1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
"""
======================================================
Measure fluorescence intensity at the nuclear envelope
======================================================
This example reproduces a well-established workflow in bioimage data analysis
for measuring the fluorescence intensity localized to the nuclear envelope, in
a time sequence of cell images (each with two channels and two spatial
dimensions) which shows a process of protein re-localization from the
cytoplasmic area to the nuclear envelope. This biological application was
first presented by Andrea Boni and collaborators in [1]_; it was used in a
textbook by Kota Miura [2]_ as well as in other works ([3]_, [4]_).
In other words, we port this workflow from ImageJ Macro to Python with
scikit-image.
.. [1] Boni A, Politi AZ, Strnad P, Xiang W, Hossain MJ, Ellenberg J (2015)
"Live imaging and modeling of inner nuclear membrane targeting reveals
its molecular requirements in mammalian cells" J Cell Biol
209(5):705–720. ISSN: 0021-9525.
:DOI:`10.1083/jcb.201409133`
.. [2] Miura K (2020) "Measurements of Intensity Dynamics at the Periphery of
the Nucleus" in: Miura K, Sladoje N (eds) Bioimage Data Analysis
Workflows. Learning Materials in Biosciences. Springer, Cham.
:DOI:`10.1007/978-3-030-22386-1_2`
.. [3] Klemm A (2020) "ImageJ/Fiji Macro Language" NEUBIAS Academy Online
Course: https://www.youtube.com/watch?v=o8tfkdcd3DA
.. [4] Vorkel D and Haase R (2020) "GPU-accelerating ImageJ Macro image
processing workflows using CLIJ" https://arxiv.org/abs/2008.11799
"""
import matplotlib.pyplot as plt
import numpy as np
import plotly.io
import plotly.express as px
from scipy import ndimage as ndi
import skimage as ski
#####################################################################
# We start with a single cell/nucleus to construct the workflow.
image_sequence = ski.data.protein_transport()
print(f'shape: {image_sequence.shape}')
#####################################################################
# The dataset is a 2D image stack with 15 frames (time points) and 2 channels.
vmin, vmax = 0, image_sequence.max()
fig = px.imshow(
image_sequence,
facet_col=1,
animation_frame=0,
zmin=vmin,
zmax=vmax,
binary_string=True,
labels={'animation_frame': 'time point', 'facet_col': 'channel'},
)
plotly.io.show(fig)
#####################################################################
# To begin with, let us consider the first channel of the first image (step
# ``a)`` in the figure below).
image_t_0_channel_0 = image_sequence[0, 0, :, :]
#####################################################################
# Segment the nucleus rim
# =======================
# Let us apply a Gaussian low-pass filter to this image in order to smooth it
# (step ``b)``).
# Next, we segment the nuclei, finding the threshold between the background
# and foreground with Otsu's method: We get a binary image (step ``c)``). We
# then fill the holes in the objects (step ``c-1)``).
smooth = ski.filters.gaussian(image_t_0_channel_0, sigma=1.5)
thresh_value = ski.filters.threshold_otsu(smooth)
thresh = smooth > thresh_value
fill = ndi.binary_fill_holes(thresh)
#####################################################################
# Following the original workflow, let us remove objects which touch the image
# border (step ``c-2)``). Here, we can see that part of another nucleus was
# touching the bottom right-hand corner.
clear = ski.segmentation.clear_border(fill)
clear.dtype
#####################################################################
# We compute both the morphological dilation of this binary image
# (step ``d)``) and its morphological erosion (step ``e)``).
dilate = ski.morphology.binary_dilation(clear)
erode = ski.morphology.binary_erosion(clear)
#####################################################################
# Finally, we subtract the eroded from the dilated to get the nucleus rim
# (step ``f)``). This is equivalent to selecting the pixels which are in
# ``dilate``, but not in ``erode``:
mask = np.logical_and(dilate, ~erode)
#####################################################################
# Let us visualize these processing steps in a sequence of subplots.
fig, ax = plt.subplots(2, 4, figsize=(12, 6), sharey=True)
ax[0, 0].imshow(image_t_0_channel_0, cmap=plt.cm.gray)
ax[0, 0].set_title('a) Raw')
ax[0, 1].imshow(smooth, cmap=plt.cm.gray)
ax[0, 1].set_title('b) Blur')
ax[0, 2].imshow(thresh, cmap=plt.cm.gray)
ax[0, 2].set_title('c) Threshold')
ax[0, 3].imshow(fill, cmap=plt.cm.gray)
ax[0, 3].set_title('c-1) Fill in')
ax[1, 0].imshow(clear, cmap=plt.cm.gray)
ax[1, 0].set_title('c-2) Keep one nucleus')
ax[1, 1].imshow(dilate, cmap=plt.cm.gray)
ax[1, 1].set_title('d) Dilate')
ax[1, 2].imshow(erode, cmap=plt.cm.gray)
ax[1, 2].set_title('e) Erode')
ax[1, 3].imshow(mask, cmap=plt.cm.gray)
ax[1, 3].set_title('f) Nucleus Rim')
for a in ax.ravel():
a.set_axis_off()
fig.tight_layout()
