File: plot_thresholding_guide.py

package info (click to toggle)
skimage 0.25.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 32,720 kB
  • sloc: python: 60,007; cpp: 2,592; ansic: 1,591; xml: 1,342; javascript: 1,267; makefile: 168; sh: 20
file content (219 lines) | stat: -rw-r--r-- 6,297 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
"""
============
Thresholding
============

Thresholding is used to create a binary image from a grayscale image [1]_.
It is the simplest way to segment objects from a background.

Thresholding algorithms implemented in scikit-image can be separated in two
categories:

- Histogram-based. The histogram of the pixels' intensity is used and
  certain assumptions are made on the properties of this histogram (e.g. bimodal).
- Local. To process a pixel, only the neighboring pixels are used.
  These algorithms often require more computation time.


If you are not familiar with the details of the different algorithms and the
underlying assumptions, it is often difficult to know which algorithm will give
the best results. Therefore, Scikit-image includes a function to evaluate
thresholding algorithms provided by the library. At a glance, you can select
the best algorithm for you data without a deep understanding of their
mechanisms.

.. [1] https://en.wikipedia.org/wiki/Thresholding_%28image_processing%29

.. seealso::
   Presentation on
   :ref:`sphx_glr_auto_examples_applications_plot_rank_filters.py`.
"""

import matplotlib.pyplot as plt

import skimage as ski

img = ski.data.page()

fig, ax = ski.filters.try_all_threshold(img, figsize=(10, 8), verbose=False)

plt.show()


######################################################################
# How to apply a threshold?
# =========================
#
# Now, we illustrate how to apply one of these thresholding algorithms.
# This example uses the mean value of pixel intensities. It is a simple
# and naive threshold value, which is sometimes used as a guess value.
#


image = ski.data.camera()
thresh = ski.filters.threshold_mean(image)
binary = image > thresh

fig, axes = plt.subplots(ncols=2, figsize=(8, 3))
ax = axes.ravel()

ax[0].imshow(image, cmap=plt.cm.gray)
ax[0].set_title('Original image')

ax[1].imshow(binary, cmap=plt.cm.gray)
ax[1].set_title('Result')

for a in ax:
    a.set_axis_off()

plt.show()

######################################################################
# Bimodal histogram
# =================
#
# For pictures with a bimodal histogram, more specific algorithms can be used.
# For instance, the minimum algorithm takes a histogram of the image and smooths it
# repeatedly until there are only two peaks in the histogram.


image = ski.data.camera()

thresh_min = ski.filters.threshold_minimum(image)
binary_min = image > thresh_min

fig, ax = plt.subplots(2, 2, figsize=(10, 10))

ax[0, 0].imshow(image, cmap=plt.cm.gray)
ax[0, 0].set_title('Original')

ax[0, 1].hist(image.ravel(), bins=256)
ax[0, 1].set_title('Histogram')

ax[1, 0].imshow(binary_min, cmap=plt.cm.gray)
ax[1, 0].set_title('Thresholded (min)')

ax[1, 1].hist(image.ravel(), bins=256)
ax[1, 1].axvline(thresh_min, color='r')

for a in ax[:, 0]:
    a.set_axis_off()

plt.show()

######################################################################
# Otsu's method [2]_ calculates an "optimal" threshold (marked by a red line in the
# histogram below) by maximizing the variance between two classes of pixels,
# which are separated by the threshold. Equivalently, this threshold minimizes
# the intra-class variance.
#
# .. [2] https://en.wikipedia.org/wiki/Otsu's_method
#


image = ski.data.camera()
thresh = ski.filters.threshold_otsu(image)
binary = image > thresh

fig, ax = plt.subplots(ncols=3, figsize=(8, 2.5))

ax[0].imshow(image, cmap=plt.cm.gray)
ax[0].set_title('Original')
ax[0].axis('off')

ax[1].hist(image.ravel(), bins=256)
ax[1].set_title('Histogram')
ax[1].axvline(thresh, color='r')

ax[2].imshow(binary, cmap=plt.cm.gray)
ax[2].set_title('Thresholded')
ax[2].set_axis_off()

plt.show()

######################################################################
# Local thresholding
# ==================
#
# If the image background is relatively uniform, then you can use a global
# threshold value as presented above. However, if there is large variation in the
# background intensity, adaptive thresholding (a.k.a. local or dynamic
# thresholding) may produce better results. Note that local is much slower than
# global thresholding.
#
# Here, we binarize an image using the `threshold_local` function, which
# calculates thresholds in regions with a characteristic size `block_size` surrounding
# each pixel (i.e. local neighborhoods). Each threshold value is the weighted mean
# of the local neighborhood minus an offset value.
#


image = ski.data.page()

global_thresh = ski.filters.threshold_otsu(image)
binary_global = image > global_thresh

block_size = 35
local_thresh = ski.filters.threshold_local(image, block_size, offset=10)
binary_local = image > local_thresh

fig, axes = plt.subplots(nrows=3, figsize=(7, 8))
ax = axes.ravel()
plt.gray()

ax[0].imshow(image)
ax[0].set_title('Original')

ax[1].imshow(binary_global)
ax[1].set_title('Global thresholding')

ax[2].imshow(binary_local)
ax[2].set_title('Local thresholding')

for a in ax:
    a.set_axis_off()

plt.show()

######################################################################
# Now, we show how Otsu's threshold [2]_ method can be applied locally. For
# each pixel, an "optimal" threshold is determined by maximizing the variance
# between two classes of pixels of the local neighborhood defined by a
# structuring element.
#
# The example compares the local threshold with the global threshold.
#


img = ski.util.img_as_ubyte(ski.data.page())

radius = 15
footprint = ski.morphology.disk(radius)

local_otsu = ski.filters.rank.otsu(img, footprint)
threshold_global_otsu = ski.filters.threshold_otsu(img)
global_otsu = img >= threshold_global_otsu

fig, axes = plt.subplots(2, 2, figsize=(8, 5), sharex=True, sharey=True)
ax = axes.ravel()
fig.tight_layout()

fig.colorbar(ax[0].imshow(img, cmap=plt.cm.gray), ax=ax[0], orientation='horizontal')
ax[0].set_title('Original')
ax[0].set_axis_off()

fig.colorbar(
    ax[1].imshow(local_otsu, cmap=plt.cm.gray), ax=ax[1], orientation='horizontal'
)
ax[1].set_title(f'Local Otsu (radius={radius})')
ax[1].set_axis_off()

ax[2].imshow(img >= local_otsu, cmap=plt.cm.gray)
ax[2].set_title('Original >= Local Otsu')
ax[2].set_axis_off()

ax[3].imshow(global_otsu, cmap=plt.cm.gray)
ax[3].set_title('Global Otsu (threshold = {threshold_global_otsu})')
ax[3].set_axis_off()

plt.show()