File: benchmark_segmentation.py

package info (click to toggle)
skimage 0.25.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 32,720 kB
  • sloc: python: 60,007; cpp: 2,592; ansic: 1,591; xml: 1,342; javascript: 1,267; makefile: 168; sh: 20
file content (152 lines) | stat: -rw-r--r-- 4,871 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
"""Benchmarks for `skimage.segmentation`.

See "Writing benchmarks" in the asv docs for more information.
"""

import numpy as np
from numpy.lib import NumpyVersion as Version

import skimage
from skimage import data, filters, segmentation

from . import _channel_kwarg

try:
    from skimage.segmentation import watershed
except ImportError:
    # older scikit-image had this function under skimage.morphology
    from skimage.morphology import watershed


class SlicSegmentation:
    """Benchmark for segmentation routines in scikit-image."""

    def setup(self):
        self.image = np.random.random((200, 200, 100))
        self.image[:100, :100, :] += 1
        self.image[150:, 150:, :] += 0.5
        self.msk = np.zeros((200, 200, 100))
        self.msk[10:-10, 10:-10, 10:-10] = 1
        self.msk_slice = self.msk[..., 50]
        if Version(skimage.__version__) >= Version('0.17.0'):
            self.slic_kwargs = dict(start_label=1)
        else:
            self.slic_kwargs = {}

    def time_slic_basic(self):
        segmentation.slic(
            self.image,
            enforce_connectivity=False,
            **_channel_kwarg(False),
            **self.slic_kwargs,
        )

    def time_slic_basic_multichannel(self):
        segmentation.slic(
            self.image,
            enforce_connectivity=False,
            **_channel_kwarg(True),
            **self.slic_kwargs,
        )

    def peakmem_setup(self):
        """peakmem includes the memory used by setup.

        Peakmem benchmarks measure the maximum amount of RAM used by a
        function. However, this maximum also includes the memory used
        by ``setup`` (as of asv 0.2.1; see [1]_)

        Measuring an empty peakmem function might allow us to disambiguate
        between the memory used by setup and the memory used by slic (see
        ``peakmem_slic_basic``, below).

        References
        ----------
        .. [1]: https://asv.readthedocs.io/en/stable/writing_benchmarks.html#peak-memory
        """
        pass

    def peakmem_slic_basic(self):
        segmentation.slic(
            self.image,
            enforce_connectivity=False,
            **_channel_kwarg(False),
            **self.slic_kwargs,
        )

    def peakmem_slic_basic_multichannel(self):
        segmentation.slic(
            self.image,
            enforce_connectivity=False,
            **_channel_kwarg(True),
            **self.slic_kwargs,
        )


class MaskSlicSegmentation(SlicSegmentation):
    """Benchmark for segmentation routines in scikit-image."""

    def setup(self):
        try:
            mask = np.zeros((64, 64)) > 0
            mask[10:-10, 10:-10] = 1
            segmentation.slic(np.ones_like(mask), mask=mask, **_channel_kwarg(False))
        except TypeError:
            raise NotImplementedError("masked slic unavailable")

        self.image = np.random.random((200, 200, 100))
        self.image[:100, :100, :] += 1
        self.image[150:, 150:, :] += 0.5
        self.msk = np.zeros((200, 200, 100))
        self.msk[10:-10, 10:-10, 10:-10] = 1
        self.msk_slice = self.msk[..., 50]
        if Version(skimage.__version__) >= Version('0.17.0'):
            self.slic_kwargs = dict(start_label=1)
        else:
            self.slic_kwargs = {}

    def time_mask_slic(self):
        segmentation.slic(
            self.image,
            enforce_connectivity=False,
            mask=self.msk,
            **_channel_kwarg(False),
        )

    def time_mask_slic_multichannel(self):
        segmentation.slic(
            self.image,
            enforce_connectivity=False,
            mask=self.msk_slice,
            **_channel_kwarg(True),
        )


class Watershed:
    param_names = ["seed_count", "connectivity", "compactness"]
    params = [(5, 500), (1, 2), (0, 0.01)]

    def setup(self, *args):
        self.image = filters.sobel(data.coins())

    def time_watershed(self, seed_count, connectivity, compactness):
        watershed(self.image, seed_count, connectivity, compactness=compactness)

    def peakmem_reference(self, *args):
        """Provide reference for memory measurement with empty benchmark.

        Peakmem benchmarks measure the maximum amount of RAM used by a
        function. However, this maximum also includes the memory used
        during the setup routine (as of asv 0.2.1; see [1]_).
        Measuring an empty peakmem function might allow us to disambiguate
        between the memory used by setup and the memory used by target (see
        other ``peakmem_`` functions below).

        References
        ----------
        .. [1]: https://asv.readthedocs.io/en/stable/writing_benchmarks.html#peak-memory
        """
        pass

    def peakmem_watershed(self, seed_count, connectivity, compactness):
        watershed(self.image, seed_count, connectivity, compactness=compactness)