#####################################################################
# Apply the segmented rim as a mask
# =================================
# Now that we have segmented the nuclear membrane in the first channel, we use
# it as a mask to measure the intensity in the second channel.
image_t_0_channel_1 = image_sequence[0, 1, :, :]
selection = np.where(mask, image_t_0_channel_1, 0)
fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(12, 6), sharey=True)
ax0.imshow(image_t_0_channel_1)
ax0.set_title('Second channel (raw)')
ax0.set_axis_off()
ax1.imshow(selection)
ax1.set_title('Selection')
ax1.set_axis_off()
fig.tight_layout()
#####################################################################
# Measure the total intensity
# ===========================
# The mean intensity is readily available as a region property in a labeled
# image.
props = ski.measure.regionprops_table(
mask.astype(np.uint8),
intensity_image=image_t_0_channel_1,
properties=('label', 'area', 'intensity_mean'),
)
#####################################################################
# We may want to check that the value for the total intensity
selection.sum()
#####################################################################
# can be recovered from:
props['area'] * props['intensity_mean']
#####################################################################
# Process the entire image sequence
# =================================
# Instead of iterating the workflow for each time point, we process the
# multidimensional dataset directly (except for the thresholding step).
# Indeed, most scikit-image functions support nD images.
n_z = image_sequence.shape[0] # number of frames
smooth_seq = ski.filters.gaussian(image_sequence[:, 0, :, :], sigma=(0, 1.5, 1.5))
thresh_values = [ski.filters.threshold_otsu(s) for s in smooth_seq[:]]
thresh_seq = [smooth_seq[k, ...] > val for k, val in enumerate(thresh_values)]
#####################################################################
# Alternatively, we could compute ``thresh_values`` without using a list
# comprehension, by reshaping ``smooth_seq`` to make it 2D (where the first
# dimension still corresponds to time points, but the second and last
# dimension now contains all pixel values), and applying the thresholding
# function on the image sequence along its second axis:
#
# .. code-block:: python
#
# thresh_values = np.apply_along_axis(filters.threshold_otsu,
# axis=1,
# arr=smooth_seq.reshape(n_z, -1))
#
# We use the following flat structuring element for morphological
# computations (``np.newaxis`` is used to prepend an axis of size 1 for time):
footprint = ndi.generate_binary_structure(2, 1)[np.newaxis, ...]
footprint
#####################################################################
# This way, each frame is processed independently (pixels from consecutive
# frames are never spatial neighbors).
fill_seq = ndi.binary_fill_holes(thresh_seq, structure=footprint)
#####################################################################
# When clearing objects which touch the image border, we want to make sure
# that the bottom (first) and top (last) frames are not considered as borders.
# In this case, the only relevant border is the edge at the greatest (x, y)
# values. This can be seen in 3D by running the following code:
#
# .. code-block:: python
#
# import plotly.graph_objects as go
#
# sample = fill_seq
# (n_Z, n_Y, n_X) = sample.shape
# Z, Y, X = np.mgrid[:n_Z, :n_Y, :n_X]
#
# fig = go.Figure(
# data=go.Volume(
# x=X.flatten(),
# y=Y.flatten(),
# z=Z.flatten(),
# value=sample.flatten(),
# opacity=0.5,
# slices_z=dict(show=True, locations=[n_z // 2])
# )
# )
# fig.show()
border_mask = np.ones_like(fill_seq)
border_mask[n_z // 2, -1, -1] = False
clear_seq = ski.segmentation.clear_border(fill_seq, mask=border_mask)
dilate_seq = ski.morphology.binary_dilation(clear_seq, footprint=footprint)
erode_seq = ski.morphology.binary_erosion(clear_seq, footprint=footprint)
mask_sequence = np.logical_and(dilate_seq, ~erode_seq)
#####################################################################
# Let us give each mask (corresponding to each time point) a different label,
# running from 1 to 15. We use ``np.min_scalar_type`` to determine the
# minimum-size integer dtype needed to represent the number of time points:
label_dtype = np.min_scalar_type(n_z)
mask_sequence = mask_sequence.astype(label_dtype)
labels = np.arange(1, n_z + 1, dtype=label_dtype)
mask_sequence *= labels[:, np.newaxis, np.newaxis]
#####################################################################
# Let us compute the region properties of interest for all these labeled
# regions.
props = ski.measure.regionprops_table(
mask_sequence,
intensity_image=image_sequence[:, 1, :, :],
properties=('label', 'area', 'intensity_mean'),
)
np.testing.assert_array_equal(props['label'], np.arange(n_z) + 1)
fluorescence_change = [
props['area'][i] * props['intensity_mean'][i] for i in range(n_z)
]
fluorescence_change /= fluorescence_change[0] # normalization
fig, ax = plt.subplots()
ax.plot(fluorescence_change, 'rs')
ax.grid()
ax.set_xlabel('Time point')
ax.set_ylabel('Normalized total intensity')
ax.set_title('Change in fluorescence intensity at the nuclear envelope')
fig.tight_layout()
plt.show()
#####################################################################
# Reassuringly, we find the expected result: The total fluorescence
# intensity at the nuclear envelope increases 1.3-fold in the initial five
# time points, and then becomes roughly constant.
|