File: plot_3d_image_processing.py

package info (click to toggle)
skimage 0.25.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 32,720 kB
  • sloc: python: 60,007; cpp: 2,592; ansic: 1,591; xml: 1,342; javascript: 1,267; makefile: 168; sh: 20
file content (322 lines) | stat: -rw-r--r-- 11,332 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
"""
============================
Explore 3D images (of cells)
============================

This tutorial is an introduction to three-dimensional image processing.
For a quick intro to 3D datasets, please refer to
:ref:`sphx_glr_auto_examples_data_plot_3d.py`.
Images
are represented as `numpy` arrays. A single-channel, or grayscale, image is a
2D matrix of pixel intensities of shape ``(n_row, n_col)``, where ``n_row``
(resp. ``n_col``) denotes the number of `rows` (resp. `columns`). We can
construct a 3D volume as a series of 2D `planes`, giving 3D images the shape
``(n_plane, n_row, n_col)``, where ``n_plane`` is the number of planes.
A multichannel, or RGB(A), image has an additional
`channel` dimension in the final position containing color information.

These conventions are summarized in the table below:

=============== =================================
Image type      Coordinates
=============== =================================
2D grayscale    ``[row, column]``
2D multichannel ``[row, column, channel]``
3D grayscale    ``[plane, row, column]``
3D multichannel ``[plane, row, column, channel]``
=============== =================================

Some 3D images are constructed with equal resolution in each dimension (e.g.,
synchrotron tomography or computer-generated rendering of a sphere).
But most experimental data are captured
with a lower resolution in one of the three dimensions, e.g., photographing
thin slices to approximate a 3D structure as a stack of 2D images.
The distance between pixels in each dimension, called spacing, is encoded as a
tuple and is accepted as a parameter by some `skimage` functions and can be
used to adjust contributions to filters.

The data used in this tutorial were provided by the Allen Institute for Cell
Science. They were downsampled by a factor of 4 in the `row` and `column`
dimensions to reduce their size and, hence, computational time. The spacing
information was reported by the microscope used to image the cells.

"""

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
import numpy as np

import plotly
import plotly.express as px
import skimage as ski


#####################################################################
# Load and display 3D images
# ==========================

data = ski.util.img_as_float(ski.data.cells3d()[:, 1, :, :])  # grab just the nuclei

print(f'shape: {data.shape}')
print(f'dtype: {data.dtype}')
print(f'range: ({data.min()}, {data.max()})')

# Report spacing from microscope
original_spacing = np.array([0.2900000, 0.0650000, 0.0650000])

# Account for downsampling of slices by 4
rescaled_spacing = original_spacing * [1, 4, 4]

# Normalize spacing so that pixels are a distance of 1 apart
spacing = rescaled_spacing / rescaled_spacing[2]

print(f'microscope spacing: {original_spacing}\n')
print(f'rescaled spacing: {rescaled_spacing} (after downsampling)\n')
print(f'normalized spacing: {spacing}\n')

#####################################################################
# Let us try and visualize our 3D image. Unfortunately, many image viewers,
# such as matplotlib's `imshow`, are only capable of displaying 2D data. We
# can see that they raise an error when we try to view 3D data:

try:
    fig, ax = plt.subplots()
    ax.imshow(data, cmap='gray')
except TypeError as e:
    print(str(e))

#####################################################################
# The `imshow` function can only display grayscale and RGB(A) 2D images.
# We can thus use it to visualize 2D planes. By fixing one axis, we can
# observe three different views of the image.


def show_plane(ax, plane, cmap="gray", title=None):
    ax.imshow(plane, cmap=cmap)
    ax.set_axis_off()

    if title:
        ax.set_title(title)


(n_plane, n_row, n_col) = data.shape
_, (a, b, c) = plt.subplots(ncols=3, figsize=(15, 5))

show_plane(a, data[n_plane // 2], title=f'Plane = {n_plane // 2}')
show_plane(b, data[:, n_row // 2, :], title=f'Row = {n_row // 2}')
show_plane(c, data[:, :, n_col // 2], title=f'Column = {n_col // 2}')

#####################################################################
# As hinted before, a three-dimensional image can be viewed as a series of
# two-dimensional planes. Let us write a helper function, `display`, to create
# a montage of several planes. By default, every other plane is displayed.


def display(im3d, cmap='gray', step=2):
    data_montage = ski.util.montage(im3d[::step], padding_width=4, fill=np.nan)
    _, ax = plt.subplots(figsize=(16, 14))
    ax.imshow(data_montage, cmap=cmap)
    ax.set_axis_off()


display(data)

#####################################################################
# Alternatively, we can explore these planes (slices) interactively using
# Jupyter widgets. Let the user select which slice to display and show the
# position of this slice in the 3D dataset.
# Note that you cannot see the Jupyter widget at work in a static HTML page,
# as is the case in the online version of this example. For the following
# piece of code to work, you need a Jupyter kernel running either locally or
# in the cloud: see the bottom of this page to either download the Jupyter
# notebook and run it on your computer, or open it directly in Binder. On top
# of an active kernel, you need a web browser: running the code in pure Python
# will not work either.


def slice_in_3D(ax, i):
    # From https://stackoverflow.com/questions/44881885/python-draw-3d-cube
    Z = np.array(
        [
            [0, 0, 0],
            [1, 0, 0],
            [1, 1, 0],
            [0, 1, 0],
            [0, 0, 1],
            [1, 0, 1],
            [1, 1, 1],
            [0, 1, 1],
        ]
    )

    Z = Z * data.shape
    r = [-1, 1]
    X, Y = np.meshgrid(r, r)

