1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
|
// SPDX-License-Identifier: Apache-2.0
/* Copyright 2013-2019 IBM Corp. */
#include <limits.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#ifndef __SKIBOOT__
#include <sys/types.h>
#include <unistd.h>
#endif
#include "ffs.h"
#define __unused __attribute__((unused))
#define HDR_ENTRIES_NUM 30
struct ffs_handle {
struct ffs_hdr hdr; /* Converted header */
uint32_t toc_offset;
uint32_t max_size;
/* The converted header knows how big this is */
struct __ffs_hdr *cache;
struct blocklevel_device *bl;
};
static uint32_t ffs_checksum(void* data, size_t size)
{
uint32_t i, csum = 0;
for (i = csum = 0; i < (size/4); i++)
csum ^= ((uint32_t *)data)[i];
return csum;
}
/* Helper functions for typesafety and size safety */
static uint32_t ffs_hdr_checksum(struct __ffs_hdr *hdr)
{
return ffs_checksum(hdr, sizeof(struct __ffs_hdr));
}
static uint32_t ffs_entry_checksum(struct __ffs_entry *ent)
{
return ffs_checksum(ent, sizeof(struct __ffs_entry));
}
static size_t ffs_hdr_raw_size(int num_entries)
{
return sizeof(struct __ffs_hdr) + num_entries * sizeof(struct __ffs_entry);
}
static int ffs_num_entries(struct ffs_hdr *hdr)
{
if (hdr->count == 0)
FL_DBG("%s returned zero!\n", __func__);
return hdr->count;
}
static int ffs_check_convert_header(struct ffs_hdr *dst, struct __ffs_hdr *src)
{
if (be32_to_cpu(src->magic) != FFS_MAGIC)
return FFS_ERR_BAD_MAGIC;
dst->version = be32_to_cpu(src->version);
if (dst->version != FFS_VERSION_1)
return FFS_ERR_BAD_VERSION;
if (ffs_hdr_checksum(src) != 0)
return FFS_ERR_BAD_CKSUM;
if (be32_to_cpu(src->entry_size) != sizeof(struct __ffs_entry))
return FFS_ERR_BAD_SIZE;
if ((be32_to_cpu(src->entry_size) * be32_to_cpu(src->entry_count)) >
(be32_to_cpu(src->block_size) * be32_to_cpu(src->size)))
return FLASH_ERR_PARM_ERROR;
dst->block_size = be32_to_cpu(src->block_size);
dst->size = be32_to_cpu(src->size) * dst->block_size;
dst->block_count = be32_to_cpu(src->block_count);
dst->entries_size = be32_to_cpu(src->entry_count);
return 0;
}
static int ffs_entry_user_to_flash(struct ffs_hdr *hdr __unused,
struct __ffs_entry_user *dst, struct ffs_entry_user *src)
{
memset(dst, 0, sizeof(struct __ffs_entry_user));
dst->datainteg = cpu_to_be16(src->datainteg);
dst->vercheck = src->vercheck;
dst->miscflags = src->miscflags;
return 0;
}
static int ffs_entry_user_to_cpu(struct ffs_hdr *hdr __unused,
struct ffs_entry_user *dst, struct __ffs_entry_user *src)
{
memset(dst, 0, sizeof(struct ffs_entry_user));
dst->datainteg = be16_to_cpu(src->datainteg);
dst->vercheck = src->vercheck;
dst->miscflags = src->miscflags;
return 0;
}
static int ffs_entry_to_flash(struct ffs_hdr *hdr,
struct __ffs_entry *dst, struct ffs_entry *src)
{
int rc, index;
if (!hdr || !dst || !src)
return -1;
for (index = 0; index < hdr->count && hdr->entries[index] != src; index++);
if (index == hdr->count)
return FFS_ERR_PART_NOT_FOUND;
index++; /* On flash indexes start at 1 */
/*
* So that the checksum gets calculated correctly at least the
* dst->checksum must be zero before calling ffs_entry_checksum()
* memset()ting the entire struct to zero is probably wise as it
* appears the reserved fields are always zero.
