1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
"""Benchmarks for `skimage.morphology`.
See "Writing benchmarks" in the asv docs for more information.
"""
import numpy as np
from numpy.lib import NumpyVersion as Version
import scipy.ndimage
import skimage
from skimage import color, data, morphology, util
class Skeletonize3d:
def setup(self, *args):
try:
# use a separate skeletonize_3d function on older scikit-image
if Version(skimage.__version__) < Version('0.16.0'):
self.skeletonize = morphology.skeletonize_3d
else:
self.skeletonize = morphology.skeletonize
except AttributeError:
raise NotImplementedError("3d skeletonize unavailable")
# we stack the horse data 5 times to get an example volume
self.image = np.stack(5 * [util.invert(data.horse())])
def time_skeletonize(self):
self.skeletonize(self.image)
def peakmem_reference(self, *args):
"""Provide reference for memory measurement with empty benchmark.
Peakmem benchmarks measure the maximum amount of RAM used by a
function. However, this maximum also includes the memory used
during the setup routine (as of asv 0.2.1; see [1]_).
Measuring an empty peakmem function might allow us to disambiguate
between the memory used by setup and the memory used by target (see
other ``peakmem_`` functions below).
References
----------
.. [1]: https://asv.readthedocs.io/en/stable/writing_benchmarks.html#peak-memory
"""
pass
def peakmem_skeletonize(self):
self.skeletonize(self.image)
# For binary morphology all functions ultimately are based on a single erosion
# function in the scipy.ndimage C code, so only benchmark binary_erosion here.
class BinaryMorphology2D:
# skip rectangle as roughly equivalent to square
param_names = ["shape", "footprint", "radius", "decomposition"]
params = [
((512, 512),),
("square", "diamond", "octagon", "disk", "ellipse", "star"),
(1, 3, 5, 15, 25, 40),
(None, "sequence", "separable", "crosses"),
]
def setup(self, shape, footprint, radius, decomposition):
rng = np.random.default_rng(123)
# Make an image that is mostly True, with random isolated False areas
# (so it will not become fully False for any of the footprints).
self.image = rng.standard_normal(shape) < 3.5
fp_func = getattr(morphology, footprint)
allow_sequence = ("rectangle", "square", "diamond", "octagon", "disk")
allow_separable = ("rectangle", "square")
allow_crosses = ("disk", "ellipse")
allow_decomp = tuple(
set(allow_sequence) | set(allow_separable) | set(allow_crosses)
)
footprint_kwargs = {}
if decomposition == "sequence" and footprint not in allow_sequence:
raise NotImplementedError("decomposition unimplemented")
elif decomposition == "separable" and footprint not in allow_separable:
raise NotImplementedError("separable decomposition unavailable")
elif decomposition == "crosses" and footprint not in allow_crosses:
raise NotImplementedError("separable decomposition unavailable")
if footprint in allow_decomp:
footprint_kwargs["decomposition"] = decomposition
if footprint in ["rectangle", "square"]:
size = 2 * radius + 1
self.footprint = fp_func(size, **footprint_kwargs)
elif footprint in ["diamond", "disk"]:
self.footprint = fp_func(radius, **footprint_kwargs)
elif footprint == "star":
# set a so bounding box size is approximately 2*radius + 1
# size will be 2*a + 1 + 2*floor(a / 2)
a = max((2 * radius) // 3, 1)
self.footprint = fp_func(a, **footprint_kwargs)
elif footprint == "octagon":
# overall size is m + 2 * n
# so choose m = n so that overall size is ~ 2*radius + 1
m = n = max((2 * radius) // 3, 1)
self.footprint = fp_func(m, n, **footprint_kwargs)
elif footprint == "ellipse":
if radius > 1:
# make somewhat elliptical
self.footprint = fp_func(radius - 1, radius + 1, **footprint_kwargs)
else:
self.footprint = fp_func(radius, radius, **footprint_kwargs)
def time_erosion(self, shape, footprint, radius, *args):
morphology.binary_erosion(self.image, self.footprint)
class BinaryMorphology3D:
# skip rectangle as roughly equivalent to square
param_names = ["shape", "footprint", "radius", "decomposition"]
params = [
((128, 128, 128),),
("ball", "cube", "octahedron"),
(1, 3, 5, 10),
(None, "sequence", "separable"),
]
def setup(self, shape, footprint, radius, decomposition):
rng = np.random.default_rng(123)
# make an image that is mostly True, with a few isolated False areas
self.image = rng.standard_normal(shape) > -3
fp_func = getattr(morphology, footprint)
allow_decomp = ("cube", "octahedron", "ball")
allow_separable = ("cube",)
if decomposition == "separable" and footprint != "cube":
raise NotImplementedError("separable unavailable")
footprint_kwargs = {}
if decomposition is not None and footprint not in allow_decomp:
raise NotImplementedError("decomposition unimplemented")
elif decomposition == "separable" and footprint not in allow_separable:
raise NotImplementedError("separable decomposition unavailable")
if footprint in allow_decomp:
footprint_kwargs["decomposition"] = decomposition
if footprint == "cube":
size = 2 * radius + 1
self.footprint = fp_func(size, **footprint_kwargs)
elif footprint in ["ball", "octahedron"]:
self.footprint = fp_func(radius, **footprint_kwargs)
def time_erosion(self, shape, footprint, radius, *args):
morphology.binary_erosion(self.image, self.footprint)
class IsotropicMorphology2D:
# skip rectangle as roughly equivalent to square
param_names = ["shape", "radius"]
params = [
((512, 512),),
(1, 3, 5, 15, 25, 40),
]
def setup(self, shape, radius):
rng = np.random.default_rng(123)