    # Plot vertices
    ax.scatter3D(Z[:, 0], Z[:, 1], Z[:, 2])

    # List sides' polygons of figure
    verts = [
        [Z[0], Z[1], Z[2], Z[3]],
        [Z[4], Z[5], Z[6], Z[7]],
        [Z[0], Z[1], Z[5], Z[4]],
        [Z[2], Z[3], Z[7], Z[6]],
        [Z[1], Z[2], Z[6], Z[5]],
        [Z[4], Z[7], Z[3], Z[0]],
        [Z[2], Z[3], Z[7], Z[6]],
    ]

    # Plot sides
    ax.add_collection3d(
        Poly3DCollection(
            verts, facecolors=(0, 1, 1, 0.25), linewidths=1, edgecolors="darkblue"
        )
    )

    verts = np.array([[[0, 0, 0], [0, 0, 1], [0, 1, 1], [0, 1, 0]]])
    verts = verts * (60, 256, 256)
    verts += [i, 0, 0]

    ax.add_collection3d(
        Poly3DCollection(verts, facecolors="magenta", linewidths=1, edgecolors="black")
    )

    ax.set_xlabel("plane")
    ax.set_xlim(0, 100)
    ax.set_ylabel("row")
    ax.set_zlabel("col")

    # Autoscale plot axes
    scaling = np.array([getattr(ax, f'get_{dim}lim')() for dim in "xyz"])
    ax.auto_scale_xyz(*[[np.min(scaling), np.max(scaling)]] * 3)


def explore_slices(data, cmap="gray"):
    from ipywidgets import interact

    N = len(data)

    @interact(plane=(0, N - 1))
    def display_slice(plane=34):
        fig, ax = plt.subplots(figsize=(20, 5))

        ax_3D = fig.add_subplot(133, projection="3d")

        show_plane(ax, data[plane], title=f'Plane {plane}', cmap=cmap)
        slice_in_3D(ax_3D, plane)

        plt.show()

    return display_slice


explore_slices(data)

#####################################################################
# Adjust exposure
# ===============
# Scikit-image's `exposure` module contains a number of functions for
# adjusting image contrast. These functions operate on pixel values.
# Generally, image dimensionality or pixel spacing doesn't need to be
# considered. In local exposure correction, though, one might want to
# adjust the window size to ensure equal size in *real* coordinates along
# each axis.

#####################################################################
# `Gamma correction <https://en.wikipedia.org/wiki/Gamma_correction>`_
# brightens or darkens an image. A power-law transform, where `gamma` denotes
# the power-law exponent, is applied to each pixel in the image: `gamma < 1`
# will brighten an image, while `gamma > 1` will darken an image.


def plot_hist(ax, data, title=None):
    # Helper function for plotting histograms
    ax.hist(data.ravel(), bins=256)
    ax.ticklabel_format(axis="y", style="scientific", scilimits=(0, 0))

    if title:
        ax.set_title(title)


gamma_low_val = 0.5
gamma_low = ski.exposure.adjust_gamma(data, gamma=gamma_low_val)

gamma_high_val = 1.5
gamma_high = ski.exposure.adjust_gamma(data, gamma=gamma_high_val)

_, ((a, b, c), (d, e, f)) = plt.subplots(nrows=2, ncols=3, figsize=(12, 8))

show_plane(a, data[32], title='Original')
show_plane(b, gamma_low[32], title=f'Gamma = {gamma_low_val}')
show_plane(c, gamma_high[32], title=f'Gamma = {gamma_high_val}')

plot_hist(d, data)
plot_hist(e, gamma_low)
plot_hist(f, gamma_high)
# sphinx_gallery_thumbnail_number = 4

#####################################################################
# `Histogram
# equalization <https://en.wikipedia.org/wiki/Histogram_equalization>`_
# improves contrast in an image by redistributing pixel intensities. The most
# common pixel intensities get spread out, increasing contrast in low-contrast
# areas. One downside of this approach is that it may enhance background
# noise.

equalized_data = ski.exposure.equalize_hist(data)

display(equalized_data)

#####################################################################
# As before, if we have a Jupyter kernel running, we can explore the above
# slices interactively.

explore_slices(equalized_data)

#####################################################################
# Let us now plot the image histogram before and after histogram equalization.
# Below, we plot the respective cumulative distribution functions (CDF).

_, ((a, b), (c, d)) = plt.subplots(nrows=2, ncols=2, figsize=(16, 8))

plot_hist(a, data, title="Original histogram")
plot_hist(b, equalized_data, title="Equalized histogram")

cdf, bins = ski.exposure.cumulative_distribution(data.ravel())
c.plot(bins, cdf, "r")
c.set_title("Original CDF")

cdf, bins = ski.exposure.cumulative_distribution(equalized_data.ravel())
d.plot(bins, cdf, "r")
d.set_title("Histogram equalization CDF")

#####################################################################
# Most experimental images are affected by salt and pepper noise. A few bright
# artifacts can decrease the relative intensity of the pixels of interest. A
# simple way to improve contrast is to clip the pixel values on the lowest and
# highest extremes. Clipping the darkest and brightest 0.5% of pixels will
# increase the overall contrast of the image.

vmin, vmax = np.percentile(data, q=(0.5, 99.5))

clipped_data = ski.exposure.rescale_intensity(
    data, in_range=(vmin, vmax), out_range=np.float32
)

display(clipped_data)

#####################################################################
# Alternatively, we can explore these planes (slices) interactively using
# `Plotly Express <https://plotly.com/python/sliders/>`_.
# Note that this works in a static HTML page!

fig = px.imshow(data, animation_frame=0, binary_string=True)
fig.update_xaxes(showticklabels=False)
fig.update_yaxes(showticklabels=False)
fig.update_layout(autosize=False, width=500, height=500, coloraxis_showscale=False)
# Drop animation buttons
fig['layout'].pop('updatemenus')
plotly.io.show(fig)

plt.show()