC to an output buffer with ECC.
*
* @dst: destination buffer with ECC
* @src: source buffer without ECC
* @len: number of bytes of data to copy (without ecc, length of src).
* Note: dst must be big enough to hold ecc bytes as well.
* Must be 8 byte aligned.
*
* @return: success or failure
*
* @retval: 0 - success
* @retfal: other - fail
*/
int memcpy_to_ecc(struct ecc64 *dst, const beint64_t *src, uint64_t len)
{
struct ecc64 ecc_word;
uint64_t i;
if (len & 0x7) {
/* TODO: we could probably handle this */
FL_ERR("Data to add ECC bytes to must be 8 byte aligned length: %"
PRIx64 "\n", len);
return -1;
}
/* Handle in chunks of 8 bytes, so adjust the length */
len >>= 3;
for (i = 0; i < len; i++) {
ecc_word.ecc = eccgenerate(be64_to_cpu(*(src + i)));
ecc_word.data = *(src + i);
*(dst + i) = ecc_word;
}
return 0;
}
/**
* Copy data from an input buffer without ECC to an output buffer with ECC.
*
* Unlike memcmp_to_ecc() which requires that the first byte in src be
* the first byte of a struct ecc64 structure this function does not
* have this requirement.
*
* Like memcpy_to_ecc_unaligned() the alignment parameter specfies the
* number of bytes in the first src word that are missing and would be
* required to form a struct ecc64 structure.
*
* It must be noted here that extra work IN THE CALLER must be done
* if your data is unaligned. In order to peform ECC calculations
* whatever portions of the ecc words are missing in src must be in
* dst.
*
* For example, if there is an alignment value of 1 then this means
* there is 1 byte (of the total of 8 bytes) missing in src which is
* needed to calculate the first ECC byte. Therefore the first byte of
* dst MUST CONTAIN IT!
*
* The same problem exists for the end of the buffer where src may not
* end exactly aligned, if this is the case dst must contain the
* required bytes to calculate the last ECC byte - they should be in
* dst where they would normally be found if src did contain those
* bytes.
*
* @dst: destination buffer with ECC
* @src: source buffer without ECC
* @len: number of bytes of data to copy (without ecc, length of src).
* @alignment: The number of bytes 'missing' from the start of src to
* be struct ecc64 aligned
*
* Note: dst must be big enough to hold ecc bytes as well.
* Must be 8 byte aligned.
*
* @return: success or failure
*
* @retval: 0 - success
* @retfal: other - fail
*/
int memcpy_to_ecc_unaligned(struct ecc64 *dst, const beint64_t *src,
uint64_t len, uint8_t alignment)
{
struct ecc64 ecc_word;
uint8_t bytes_wanted;
int rc;
bytes_wanted = BYTES_PER_ECC - alignment;
/*
* Only actually do the first calculation if an alignment is
* required - otherwise jump straight to memcpy_to_ecc()
*/
if (alignment) {
ecc_word.data = dst->data;
memcpy(inc_uint64_by(&ecc_word.data, alignment), src, bytes_wanted);
ecc_word.ecc = eccgenerate(be64_to_cpu(ecc_word.data));
memcpy(dst, inc_ecc64_by(&ecc_word, alignment),
sizeof(struct ecc64) - alignment);
dst = inc_ecc64_by(dst, sizeof(struct ecc64) - alignment);
src = inc_beint64_by(src, bytes_wanted);
len -= bytes_wanted;
}
if (len >= BYTES_PER_ECC) {
rc = memcpy_to_ecc(dst, src, whole_ecc_bytes(len));
if (rc)
return rc;
/*
* It helps to let the compiler to the pointer arithmetic
* here, (dst and src are different types)
*/
dst += whole_ecc_structs(len);
src += whole_ecc_structs(len);
len -= whole_ecc_bytes(len);
}
if (len) {
bytes_wanted = BYTES_PER_ECC - len;
ecc_word.data = *src;
memcpy(inc_uint64_by(&ecc_word.data, len), inc_ecc64_by(dst, len),
bytes_wanted);
ecc_word.ecc = eccgenerate(be64_to_cpu(ecc_word.data));
*dst = ecc_word;
}
return 0;
}
|