*/
memset(dst, 0, sizeof(*dst));
memcpy(dst->name, src->name, sizeof(dst->name));
dst->name[FFS_PART_NAME_MAX] = '\0';
dst->base = cpu_to_be32(src->base / hdr->block_size);
dst->size = cpu_to_be32(src->size / hdr->block_size);
dst->pid = cpu_to_be32(src->pid);
dst->id = cpu_to_be32(index);
dst->type = cpu_to_be32(src->type); /* TODO: Check that it is valid? */
dst->flags = cpu_to_be32(src->flags);
dst->actual = cpu_to_be32(src->actual);
rc = ffs_entry_user_to_flash(hdr, &dst->user, &src->user);
dst->checksum = ffs_entry_checksum(dst);
return rc;
}
static int ffs_entry_to_cpu(struct ffs_hdr *hdr,
struct ffs_entry *dst, struct __ffs_entry *src)
{
int rc;
if (ffs_entry_checksum(src) != 0)
return FFS_ERR_BAD_CKSUM;
memcpy(dst->name, src->name, sizeof(dst->name));
dst->name[FFS_PART_NAME_MAX] = '\0';
dst->base = be32_to_cpu(src->base) * hdr->block_size;
dst->size = be32_to_cpu(src->size) * hdr->block_size;
dst->actual = be32_to_cpu(src->actual);
dst->pid = be32_to_cpu(src->pid);
dst->type = be32_to_cpu(src->type); /* TODO: Check that it is valid? */
dst->flags = be32_to_cpu(src->flags);
rc = ffs_entry_user_to_cpu(hdr, &dst->user, &src->user);
return rc;
}
char *ffs_entry_user_to_string(struct ffs_entry_user *user)
{
char *ret;
if (!user)
return NULL;
ret = strdup("----------");
if (!ret)
return NULL;
if (user->datainteg & FFS_ENRY_INTEG_ECC)
ret[0] = 'E';
if (user->vercheck & FFS_VERCHECK_SHA512V)
ret[1] = 'L';
if (user->vercheck & FFS_VERCHECK_SHA512EC)
ret[2] = 'I';
if (user->miscflags & FFS_MISCFLAGS_PRESERVED)
ret[3] = 'P';
if (user->miscflags & FFS_MISCFLAGS_READONLY)
ret[4] = 'R';
if (user->miscflags & FFS_MISCFLAGS_BACKUP)
ret[5] = 'B';
if (user->miscflags & FFS_MISCFLAGS_REPROVISION)
ret[6] = 'F';
if (user->miscflags & FFS_MISCFLAGS_GOLDEN)
ret[7] = 'G';
if (user->miscflags & FFS_MISCFLAGS_CLEARECC)
ret[8] = 'C';
if (user->miscflags & FFS_MISCFLAGS_VOLATILE)
ret[9] = 'V';
return ret;
}
int ffs_string_to_entry_user(const char *flags, int nflags,
struct ffs_entry_user *user)
{
int i;
if (!user || !flags)
return FLASH_ERR_PARM_ERROR;
memset(user, 0, sizeof(struct ffs_entry_user));
for (i = 0; i < nflags; i++) {
switch (flags[i]) {
case 'E':
user->datainteg |= FFS_ENRY_INTEG_ECC;
break;
case 'L':
user->vercheck |= FFS_VERCHECK_SHA512V;
break;
case 'I':
user->vercheck |= FFS_VERCHECK_SHA512EC;
break;
case 'P':
user->miscflags |= FFS_MISCFLAGS_PRESERVED;
break;
case 'R':
user->miscflags |= FFS_MISCFLAGS_READONLY;
break;
case 'B':
user->miscflags |= FFS_MISCFLAGS_BACKUP;
break;
case 'F':
user->miscflags |= FFS_MISCFLAGS_REPROVISION;
break;
case 'G':
user->miscflags |= FFS_MISCFLAGS_GOLDEN;
break;
case 'C':
user->miscflags |= FFS_MISCFLAGS_CLEARECC;
break;
case 'V':
user->miscflags |= FFS_MISCFLAGS_VOLATILE;
break;
default:
FL_DBG("Unknown flag '%c'\n", flags[i]);
return FLASH_ERR_PARM_ERROR;
}
}
return 0;
}
bool has_flag(struct ffs_entry *ent, uint16_t flag)
{
return ((ent->user.miscflags & flag) != 0);
}
static struct ffs_entry *__ffs_entry_get(struct ffs_handle *ffs, uint32_t index)
{
if (index >= ffs->hdr.count)
return NULL;
return ffs->hdr.entries[index];
}
struct ffs_entry *ffs_entry_get(struct ffs_handle *ffs, uint32_t index)
{
struct ffs_entry *ret = __ffs_entry_get(ffs, index);
if (ret)
ret->ref++;
return ret;
}
struct ffs_entry *ffs_entry_put(struct ffs_entry *ent)
{
if (!ent)
return NULL;
ent->ref--;
if (ent->ref == 0) {
free(ent);
ent = NULL;
}
return ent;
}
bool has_ecc(struct ffs_entry *ent)
{
return ((ent->user.datainteg & FFS_ENRY_INTEG_ECC) != 0);