# Make an image that is mostly True, with random isolated False areas
# (so it will not become fully False for any of the footprints).
self.image = rng.standard_normal(shape) < 3.5
def time_erosion(self, shape, radius, *args):
morphology.isotropic_erosion(self.image, radius)
# Repeat the same footprint tests for grayscale morphology
# just need to call morphology.erosion instead of morphology.binary_erosion
class GrayMorphology2D(BinaryMorphology2D):
def time_erosion(self, shape, footprint, radius, *args):
morphology.erosion(self.image, self.footprint)
class GrayMorphology3D(BinaryMorphology3D):
def time_erosion(self, shape, footprint, radius, *args):
morphology.erosion(self.image, self.footprint)
class GrayReconstruction:
# skip rectangle as roughly equivalent to square
param_names = ["shape", "dtype"]
params = [
((10, 10), (64, 64), (1200, 1200), (96, 96, 96)),
(np.uint8, np.float32, np.float64),
]
def setup(self, shape, dtype):
rng = np.random.default_rng(123)
# make an image that is mostly True, with a few isolated False areas
rvals = rng.integers(1, 255, size=shape).astype(dtype=dtype)
roi1 = tuple(slice(s // 4, s // 2) for s in rvals.shape)
roi2 = tuple(slice(s // 2 + 1, (3 * s) // 4) for s in rvals.shape)
seed = np.full(rvals.shape, 1, dtype=dtype)
seed[roi1] = rvals[roi1]
seed[roi2] = rvals[roi2]
# create a mask with a couple of square regions set to seed maximum
mask = np.full(seed.shape, 1, dtype=dtype)
mask[roi1] = 255
mask[roi2] = 255
self.seed = seed
self.mask = mask
def time_reconstruction(self, shape, dtype):
morphology.reconstruction(self.seed, self.mask)
def peakmem_reference(self, *args):
"""Provide reference for memory measurement with empty benchmark.
Peakmem benchmarks measure the maximum amount of RAM used by a
function. However, this maximum also includes the memory used
during the setup routine (as of asv 0.2.1; see [1]_).
Measuring an empty peakmem function might allow us to disambiguate
between the memory used by setup and the memory used by target (see
other ``peakmem_`` functions below).
References
----------
.. [1]: https://asv.readthedocs.io/en/stable/writing_benchmarks.html#peak-memory
"""
pass
def peakmem_reconstruction(self, shape, dtype):
morphology.reconstruction(self.seed, self.mask)
class LocalMaxima:
param_names = ["connectivity", "allow_borders"]
params = [(1, 2), (False, True)]
def setup(self, *args):
# Natural image with small extrema
self.image = data.moon()
def time_2d(self, connectivity, allow_borders):
morphology.local_maxima(
self.image, connectivity=connectivity, allow_borders=allow_borders
)
def peakmem_reference(self, *args):
"""Provide reference for memory measurement with empty benchmark.
.. [1] https://asv.readthedocs.io/en/stable/writing_benchmarks.html#peak-memory
"""
pass
def peakmem_2d(self, connectivity, allow_borders):
morphology.local_maxima(
self.image, connectivity=connectivity, allow_borders=allow_borders
)
class RemoveObjectsByDistance:
param_names = ["min_distance"]
params = [5, 100]
def setup(self, *args):
image = data.hubble_deep_field()
image = color.rgb2gray(image)
objects = image > 0.18 # Chosen with threshold_li
self.labels, _ = scipy.ndimage.label(objects)
def time_remove_near_objects(self, min_distance):
morphology.remove_objects_by_distance(self.labels, min_distance=min_distance)
def peakmem_reference(self, *args):
"""Provide reference for memory measurement with empty benchmark.
Peakmem benchmarks measure the maximum amount of RAM used by a
function. However, this maximum also includes the memory used
during the setup routine (as of asv 0.2.1; see [1]_).
Measuring an empty peakmem function might allow us to disambiguate
between the memory used by setup and the memory used by target (see
other ``peakmem_`` functions below).
References
----------
.. [1]: https://asv.readthedocs.io/en/stable/writing_benchmarks.html#peak-memory
"""
pass
def peakmem_remove_near_objects(self, min_distance):
morphology.remove_objects_by_distance(
self.labels,
min_distance=min_distance,
)
|