1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
"""
========
Max-tree
========
The max-tree is a hierarchical representation of an image that is the basis
for a large family of morphological filters.
If we apply a threshold operation to an image, we obtain a binary image
containing one or several connected components. If we apply a lower
threshold, all the connected components from the higher threshold are
contained in the connected components from the lower threshold. This
naturally defines a hierarchy of nested components that can be
represented by a tree. whenever a connected component A obtained by
thresholding with threshold t1 is contained in a component B obtained by
thresholding with threshold t1 < t2, we say that B is the parent of A.
The resulting tree structure is called a component tree. The max-tree
is a compact representation of such a component tree. [1]_, [2]_, [3]_, [4]_
In this example we give an intuition of what a max-tree is.
References
----------
.. [1] Salembier, P., Oliveras, A., & Garrido, L. (1998). Antiextensive
Connected Operators for Image and Sequence Processing.
IEEE Transactions on Image Processing, 7(4), 555-570.
:DOI:`10.1109/83.663500`
.. [2] Berger, C., Geraud, T., Levillain, R., Widynski, N., Baillard, A.,
Bertin, E. (2007). Effective Component Tree Computation with
Application to Pattern Recognition in Astronomical Imaging.
In International Conference on Image Processing (ICIP) (pp. 41-44).
:DOI:`10.1109/ICIP.2007.4379949`
.. [3] Najman, L., & Couprie, M. (2006). Building the component tree in
quasi-linear time. IEEE Transactions on Image Processing, 15(11),
3531-3539.
:DOI:`10.1109/TIP.2006.877518`
.. [4] Carlinet, E., & Geraud, T. (2014). A Comparative Review of
Component Tree Computation Algorithms. IEEE Transactions on Image
Processing, 23(9), 3885-3895.
:DOI:`10.1109/TIP.2014.2336551`
"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
from skimage.morphology import max_tree
import networkx as nx
#####################################################################
# Before we start : a few helper functions
def plot_img(ax, image, title, plot_text, image_values):
"""Plot an image, overlaying image values or indices."""
ax.imshow(image, cmap='gray', aspect='equal', vmin=0, vmax=np.max(image))
ax.set_title(title)
ax.set_yticks([])
ax.set_xticks([])
for x in np.arange(-0.5, image.shape[0], 1.0):
ax.add_artist(
Line2D((x, x), (-0.5, image.shape[0] - 0.5), color='blue', linewidth=2)
)
for y in np.arange(-0.5, image.shape[1], 1.0):
ax.add_artist(Line2D((-0.5, image.shape[1]), (y, y), color='blue', linewidth=2))
if plot_text:
for i, j in np.ndindex(*image_values.shape):
ax.text(
j,
i,
image_values[i, j],
fontsize=8,
horizontalalignment='center',
verticalalignment='center',
color='red',
)
return
def prune(G, node, res):
"""Transform a canonical max tree to a max tree."""
value = G.nodes[node]['value']
res[node] = str(node)
preds = [p for p in G.predecessors(node)]
for p in preds:
if G.nodes[p]['value'] == value:
res[node] += f", {p}"
G.remove_node(p)
else:
prune(G, p, res)
G.nodes[node]['label'] = res[node]
return
def accumulate(G, node, res):
"""Transform a max tree to a component tree."""
total = G.nodes[node]['label']
parents = G.predecessors(node)
for p in parents:
total += ', ' + accumulate(G, p, res)
res[node] = total
return total
def position_nodes_for_max_tree(G, image_rav, root_x=4, delta_x=1.2):
"""Set the position of nodes of a max-tree.
This function helps to visually distinguish between nodes at the same
level of the hierarchy and nodes at different levels.
"""
pos = {}
for node in reversed(list(nx.topological_sort(canonical_max_tree))):
value = G.nodes[node]['value']
if canonical_max_tree.out_degree(node) == 0:
# root
pos[node] = (root_x, value)
in_nodes = [y for y in canonical_max_tree.predecessors(node)]
# place the nodes at the same level
level_nodes = [y for y in filter(lambda x: image_rav[x] == value, in_nodes)]
nb_level_nodes = len(level_nodes) + 1
c = nb_level_nodes // 2
i = -c
if len(level_nodes) < 3:
hy = 0
m = 0
else:
hy = 0.25
m = hy / (c - 1)
for level_node in level_nodes:
if i == 0:
i += 1
if len(level_nodes) < 3:
pos[level_node] = (pos[node][0] + i * 0.6 * delta_x, value)
else:
pos[level_node] = (
pos[node][0] + i * 0.6 * delta_x,
value + m * (2 * np.abs(i) - c - 1),
)
i += 1
# place the nodes at different levels
other_level_nodes = [
y for y in filter(lambda x: image_rav[x] > value, in_nodes)
]
if len(other_level_nodes) == 1:
i = 0
else:
i = -len(other_level_nodes) // 2
for other_level_node in other_level_nodes:
if (len(other_level_nodes) % 2 == 0) and (i == 0):
i += 1
pos[other_level_node] = (
pos[node][0] + i * delta_x,
image_rav[other_level_node],
)
i += 1
return pos
def plot_tree(graph, positions, ax, *, title='', labels=None, font_size=8, text_size=8):
"""Plot max and component trees."""
