File: plot_gabors_from_astronaut.py

package info (click to toggle)
skimage 0.26.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 32,720 kB
  • sloc: python: 61,600; cpp: 2,592; ansic: 1,591; xml: 1,342; javascript: 1,267; makefile: 135; sh: 16
file content (89 lines) | stat: -rw-r--r-- 3,318 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
"""
============================================================
Gabors / Primary Visual Cortex "Simple Cells" from an Image
============================================================

How to build a (bio-plausible) *sparse* dictionary (or 'codebook', or
'filterbank') for e.g. image classification without any fancy math and
with just standard python scientific libraries?

Please find below a short answer ;-)

This simple example shows how to get Gabor-like filters [1]_ using just
a simple image. In our example, we use a photograph of the astronaut Eileen
Collins. Gabor filters are good approximations of the "Simple Cells" [2]_
receptive fields [3]_ found in the mammalian primary visual cortex (V1)
(for details, see e.g. the Nobel-prize winning work of Hubel & Wiesel done
in the 60s [4]_ [5]_).

Here we use McQueen's 'kmeans' algorithm [6]_, as a simple biologically
plausible hebbian-like learning rule and we apply it (a) to patches of
the original image (retinal projection), and (b) to patches of an
LGN-like [7]_ image using a simple difference of gaussians (DoG)
approximation.

Enjoy ;-) And keep in mind that getting Gabors on natural image patches
is not rocket science.

.. [1] https://en.wikipedia.org/wiki/Gabor_filter
.. [2] https://en.wikipedia.org/wiki/Simple_cell
.. [3] https://en.wikipedia.org/wiki/Receptive_field
.. [4] D. H. Hubel and T. N., Wiesel Receptive Fields of Single Neurones
       in the Cat's Striate Cortex, J. Physiol. pp. 574-591 (148) 1959
.. [5] D. H. Hubel and T. N., Wiesel Receptive Fields, Binocular
       Interaction, and Functional Architecture in the Cat's Visual Cortex,
       J. Physiol. 160 pp.  106-154 1962
.. [6] https://en.wikipedia.org/wiki/K-means_clustering
.. [7] https://en.wikipedia.org/wiki/Lateral_geniculate_nucleus
"""

from scipy.cluster.vq import kmeans2
from scipy import ndimage as ndi
import matplotlib.pyplot as plt

from skimage import data
from skimage import color
from skimage.util.shape import view_as_windows
from skimage.util import montage

patch_shape = 8, 8
n_filters = 49

astro = color.rgb2gray(data.astronaut())

# -- filterbank1 on original image
patches1 = view_as_windows(astro, patch_shape)
patches1 = patches1.reshape(-1, patch_shape[0] * patch_shape[1])[::8]
fb1, _ = kmeans2(patches1, n_filters, minit='points')
fb1 = fb1.reshape((-1,) + patch_shape)
fb1_montage = montage(fb1, rescale_intensity=True)

# -- filterbank2 LGN-like image
astro_dog = ndi.gaussian_filter(astro, 0.5) - ndi.gaussian_filter(astro, 1)
patches2 = view_as_windows(astro_dog, patch_shape)
patches2 = patches2.reshape(-1, patch_shape[0] * patch_shape[1])[::8]
fb2, _ = kmeans2(patches2, n_filters, minit='points')
fb2 = fb2.reshape((-1,) + patch_shape)
fb2_montage = montage(fb2, rescale_intensity=True)

# -- plotting
fig, axes = plt.subplots(2, 2, figsize=(7, 6))
ax = axes.ravel()

ax[0].imshow(astro, cmap=plt.cm.gray)
ax[0].set_title("Image (original)")

ax[1].imshow(fb1_montage, cmap=plt.cm.gray)
ax[1].set_title("K-means filterbank (codebook)\non original image")

ax[2].imshow(astro_dog, cmap=plt.cm.gray)
ax[2].set_title("Image (LGN-like DoG)")

ax[3].imshow(fb2_montage, cmap=plt.cm.gray)
ax[3].set_title("K-means filterbank (codebook)\non LGN-like DoG image")

for a in ax.ravel():
    a.axis('off')

fig.tight_layout()
plt.show()