}
int ffs_init(uint32_t offset, uint32_t max_size, struct blocklevel_device *bl,
struct ffs_handle **ffs, bool mark_ecc)
{
struct __ffs_hdr blank_hdr;
struct __ffs_hdr raw_hdr;
struct ffs_handle *f;
uint64_t total_size;
int rc, i;
if (!ffs || !bl)
return FLASH_ERR_PARM_ERROR;
*ffs = NULL;
rc = blocklevel_get_info(bl, NULL, &total_size, NULL);
if (rc) {
FL_ERR("FFS: Error %d retrieving flash info\n", rc);
return rc;
}
if (total_size > UINT_MAX)
return FLASH_ERR_VERIFY_FAILURE;
if ((offset + max_size) < offset)
return FLASH_ERR_PARM_ERROR;
if ((max_size > total_size))
return FLASH_ERR_PARM_ERROR;
/* Read flash header */
rc = blocklevel_read(bl, offset, &raw_hdr, sizeof(raw_hdr));
if (rc) {
FL_ERR("FFS: Error %d reading flash header\n", rc);
return rc;
}
/*
* Flash controllers can get deconfigured or otherwise upset, when this
* happens they return all 0xFF bytes.
* An __ffs_hdr consisting of all 0xFF cannot be valid and it would be
* nice to drop a hint to the user to help with debugging. This will
* help quickly differentiate between flash corruption and standard
* type 'reading from the wrong place' errors vs controller errors or
* reading erased data.
*/
memset(&blank_hdr, UINT_MAX, sizeof(struct __ffs_hdr));
if (memcmp(&blank_hdr, &raw_hdr, sizeof(struct __ffs_hdr)) == 0) {
FL_ERR("FFS: Reading the flash has returned all 0xFF.\n");
FL_ERR(" Are you reading erased flash?\n");
FL_ERR(" Is something else using the flash controller?\n");
return FLASH_ERR_BAD_READ;
}
/* Allocate ffs_handle structure and start populating */
f = calloc(1, sizeof(*f));
if (!f)
return FLASH_ERR_MALLOC_FAILED;
f->toc_offset = offset;
f->max_size = max_size;
f->bl = bl;
/* Convert and check flash header */
rc = ffs_check_convert_header(&f->hdr, &raw_hdr);
if (rc) {
FL_INF("FFS: Flash header not found. Code: %d\n", rc);
goto out;
}
/* Check header is sane */
if ((f->hdr.block_count * f->hdr.block_size) > max_size) {
rc = FLASH_ERR_PARM_ERROR;
FL_ERR("FFS: Flash header exceeds max flash size\n");
goto out;
}
f->hdr.entries = calloc(f->hdr.entries_size, sizeof(struct ffs_entry *));
/*
* Grab the entire partition header
*/
/* Check for overflow or a silly size */
if (!f->hdr.size || f->hdr.size % f->hdr.block_size != 0) {
rc = FLASH_ERR_MALLOC_FAILED;
FL_ERR("FFS: Cache size overflow (0x%x * 0x%x)\n",
f->hdr.block_size, f->hdr.size);
goto out;
}
FL_DBG("FFS: Partition map size: 0x%x\n", f->hdr.size);
/* Allocate cache */
f->cache = malloc(f->hdr.size);
if (!f->cache) {
rc = FLASH_ERR_MALLOC_FAILED;
goto out;
}
/* Read the cached map */
rc = blocklevel_read(bl, offset, f->cache, f->hdr.size);
if (rc) {
FL_ERR("FFS: Error %d reading flash partition map\n", rc);
goto out;
}
for (i = 0; i < f->hdr.entries_size; i++) {
struct ffs_entry *ent = calloc(1, sizeof(struct ffs_entry));
if (!ent) {
rc = FLASH_ERR_MALLOC_FAILED;
goto out;
}
f->hdr.entries[f->hdr.count++] = ent;
ent->ref = 1;
rc = ffs_entry_to_cpu(&f->hdr, ent, &f->cache->entries[i]);
if (rc) {
FL_DBG("FFS: Failed checksum for partition %s\n",
f->cache->entries[i].name);
goto out;
}
if (mark_ecc && has_ecc(ent)) {
rc = blocklevel_ecc_protect(bl, ent->base, ent->size);
if (rc) {
FL_ERR("Failed to blocklevel_ecc_protect(0x%08x, 0x%08x)\n",
ent->base, ent->size);
goto out;
}
}
}
out:
if (rc == 0)
*ffs = f;
else
ffs_close(f);
return rc;
}
static void __hdr_free(struct ffs_hdr *hdr)
{
int i;
if (!hdr)
return;
for (i = 0; i < hdr->count; i++)
ffs_entry_put(hdr->entries[i]);
free(hdr->entries);
}
void ffs_hdr_free(struct ffs_hdr *hdr)
{
