1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
"""
============================
Explore 3D images (of cells)
============================
This tutorial is an introduction to three-dimensional image processing.
For a quick intro to 3D datasets, please refer to
:ref:`sphx_glr_auto_examples_data_plot_3d.py`.
Images
are represented as `numpy` arrays. A single-channel, or grayscale, image is a
2D matrix of pixel intensities of shape ``(n_row, n_col)``, where ``n_row``
(resp. ``n_col``) denotes the number of `rows` (resp. `columns`). We can
construct a 3D volume as a series of 2D `planes`, giving 3D images the shape
``(n_plane, n_row, n_col)``, where ``n_plane`` is the number of planes.
A multichannel, or RGB(A), image has an additional
`channel` dimension in the final position containing color information.
These conventions are summarized in the table below:
=============== =================================
Image type Coordinates
=============== =================================
2D grayscale ``[row, column]``
2D multichannel ``[row, column, channel]``
3D grayscale ``[plane, row, column]``
3D multichannel ``[plane, row, column, channel]``
=============== =================================
Some 3D images are constructed with equal resolution in each dimension (e.g.,
synchrotron tomography or computer-generated rendering of a sphere).
But most experimental data are captured
with a lower resolution in one of the three dimensions, e.g., photographing
thin slices to approximate a 3D structure as a stack of 2D images.
The distance between pixels in each dimension, called spacing, is encoded as a
tuple and is accepted as a parameter by some `skimage` functions and can be
used to adjust contributions to filters.
The data used in this tutorial were provided by the Allen Institute for Cell
Science. They were downsampled by a factor of 4 in the `row` and `column`
dimensions to reduce their size and, hence, computational time. The spacing
information was reported by the microscope used to image the cells.
"""
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
import numpy as np
import plotly
import plotly.express as px
import skimage as ski
#####################################################################
# Load and display 3D images
# ==========================
data = ski.util.img_as_float(ski.data.cells3d()[:, 1, :, :]) # grab just the nuclei
print(f'shape: {data.shape}')
print(f'dtype: {data.dtype}')
print(f'range: ({data.min()}, {data.max()})')
# Report spacing from microscope
original_spacing = np.array([0.2900000, 0.0650000, 0.0650000])
# Account for downsampling of slices by 4
rescaled_spacing = original_spacing * [1, 4, 4]
# Normalize spacing so that pixels are a distance of 1 apart
spacing = rescaled_spacing / rescaled_spacing[2]
print(f'microscope spacing: {original_spacing}\n')
print(f'rescaled spacing: {rescaled_spacing} (after downsampling)\n')
print(f'normalized spacing: {spacing}\n')
#####################################################################
# Let us try and visualize our 3D image. Unfortunately, many image viewers,
# such as matplotlib's `imshow`, are only capable of displaying 2D data. We
# can see that they raise an error when we try to view 3D data:
try:
fig, ax = plt.subplots()
ax.imshow(data, cmap='gray')
except TypeError as e:
print(str(e))
#####################################################################
# The `imshow` function can only display grayscale and RGB(A) 2D images.
# We can thus use it to visualize 2D planes. By fixing one axis, we can
# observe three different views of the image.
def show_plane(ax, plane, cmap="gray", title=None):
ax.imshow(plane, cmap=cmap)
ax.set_axis_off()
if title:
ax.set_title(title)
(n_plane, n_row, n_col) = data.shape
_, (a, b, c) = plt.subplots(ncols=3, figsize=(15, 5))
show_plane(a, data[n_plane // 2], title=f'Plane = {n_plane // 2}')
show_plane(b, data[:, n_row // 2, :], title=f'Row = {n_row // 2}')
show_plane(c, data[:, :, n_col // 2], title=f'Column = {n_col // 2}')
#####################################################################
# As hinted before, a three-dimensional image can be viewed as a series of
# two-dimensional planes. Let us write a helper function, `display`, to create
# a montage of several planes. By default, every other plane is displayed.
def display(im3d, cmap='gray', step=2):
data_montage = ski.util.montage(im3d[::step], padding_width=4, fill=np.nan)
_, ax = plt.subplots(figsize=(16, 14))
ax.imshow(data_montage, cmap=cmap)
ax.set_axis_off()
display(data)