nx.draw_networkx(
graph,
pos=positions,
ax=ax,
node_size=40,
node_shape='s',
node_color='white',
font_size=font_size,
labels=labels,
)
for v in range(image_rav.min(), image_rav.max() + 1):
ax.hlines(v - 0.5, -3, 10, linestyles='dotted')
ax.text(-3, v - 0.15, f"val: {v}", fontsize=text_size)
ax.hlines(v + 0.5, -3, 10, linestyles='dotted')
ax.set_xlim(-3, 10)
ax.set_title(title)
ax.set_axis_off()
#####################################################################
# Image Definition
# ================
# We define a small test image.
# For clarity, we choose an example image, where image values cannot be
# confounded with indices (different range).
image = np.array(
[
[40, 40, 39, 39, 38],
[40, 41, 39, 39, 39],
[30, 30, 30, 32, 32],
[33, 33, 30, 32, 35],
[30, 30, 30, 33, 36],
],
dtype=np.uint8,
)
#####################################################################
# Max-tree
# ========
# Next, we calculate the max-tree of this image.
# max-tree of the image
P, S = max_tree(image)
P_rav = P.ravel()
#####################################################################
# Image plots
# ===========
# Then, we visualize the image and its raveled indices.
# Concretely, we plot the image with the following overlays:
# - the image values
# - the raveled indices (serve as pixel identifiers)
# - the output of the max_tree function
# raveled image
image_rav = image.ravel()
# raveled indices of the example image (for display purpose)
raveled_indices = np.arange(image.size).reshape(image.shape)
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=True, figsize=(9, 3))
plot_img(ax1, image - image.min(), 'Image Values', plot_text=True, image_values=image)
plot_img(
ax2,
image - image.min(),
'Raveled Indices',
plot_text=True,
image_values=raveled_indices,
)
plot_img(ax3, image - image.min(), 'Max-tree indices', plot_text=True, image_values=P)
#####################################################################
# Visualizing threshold operations
# ================================
# Now, we investigate the results of a series of threshold operations.
# The component tree (and max-tree) provide representations of the
# inclusion relationships between connected components at different
# levels.
fig, axes = plt.subplots(3, 3, sharey=True, sharex=True, figsize=(6, 6))
thresholds = np.unique(image)
for k, threshold in enumerate(thresholds):
bin_img = image >= threshold
plot_img(
axes[(k // 3), (k % 3)],
bin_img,
f"Threshold : {threshold}",
plot_text=True,
image_values=raveled_indices,
)
#####################################################################
# Max-tree plots
# ==============
# Now, we plot the component and max-trees. A component tree relates
# the different pixel sets resulting from all possible threshold operations
# to each other. There is an arrow in the graph, if a component at one level
# is included in the component of a lower level. The max-tree is just
# a different encoding of the pixel sets.
#
# 1. the component tree: pixel sets are explicitly written out. We see for
# instance that {6} (result of applying a threshold at 41) is the parent
# of {0, 1, 5, 6} (threshold at 40).
# 2. the max-tree: only pixels that come into the set at this level
# are explicitly written out. We therefore will write
# {6} -> {0,1,5} instead of {6} -> {0, 1, 5, 6}
# 3. the canonical max-treeL this is the representation which is given by
# our implementation. Here, every pixel is a node. Connected components
# of several pixels are represented by one of the pixels. We thus replace
# {6} -> {0,1,5} by {6} -> {5}, {1} -> {5}, {0} -> {5}
# This allows us to represent the graph by an image (top row, third column).
# the canonical max-tree graph
canonical_max_tree = nx.DiGraph()
canonical_max_tree.add_nodes_from(S)
for node in canonical_max_tree.nodes():
canonical_max_tree.nodes[node]['value'] = image_rav[node]
canonical_max_tree.add_edges_from([(n, P_rav[n]) for n in S[1:]])
# max-tree from the canonical max-tree
nx_max_tree = nx.DiGraph(canonical_max_tree)
labels = {}
prune(nx_max_tree, S[0], labels)
# component tree from the max-tree
labels_ct = {}
total = accumulate(nx_max_tree, S[0], labels_ct)
# positions of nodes : canonical max-tree (CMT)
pos_cmt = position_nodes_for_max_tree(canonical_max_tree, image_rav)
# positions of nodes : max-tree (MT)
pos_mt = dict(zip(nx_max_tree.nodes, [pos_cmt[node] for node in nx_max_tree.nodes]))
# plot the trees with networkx and matplotlib
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=True, figsize=(20, 8))
plot_tree(
nx_max_tree,
pos_mt,
ax1,
title='Component tree',
labels=labels_ct,
font_size=6,
text_size=8,
)
plot_tree(nx_max_tree, pos_mt, ax2, title='Max tree', labels=labels)
plot_tree(canonical_max_tree, pos_cmt, ax3, title='Canonical max tree')
fig.tight_layout()
plt.show()
|