1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
"""
================================================================
Use rolling-ball algorithm for estimating background intensity
================================================================
The rolling-ball algorithm estimates the background intensity of a grayscale
image in case of uneven exposure. It is frequently used in biomedical
image processing and was first proposed by Stanley R. Sternberg in
1983 [1]_.
The algorithm works as a filter and is quite intuitive. We think of the image
as a surface that has unit-sized blocks stacked on top of each other in place
of each pixel. The number of blocks, and hence surface height, is determined
by the intensity of the pixel. To get the intensity of the background at a
desired (pixel) position, we imagine submerging a ball under the surface at the
desired position. Once it is completely covered by the blocks, the apex of
the ball determines the intensity of the background at that position. We can
then *roll* this ball around below the surface to get the background values for
the entire image.
Scikit-image implements a general version of this rolling-ball algorithm, which
allows you to not just use balls, but arbitrary shapes as kernel and works on
n-dimensional ndimages. This allows you to directly filter RGB images or filter
image stacks along any (or all) spacial dimensions.
.. [1] Sternberg, Stanley R. "Biomedical image processing." Computer 1 (1983):
22-34. :DOI:`10.1109/MC.1983.1654163`
Classic rolling ball
-------------------------------
In scikit-image, the rolling ball algorithm assumes that your background has
low intensity (black), whereas the features have high intensity (white). If
this is the case for your image, you can directly use the filter like so:
"""
import matplotlib.pyplot as plt
import numpy as np
import pywt
from skimage import data, restoration, util
def plot_result(image, background):
fig, ax = plt.subplots(nrows=1, ncols=3)
ax[0].imshow(image, cmap='gray')
ax[0].set_title('Original image')
ax[0].axis('off')
ax[1].imshow(background, cmap='gray')
ax[1].set_title('Background')
ax[1].axis('off')
ax[2].imshow(image - background, cmap='gray')
ax[2].set_title('Result')
ax[2].axis('off')
fig.tight_layout()
image = data.coins()
background = restoration.rolling_ball(image)
plot_result(image, background)
plt.show()
######################################################################
# White background
# ----------------
#
# If you have dark features on a bright background, you need to invert
# the image before you pass it into the algorithm, and then invert the
# result. This can be accomplished via:
image = data.page()
image_inverted = util.invert(image)
background_inverted = restoration.rolling_ball(image_inverted, radius=45)
filtered_image_inverted = image_inverted - background_inverted
filtered_image = util.invert(filtered_image_inverted)
background = util.invert(background_inverted)
fig, ax = plt.subplots(nrows=1, ncols=3)
ax[0].imshow(image, cmap='gray')
ax[0].set_title('Original image')
ax[0].axis('off')
ax[1].imshow(background, cmap='gray')
ax[1].set_title('Background')
ax[1].axis('off')
ax[2].imshow(filtered_image, cmap='gray')
ax[2].set_title('Result')
ax[2].axis('off')
fig.tight_layout()
plt.show()
######################################################################
# Be careful not to fall victim to an integer underflow when subtracting
# a bright background. For example, this code looks correct, but may
# suffer from an underflow leading to unwanted artifacts. You can see
# this in the top right corner of the visualization.
image = data.page()
image_inverted = util.invert(image)
background_inverted = restoration.rolling_ball(image_inverted, radius=45)
background = util.invert(background_inverted)
underflow_image = image - background # integer underflow occurs here
# correct subtraction
correct_image = util.invert(image_inverted - background_inverted)
fig, ax = plt.subplots(nrows=1, ncols=2)
ax[0].imshow(underflow_image, cmap='gray')
ax[0].set_title('Background Removal with Underflow')
ax[0].axis('off')
ax[1].imshow(correct_image, cmap='gray')
ax[1].set_title('Correct Background Removal')
ax[1].axis('off')
fig.tight_layout()
plt.show()
######################################################################
# Image Datatypes
# ---------------
#
# ``rolling_ball`` can handle datatypes other than `np.uint8`. You can
# pass them into the function in the same way.
image = data.coins()[:200, :200].astype(np.uint16)
background = restoration.rolling_ball(image, radius=70.5)
plot_result(image, background)
plt.show()
######################################################################
# However, you need to be careful if you use floating point images
# that have been normalized to ``[0, 1]``. In this case the ball will
# be much larger than the image intensity, which can lead to
# unexpected results.
image = util.img_as_float(data.coins()[:200, :200])
background = restoration.rolling_ball(image, radius=70.5)
plot_result(image, background)
plt.show()