#####################################################################
# Alternatively, we can explore these planes (slices) interactively using
# Jupyter widgets. Let the user select which slice to display and show the
# position of this slice in the 3D dataset.
# Note that you cannot see the Jupyter widget at work in a static HTML page,
# as is the case in the online version of this example. For the following
# piece of code to work, you need a Jupyter kernel running either locally or
# in the cloud: see the bottom of this page to either download the Jupyter
# notebook and run it on your computer, or open it directly in Binder. On top
# of an active kernel, you need a web browser: running the code in pure Python
# will not work either.
def slice_in_3D(ax, i):
# From https://stackoverflow.com/questions/44881885/python-draw-3d-cube
Z = np.array(
[
[0, 0, 0],
[1, 0, 0],
[1, 1, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 1],
[1, 1, 1],
[0, 1, 1],
]
)
Z = Z * data.shape
r = [-1, 1]
X, Y = np.meshgrid(r, r)
# Plot vertices
ax.scatter3D(Z[:, 0], Z[:, 1], Z[:, 2])
# List sides' polygons of figure
verts = [
[Z[0], Z[1], Z[2], Z[3]],
[Z[4], Z[5], Z[6], Z[7]],
[Z[0], Z[1], Z[5], Z[4]],
[Z[2], Z[3], Z[7], Z[6]],
[Z[1], Z[2], Z[6], Z[5]],
[Z[4], Z[7], Z[3], Z[0]],
[Z[2], Z[3], Z[7], Z[6]],
]
# Plot sides
ax.add_collection3d(
Poly3DCollection(
verts, facecolors=(0, 1, 1, 0.25), linewidths=1, edgecolors="darkblue"
)
)
verts = np.array([[[0, 0, 0], [0, 0, 1], [0, 1, 1], [0, 1, 0]]])
verts = verts * (60, 256, 256)
verts += [i, 0, 0]
ax.add_collection3d(
Poly3DCollection(verts, facecolors="magenta", linewidths=1, edgecolors="black")
)
ax.set_xlabel("plane")
ax.set_xlim(0, 100)
ax.set_ylabel("row")
ax.set_zlabel("col")
# Autoscale plot axes
scaling = np.array([getattr(ax, f'get_{dim}lim')() for dim in "xyz"])
ax.auto_scale_xyz(*[[np.min(scaling), np.max(scaling)]] * 3)
def explore_slices(data, cmap="gray"):
from ipywidgets import interact
N = len(data)
@interact(plane=(0, N - 1))
def display_slice(plane=34):
fig, ax = plt.subplots(figsize=(20, 5))
ax_3D = fig.add_subplot(133, projection="3d")
show_plane(ax, data[plane], title=f'Plane {plane}', cmap=cmap)
slice_in_3D(ax_3D, plane)
plt.show()
return display_slice
explore_slices(data)
#####################################################################
# Adjust exposure
# ===============
# Scikit-image's `exposure` module contains a number of functions for
# adjusting image contrast. These functions operate on pixel values.
# Generally, image dimensionality or pixel spacing doesn't need to be
# considered. In local exposure correction, though, one might want to
# adjust the window size to ensure equal size in *real* coordinates along
# each axis.
#####################################################################
# `Gamma correction <https://en.wikipedia.org/wiki/Gamma_correction>`_
# brightens or darkens an image. A power-law transform, where `gamma` denotes
# the power-law exponent, is applied to each pixel in the image: `gamma < 1`
# will brighten an image, while `gamma > 1` will darken an image.
def plot_hist(ax, data, title=None):
# Helper function for plotting histograms
ax.hist(data.ravel(), bins=256)
ax.ticklabel_format(axis="y", style="scientific", scilimits=(0, 0))
if title:
ax.set_title(title)
gamma_low_val = 0.5
gamma_low = ski.exposure.adjust_gamma(data, gamma=gamma_low_val)
gamma_high_val = 1.5
gamma_high = ski.exposure.adjust_gamma(data, gamma=gamma_high_val)
_, ((a, b, c), (d, e, f)) = plt.subplots(nrows=2, ncols=3, figsize=(12, 8))
show_plane(a, data[32], title='Original')
show_plane(b, gamma_low[32], title=f'Gamma = {gamma_low_val}')
show_plane(c, gamma_high[32], title=f'Gamma = {gamma_high_val}')
plot_hist(d, data)
plot_hist(e, gamma_low)
plot_hist(f, gamma_high)
# sphinx_gallery_thumbnail_number = 4
#####################################################################
# `Histogram
# equalization <https://en.wikipedia.org/wiki/Histogram_equalization>`_
# improves contrast in an image by redistributing pixel intensities. The most
# common pixel intensities get spread out, increasing contrast in low-contrast
# areas. One downside of this approach is that it may enhance background
# noise.
equalized_data = ski.exposure.equalize_hist(data)
display(equalized_data)
#####################################################################
# As before, if we have a Jupyter kernel running, we can explore the above
# slices interactively.
explore_slices(equalized_data)
#####################################################################
# Let us now plot the image histogram before and after histogram equalization.
# Below, we plot the respective cumulative distribution functions (CDF).
_, ((a, b), (c, d)) = plt.subplots(nrows=2, ncols=2, figsize=(16, 8))
plot_hist(a, data, title="Original histogram")
plot_hist(b, equalized_data, title="Equalized histogram")
cdf, bins = ski.exposure.cumulative_distribution(data.ravel())
c.plot(bins, cdf, "r")
c.set_title("Original CDF")
cdf, bins = ski.exposure.cumulative_distribution(equalized_data.ravel())
d.plot(bins, cdf, "r")
d.set_title("Histogram equalization CDF")
#####################################################################
# Most experimental images are affected by salt and pepper noise. A few bright
# artifacts can decrease the relative intensity of the pixels of interest. A
# simple way to improve contrast is to clip the pixel values on the lowest and
# highest extremes. Clipping the darkest and brightest 0.5% of pixels will
# increase the overall contrast of the image.
vmin, vmax = np.percentile(data, q=(0.5, 99.5))
clipped_data = ski.exposure.rescale_intensity(
data, in_range=(vmin, vmax), out_range=np.float32
)
display(clipped_data)
#####################################################################
# Alternatively, we can explore these planes (slices) interactively using
# `Plotly Express <https://plotly.com/python/sliders/>`_.
# Note that this works in a static HTML page!
fig = px.imshow(data, animation_frame=0, binary_string=True)
fig.update_xaxes(showticklabels=False)
fig.update_yaxes(showticklabels=False)
fig.update_layout(autosize=False, width=500, height=500, coloraxis_showscale=False)
# Drop animation buttons
fig['layout'].pop('updatemenus')
plotly.io.show(fig)
plt.show()
|