__hdr_free(hdr);
free(hdr);
}
void ffs_close(struct ffs_handle *ffs)
{
__hdr_free(&ffs->hdr);
if (ffs->cache)
free(ffs->cache);
free(ffs);
}
int ffs_lookup_part(struct ffs_handle *ffs, const char *name,
uint32_t *part_idx)
{
struct ffs_entry **ents = ffs->hdr.entries;
int i;
for (i = 0;
i < ffs->hdr.count &&
strncmp(name, ents[i]->name, FFS_PART_NAME_MAX);
i++);
if (i == ffs->hdr.count)
return FFS_ERR_PART_NOT_FOUND;
if (part_idx)
*part_idx = i;
return 0;
}
int ffs_part_info(struct ffs_handle *ffs, uint32_t part_idx,
char **name, uint32_t *start,
uint32_t *total_size, uint32_t *act_size, bool *ecc)
{
struct ffs_entry *ent;
char *n;
ent = __ffs_entry_get(ffs, part_idx);
if (!ent)
return FFS_ERR_PART_NOT_FOUND;
if (start)
*start = ent->base;
if (total_size)
*total_size = ent->size;
if (act_size)
*act_size = ent->actual;
if (ecc)
*ecc = has_ecc(ent);
if (name) {
n = calloc(1, FFS_PART_NAME_MAX + 1);
if (!n)
return FLASH_ERR_MALLOC_FAILED;
memcpy(n, ent->name, FFS_PART_NAME_MAX);
*name = n;
}
return 0;
}
/*
* There are quite a few ways one might consider two ffs_handles to be the
* same. For the purposes of this function we are trying to detect a fairly
* specific scenario:
* Consecutive calls to ffs_next_side() may succeed but have gone circular.
* It is possible that the OTHER_SIDE partition in one TOC actually points
* back to the TOC to first ffs_handle.
* This function compares for this case, therefore the requirements are
* simple, the underlying blocklevel_devices must be the same along with
* the toc_offset and the max_size.
*/
bool ffs_equal(struct ffs_handle *one, struct ffs_handle *two)
{
return (!one && !two) || (one && two && one->bl == two->bl
&& one->toc_offset == two->toc_offset
&& one->max_size == two->max_size);
}
int ffs_next_side(struct ffs_handle *ffs, struct ffs_handle **new_ffs,
bool mark_ecc)
{
int rc;
uint32_t index, offset, max_size;
if (!ffs || !new_ffs)
return FLASH_ERR_PARM_ERROR;
*new_ffs = NULL;
rc = ffs_lookup_part(ffs, "OTHER_SIDE", &index);
if (rc)
return rc;
rc = ffs_part_info(ffs, index, NULL, &offset, &max_size, NULL, NULL);
if (rc)
return rc;
return ffs_init(offset, max_size, ffs->bl, new_ffs, mark_ecc);
}
int ffs_entry_add(struct ffs_hdr *hdr, struct ffs_entry *entry)
{
const char *smallest_name;
uint32_t smallest_base, toc_base;
int i;
FL_DBG("LIBFFS: Adding '%s' at 0x%08x..0x%08x\n",
entry->name, entry->base, entry->base + entry->size);
if (hdr->count == 0) {
FL_DBG("LIBFFS: Adding an entry to an empty header\n");
hdr->entries[hdr->count++] = entry;
}
if (entry->base + entry->size > hdr->block_size * hdr->block_count)
return FFS_ERR_BAD_PART_SIZE;
smallest_base = entry->base;
smallest_name = entry->name;
toc_base = 0;
/*
* TODO: This may have assumed entries was sorted
*/
for (i = 0; i < hdr->count; i++) {
struct ffs_entry *ent = hdr->entries[i];
/* Don't allow same names to differ only by case */
if (strncasecmp(entry->name, ent->name, FFS_PART_NAME_MAX) == 0)
return FFS_ERR_BAD_PART_NAME;
if (entry->base >= ent->base && entry->base < ent->base + ent->size)
return FFS_ERR_BAD_PART_BASE;
if (entry->base + entry->size > ent->base &&
entry->base + entry->size < ent->base + ent->size)
return FFS_ERR_BAD_PART_SIZE;
if (entry->actual > entry->size)
return FFS_ERR_BAD_PART_SIZE;
if (entry->pid != FFS_PID_TOPLEVEL)
return FFS_ERR_BAD_PART_PID;
/* First partition is the partition table */
if (i == 0) {
toc_base = ent->base;
} else {
/*
* We're looking for the partition directly
* after the toc to make sure we don't
* overflow onto it.
