1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
|
"""
============================================================
Gabors / Primary Visual Cortex "Simple Cells" from an Image
============================================================
How to build a (bio-plausible) *sparse* dictionary (or 'codebook', or
'filterbank') for e.g. image classification without any fancy math and
with just standard python scientific libraries?
Please find below a short answer ;-)
This simple example shows how to get Gabor-like filters [1]_ using just
a simple image. In our example, we use a photograph of the astronaut Eileen
Collins. Gabor filters are good approximations of the "Simple Cells" [2]_
receptive fields [3]_ found in the mammalian primary visual cortex (V1)
(for details, see e.g. the Nobel-prize winning work of Hubel & Wiesel done
in the 60s [4]_ [5]_).
Here we use McQueen's 'kmeans' algorithm [6]_, as a simple biologically
plausible hebbian-like learning rule and we apply it (a) to patches of
the original image (retinal projection), and (b) to patches of an
LGN-like [7]_ image using a simple difference of gaussians (DoG)
approximation.
Enjoy ;-) And keep in mind that getting Gabors on natural image patches
is not rocket science.
.. [1] https://en.wikipedia.org/wiki/Gabor_filter
.. [2] https://en.wikipedia.org/wiki/Simple_cell
.. [3] https://en.wikipedia.org/wiki/Receptive_field
.. [4] D. H. Hubel and T. N., Wiesel Receptive Fields of Single Neurones
in the Cat's Striate Cortex, J. Physiol. pp. 574-591 (148) 1959
.. [5] D. H. Hubel and T. N., Wiesel Receptive Fields, Binocular
Interaction, and Functional Architecture in the Cat's Visual Cortex,
J. Physiol. 160 pp. 106-154 1962
.. [6] https://en.wikipedia.org/wiki/K-means_clustering
.. [7] https://en.wikipedia.org/wiki/Lateral_geniculate_nucleus
"""
from scipy.cluster.vq import kmeans2
from scipy import ndimage as ndi
import matplotlib.pyplot as plt
from skimage import data
from skimage import color
from skimage.util.shape import view_as_windows
from skimage.util import montage
patch_shape = 8, 8
n_filters = 49
astro = color.rgb2gray(data.astronaut())
# -- filterbank1 on original image
patches1 = view_as_windows(astro, patch_shape)
patches1 = patches1.reshape(-1, patch_shape[0] * patch_shape[1])[::8]
fb1, _ = kmeans2(patches1, n_filters, minit='points')
fb1 = fb1.reshape((-1,) + patch_shape)
fb1_montage = montage(fb1, rescale_intensity=True)
# -- filterbank2 LGN-like image
astro_dog = ndi.gaussian_filter(astro, 0.5) - ndi.gaussian_filter(astro, 1)
patches2 = view_as_windows(astro_dog, patch_shape)
patches2 = patches2.reshape(-1, patch_shape[0] * patch_shape[1])[::8]
fb2, _ = kmeans2(patches2, n_filters, minit='points')
fb2 = fb2.reshape((-1,) + patch_shape)
fb2_montage = montage(fb2, rescale_intensity=True)
# -- plotting
fig, axes = plt.subplots(2, 2, figsize=(7, 6))
ax = axes.ravel()
ax[0].imshow(astro, cmap=plt.cm.gray)
ax[0].set_title("Image (original)")
ax[1].imshow(fb1_montage, cmap=plt.cm.gray)
ax[1].set_title("K-means filterbank (codebook)\non original image")
ax[2].imshow(astro_dog, cmap=plt.cm.gray)
ax[2].set_title("Image (LGN-like DoG)")
ax[3].imshow(fb2_montage, cmap=plt.cm.gray)
ax[3].set_title("K-means filterbank (codebook)\non LGN-like DoG image")
for a in ax.ravel():
a.axis('off')
fig.tight_layout()
plt.show()
|