File: plot_polygon.py

package info (click to toggle)
skimage 0.25.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 32,720 kB
  • sloc: python: 60,007; cpp: 2,592; ansic: 1,591; xml: 1,342; javascript: 1,267; makefile: 168; sh: 20
file content (82 lines) | stat: -rw-r--r-- 2,352 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
"""
==================================
Approximate and subdivide polygons
==================================

This example shows how to approximate (Douglas-Peucker algorithm) and subdivide
(B-Splines) polygonal chains.

"""

import numpy as np
import matplotlib.pyplot as plt

from skimage.draw import ellipse
from skimage.measure import find_contours, approximate_polygon, subdivide_polygon


hand = np.array(
    [
        [1.64516129, 1.16145833],
        [1.64516129, 1.59375],
        [1.35080645, 1.921875],
        [1.375, 2.18229167],
        [1.68548387, 1.9375],
        [1.60887097, 2.55208333],
        [1.68548387, 2.69791667],
        [1.76209677, 2.56770833],
        [1.83064516, 1.97395833],
        [1.89516129, 2.75],
        [1.9516129, 2.84895833],
        [2.01209677, 2.76041667],
        [1.99193548, 1.99479167],
        [2.11290323, 2.63020833],
        [2.2016129, 2.734375],
        [2.25403226, 2.60416667],
        [2.14919355, 1.953125],
        [2.30645161, 2.36979167],
        [2.39112903, 2.36979167],
        [2.41532258, 2.1875],
        [2.1733871, 1.703125],
        [2.07782258, 1.16666667],
    ]
)

# subdivide polygon using 2nd degree B-Splines
new_hand = hand.copy()
for _ in range(5):
    new_hand = subdivide_polygon(new_hand, degree=2, preserve_ends=True)

# approximate subdivided polygon with Douglas-Peucker algorithm
appr_hand = approximate_polygon(new_hand, tolerance=0.02)

print("Number of coordinates:", len(hand), len(new_hand), len(appr_hand))

fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(9, 4))

ax1.plot(hand[:, 0], hand[:, 1])
ax1.plot(new_hand[:, 0], new_hand[:, 1])
ax1.plot(appr_hand[:, 0], appr_hand[:, 1])


# create two ellipses in image
img = np.zeros((800, 800), 'int32')
rr, cc = ellipse(250, 250, 180, 230, img.shape)
img[rr, cc] = 1
rr, cc = ellipse(600, 600, 150, 90, img.shape)
img[rr, cc] = 1

plt.gray()
ax2.imshow(img)

# approximate / simplify coordinates of the two ellipses
for contour in find_contours(img, 0):
    coords = approximate_polygon(contour, tolerance=2.5)
    ax2.plot(coords[:, 1], coords[:, 0], '-r', linewidth=2)
    coords2 = approximate_polygon(contour, tolerance=39.5)
    ax2.plot(coords2[:, 1], coords2[:, 0], '-g', linewidth=2)
    print("Number of coordinates:", len(contour), len(coords), len(coords2))

ax2.axis((0, 800, 0, 800))

plt.show()