*/
if (ent->base < smallest_base && ent->base > toc_base) {
smallest_base = ent->base;
smallest_name = ent->name;
}
}
}
/* If the smallest base is before the TOC, don't worry */
if (smallest_base > toc_base && (hdr->count + 1) * sizeof(struct __ffs_entry) +
sizeof(struct __ffs_hdr) + toc_base > smallest_base) {
fprintf(stderr, "Adding partition '%s' would cause partition '%s' at "
"0x%08x to overlap with the header\n", entry->name, smallest_name,
smallest_base);
return FFS_ERR_BAD_PART_BASE;
}
if (hdr->count == hdr->entries_size) {
struct ffs_entry **old = hdr->entries;
hdr->entries = realloc(hdr->entries,
(HDR_ENTRIES_NUM + hdr->entries_size) * sizeof(struct ffs_entry *));
if (!hdr->entries) {
hdr->entries = old;
return FLASH_ERR_MALLOC_FAILED;
}
hdr->entries_size += HDR_ENTRIES_NUM;
}
entry->ref++;
hdr->entries[hdr->count++] = entry;
return 0;
}
int ffs_hdr_finalise(struct blocklevel_device *bl, struct ffs_hdr *hdr)
{
int num_entries, i, rc = 0;
struct __ffs_hdr *real_hdr;
num_entries = ffs_num_entries(hdr);
/* A TOC shouldn't have zero partitions */
if (num_entries == 0)
return FFS_ERR_BAD_SIZE;
real_hdr = malloc(ffs_hdr_raw_size(num_entries));
if (!real_hdr)
return FLASH_ERR_MALLOC_FAILED;
/*
* So that the checksum gets calculated correctly at least the
* real_hdr->checksum must be zero before calling ffs_hdr_checksum()
* memset()ting the entire struct to zero is probably wise as it
* appears the reserved fields are always zero.
*/
memset(real_hdr, 0, sizeof(*real_hdr));
hdr->part->size = ffs_hdr_raw_size(num_entries) + hdr->block_size;
/*
* So actual is in bytes. ffs_entry_to_flash() don't do the
* block_size division that we're relying on
*/
hdr->part->actual = (hdr->part->size / hdr->block_size) * hdr->block_size;
real_hdr->magic = cpu_to_be32(FFS_MAGIC);
real_hdr->version = cpu_to_be32(hdr->version);
real_hdr->size = cpu_to_be32(hdr->part->size / hdr->block_size);
real_hdr->entry_size = cpu_to_be32(sizeof(struct __ffs_entry));
real_hdr->entry_count = cpu_to_be32(num_entries);
real_hdr->block_size = cpu_to_be32(hdr->block_size);
real_hdr->block_count = cpu_to_be32(hdr->block_count);
real_hdr->checksum = ffs_hdr_checksum(real_hdr);
for (i = 0; i < hdr->count; i++) {
rc = ffs_entry_to_flash(hdr, real_hdr->entries + i, hdr->entries[i]);
if (rc) {
fprintf(stderr, "Couldn't format all entries for new TOC\n");
goto out;
}
}
/* Don't really care if this fails */
blocklevel_erase(bl, hdr->part->base, hdr->size);
rc = blocklevel_write(bl, hdr->part->base, real_hdr,
ffs_hdr_raw_size(num_entries));
if (rc)
goto out;
out:
free(real_hdr);
return rc;
}
int ffs_entry_user_set(struct ffs_entry *ent, struct ffs_entry_user *user)
{
if (!ent || !user)
return -1;
/*
* Don't allow the user to specify anything we dont't know about.