######################################################################
# Because ``radius=70.5`` is much larger than the maximum intensity of
# the image, the effective kernel size is reduced significantly, i.e.,
# only a small cap (approximately ``radius=10``) of the ball is rolled
# around in the image. You can find a reproduction of this strange
# effect in the ``Advanced Shapes`` section below.
#
# To get the expected result, you need to reduce the intensity of the
# kernel. This is done by specifying the kernel manually using the
# ``kernel`` argument.
#
# Note: The radius is equal to the length of a semi-axis of an
# ellipsis, which is *half* a full axis. Hence, the kernel shape is
# multiplied by two.
normalized_radius = 70.5 / 255
image = util.img_as_float(data.coins())
kernel = restoration.ellipsoid_kernel((70.5 * 2, 70.5 * 2), normalized_radius * 2)
background = restoration.rolling_ball(image, kernel=kernel)
plot_result(image, background)
plt.show()
######################################################################
# Advanced Shapes
# -----------------
#
# By default, ``rolling_ball`` uses a ball shaped kernel (surprise).
# Sometimes, this can be too limiting - as in the example above -,
# because the intensity dimension has a different scale compared to
# the spatial dimensions, or because the image dimensions may have
# different meanings - one could be a stack counter in an image stack.
#
# To account for this, ``rolling_ball`` has a ``kernel`` argument
# which allows you to specify the kernel to be used. A kernel must
# have the same dimensionality as the image (Note: dimensionality,
# not shape). To help with it's creation, two default kernels are
# provided by ``skimage``. ``ball_kernel`` specifies a ball shaped
# kernel and is used as the default kernel. ``ellipsoid_kernel``
# specifies an ellipsoid shaped kernel.
image = data.coins()
kernel = restoration.ellipsoid_kernel((70.5 * 2, 70.5 * 2), 70.5 * 2)
background = restoration.rolling_ball(image, kernel=kernel)
plot_result(image, background)
plt.show()
######################################################################
# You can also use ``ellipsoid_kernel`` to recreate the previous,
# unexpected result and see that the effective (spatial) filter size
# was reduced.
image = data.coins()
kernel = restoration.ellipsoid_kernel((10 * 2, 10 * 2), 255 * 2)
background = restoration.rolling_ball(image, kernel=kernel)
plot_result(image, background)
plt.show()
######################################################################
# Higher Dimensions
# -----------------
#
# Another feature of ``rolling_ball`` is that you can directly
# apply it to higher dimensional images, e.g., a z-stack of images
# obtained during confocal microscopy. The number of kernel
# dimensions must match the image dimensions, hence the kernel shape
# is now 3 dimensional.
image = data.cells3d()[:, 1, ...]
background = restoration.rolling_ball(
image, kernel=restoration.ellipsoid_kernel((1, 21, 21), 0.1)
)
plot_result(image[30, ...], background[30, ...])
plt.show()
######################################################################
# A kernel size of 1 does not filter along this axis. In other words,
# above filter is applied to each image in the stack individually.
#
# However, you can also filter along all 3 dimensions at the same
# time by specifying a value other than 1.
image = data.cells3d()[:, 1, ...]
background = restoration.rolling_ball(
image, kernel=restoration.ellipsoid_kernel((5, 21, 21), 0.1)
)
plot_result(image[30, ...], background[30, ...])
plt.show()
######################################################################
# Another possibility is to filter individual pixels along the
# planar axis (z-stack axis).
image = data.cells3d()[:, 1, ...]
background = restoration.rolling_ball(
image, kernel=restoration.ellipsoid_kernel((100, 1, 1), 0.1)
)
plot_result(image[30, ...], background[30, ...])
plt.show()
######################################################################
# 1D Signal Filtering
# -------------------
#
# As another example of the n-dimensional feature of
# ``rolling_ball``, we show an implementation for 1D data. Here,
# we are interested in removing the background signal of an ECG waveform
# to detect prominent peaks (higher values than the local baseline).
# Smoother peaks can be removed with smaller values of the radius.
x = pywt.data.ecg()
background = restoration.rolling_ball(x, radius=80)
background2 = restoration.rolling_ball(x, radius=10)
plt.figure()
plt.plot(x, label='original')
plt.plot(x - background, label='radius=80')
plt.plot(x - background2, label='radius=10')
plt.legend()
plt.show()
|