File: plot_coins_segmentation.py

package info (click to toggle)
skimage 0.25.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 32,720 kB
  • sloc: python: 60,007; cpp: 2,592; ansic: 1,591; xml: 1,342; javascript: 1,267; makefile: 168; sh: 20
file content (150 lines) | stat: -rw-r--r-- 4,577 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""
==================================================
Comparing edge-based and region-based segmentation
==================================================

In this example, we will see how to segment objects from a background. We use
the ``coins`` image from ``skimage.data``, which shows several coins outlined
against a darker background.
"""

import numpy as np
import matplotlib.pyplot as plt

import skimage as ski

coins = ski.data.coins()
hist, hist_centers = ski.exposure.histogram(coins)

fig, axes = plt.subplots(1, 2, figsize=(8, 3))
axes[0].imshow(coins, cmap=plt.cm.gray)
axes[0].set_axis_off()
axes[1].plot(hist_centers, hist, lw=2)
axes[1].set_title('histogram of gray values')

######################################################################
#
# Thresholding
# ============
#
# A simple way to segment the coins is to choose a threshold based on the
# histogram of gray values. Unfortunately, thresholding this image gives a
# binary image that either misses significant parts of the coins or merges
# parts of the background with the coins:

fig, axes = plt.subplots(1, 2, figsize=(8, 3), sharey=True)

axes[0].imshow(coins > 100, cmap=plt.cm.gray)
axes[0].set_title('coins > 100')

axes[1].imshow(coins > 150, cmap=plt.cm.gray)
axes[1].set_title('coins > 150')

for a in axes:
    a.set_axis_off()

fig.tight_layout()

######################################################################
# Edge-based segmentation
# =======================
#
# Next, we try to delineate the contours of the coins using edge-based
# segmentation. To do this, we first get the edges of features using the
# Canny edge-detector.


edges = ski.feature.canny(coins)

fig, ax = plt.subplots(figsize=(4, 3))
ax.imshow(edges, cmap=plt.cm.gray)
ax.set_title('Canny detector')
ax.set_axis_off()

######################################################################
# These contours are then filled using mathematical morphology.

from scipy import ndimage as ndi

fill_coins = ndi.binary_fill_holes(edges)

fig, ax = plt.subplots(figsize=(4, 3))
ax.imshow(fill_coins, cmap=plt.cm.gray)
ax.set_title('filling the holes')
ax.set_axis_off()


######################################################################
# Small spurious objects are easily removed by setting a minimum size for
# valid objects.


coins_cleaned = ski.morphology.remove_small_objects(fill_coins, 21)

fig, ax = plt.subplots(figsize=(4, 3))
ax.imshow(coins_cleaned, cmap=plt.cm.gray)
ax.set_title('removing small objects')
ax.set_axis_off()

######################################################################
# However, this method is not very robust, since contours that are not
# perfectly closed are not filled correctly, as is the case for one unfilled
# coin above.
#
# Region-based segmentation
# =========================
#
# We therefore try a region-based method using the watershed transform.
# First, we find an elevation map using the Sobel gradient of the image.


elevation_map = ski.filters.sobel(coins)

fig, ax = plt.subplots(figsize=(4, 3))
ax.imshow(elevation_map, cmap=plt.cm.gray)
ax.set_title('elevation map')
ax.set_axis_off()

######################################################################
# Next we find markers of the background and the coins based on the extreme
# parts of the histogram of gray values.

markers = np.zeros_like(coins)
markers[coins < 30] = 1
markers[coins > 150] = 2

fig, ax = plt.subplots(figsize=(4, 3))
ax.imshow(markers, cmap=plt.cm.nipy_spectral)
ax.set_title('markers')
ax.set_axis_off()

######################################################################
# Finally, we use the watershed transform to fill regions of the elevation
# map starting from the markers determined above:

segmentation_coins = ski.segmentation.watershed(elevation_map, markers)

fig, ax = plt.subplots(figsize=(4, 3))
ax.imshow(segmentation_coins, cmap=plt.cm.gray)
ax.set_title('segmentation')
ax.set_axis_off()

######################################################################
# This last method works even better, and the coins can be segmented and
# labeled individually.

segmentation_coins = ndi.binary_fill_holes(segmentation_coins - 1)
labeled_coins, _ = ndi.label(segmentation_coins)
image_label_overlay = ski.color.label2rgb(labeled_coins, image=coins, bg_label=0)

fig, axes = plt.subplots(1, 2, figsize=(8, 3), sharey=True)
axes[0].imshow(coins, cmap=plt.cm.gray)
axes[0].contour(segmentation_coins, [0.5], linewidths=1.2, colors='y')
axes[1].imshow(image_label_overlay)

for a in axes:
    a.set_axis_off()

fig.tight_layout()

plt.show()