* Rationale: This is the library providing access to the FFS structures.
* If the consumer of the library knows more about FFS structures then
* questions need to be asked.
* The other possibility is that they've unknowningly supplied invalid
* flags, we should tell them.
*/
if (user->chip)
return -1;
if (user->compresstype)
return -1;
if (user->datainteg & ~(FFS_ENRY_INTEG_ECC))
return -1;
if (user->vercheck & ~(FFS_VERCHECK_SHA512V | FFS_VERCHECK_SHA512EC))
return -1;
if (user->miscflags & ~(FFS_MISCFLAGS_PRESERVED | FFS_MISCFLAGS_BACKUP |
FFS_MISCFLAGS_READONLY | FFS_MISCFLAGS_REPROVISION |
FFS_MISCFLAGS_VOLATILE | FFS_MISCFLAGS_GOLDEN |
FFS_MISCFLAGS_CLEARECC))
return -1;
memcpy(&ent->user, user, sizeof(*user));
return 0;
}
struct ffs_entry_user ffs_entry_user_get(struct ffs_entry *ent)
{
struct ffs_entry_user user = { 0 };
if (ent)
memcpy(&user, &ent->user, sizeof(user));
return user;
}
int ffs_entry_new(const char *name, uint32_t base, uint32_t size, struct ffs_entry **r)
{
struct ffs_entry *ret;
ret = calloc(1, sizeof(*ret));
if (!ret)
return FLASH_ERR_MALLOC_FAILED;
strncpy(ret->name, name, FFS_PART_NAME_MAX);
ret->name[FFS_PART_NAME_MAX] = '\0';
ret->base = base;
ret->size = size;
ret->actual = size;
ret->pid = FFS_PID_TOPLEVEL;
ret->type = FFS_TYPE_DATA;
ret->ref = 1;
*r = ret;
return 0;
}
int ffs_entry_set_act_size(struct ffs_entry *ent, uint32_t actual_size)
{
if (!ent)
return -1;
if (actual_size > ent->size)
return FFS_ERR_BAD_PART_SIZE;
ent->actual = actual_size;
return 0;
}
int ffs_hdr_new(uint32_t block_size, uint32_t block_count,
struct ffs_entry **e, struct ffs_hdr **r)
{
struct ffs_hdr *ret;
struct ffs_entry *part_table;
int rc;
ret = calloc(1, sizeof(*ret));
if (!ret)
return FLASH_ERR_MALLOC_FAILED;
ret->version = FFS_VERSION_1;
ret->block_size = block_size;
ret->block_count = block_count;
ret->entries = calloc(HDR_ENTRIES_NUM, sizeof(struct ffs_entry *));
ret->entries_size = HDR_ENTRIES_NUM;
if (!e || !(*e)) {
/* Don't know how big it will be, ffs_hdr_finalise() will fix */
rc = ffs_entry_new("part", 0, 0, &part_table);
if (rc) {
free(ret);
return rc;
}
if (e)
*e = part_table;
} else {
part_table = *e;
}
/* If the user still holds a ref to e, then inc the refcount */
if (e)
part_table->ref++;
ret->part = part_table;
part_table->pid = FFS_PID_TOPLEVEL;
part_table->type = FFS_TYPE_PARTITION;
part_table->flags = FFS_FLAGS_PROTECTED;
ret->entries[0] = part_table;
ret->count = 1;
*r = ret;
return 0;
}
int ffs_update_act_size(struct ffs_handle *ffs, uint32_t part_idx,
uint32_t act_size)
{
struct ffs_entry *ent;
struct __ffs_entry raw_ent;
uint32_t offset;
int rc;
ent = __ffs_entry_get(ffs, part_idx);
if (!ent) {
FL_DBG("FFS: Entry not found\n");
return FFS_ERR_PART_NOT_FOUND;
}
offset = ffs->toc_offset + ffs_hdr_raw_size(part_idx);
FL_DBG("FFS: part index %d at offset 0x%08x\n",
part_idx, offset);
if (ent->actual == act_size) {
FL_DBG("FFS: ent->actual alrady matches: 0x%08x==0x%08x\n",
act_size, ent->actual);
return 0;
}
ent->actual = act_size;
rc = ffs_entry_to_flash(&ffs->hdr, &raw_ent, ent);
if (rc)
return rc;
return blocklevel_smart_write(ffs->bl, offset, &raw_ent, sizeof(struct __ffs_entry));
}
|