File: plot_dog.py

package info (click to toggle)
skimage 0.26.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 32,720 kB
  • sloc: python: 61,600; cpp: 2,592; ansic: 1,591; xml: 1,342; javascript: 1,267; makefile: 135; sh: 16
file content (67 lines) | stat: -rw-r--r-- 2,628 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
"""
==============================================
Band-pass filtering by Difference of Gaussians
==============================================

Band-pass filters attenuate signal frequencies outside of a range (band) of
interest. In image analysis, they can be used to denoise images while
at the same time reducing low-frequency artifacts such a uneven illumination.
Band-pass filters can be used to find image features such as blobs and edges.

One method for applying band-pass filters to images is to subtract an image
blurred with a Gaussian kernel from a less-blurred image. This example shows
two applications of the Difference of Gaussians approach for band-pass
filtering.
"""

######################################################################
# Denoise image and reduce shadows
# ================================

import matplotlib.pyplot as plt
import numpy as np
from skimage.data import gravel
from skimage.filters import difference_of_gaussians, window
from scipy.fft import fftn, fftshift

image = gravel()
wimage = image * window('hann', image.shape)  # window image to improve FFT
filtered_image = difference_of_gaussians(image, 1, 12)
filtered_wimage = filtered_image * window('hann', image.shape)
im_f_mag = fftshift(np.abs(fftn(wimage)))
fim_f_mag = fftshift(np.abs(fftn(filtered_wimage)))

fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(8, 8))
ax[0, 0].imshow(image, cmap='gray')
ax[0, 0].set_title('Original Image')
ax[0, 1].imshow(np.log(im_f_mag), cmap='magma')
ax[0, 1].set_title('Original FFT Magnitude (log)')
ax[1, 0].imshow(filtered_image, cmap='gray')
ax[1, 0].set_title('Filtered Image')
ax[1, 1].imshow(np.log(fim_f_mag), cmap='magma')
ax[1, 1].set_title('Filtered FFT Magnitude (log)')
plt.show()

######################################################################
# Enhance edges in an image
# =========================

from skimage.data import camera

image = camera()
wimage = image * window('hann', image.shape)  # window image to improve FFT
filtered_image = difference_of_gaussians(image, 1.5)
filtered_wimage = filtered_image * window('hann', image.shape)
im_f_mag = fftshift(np.abs(fftn(wimage)))
fim_f_mag = fftshift(np.abs(fftn(filtered_wimage)))

fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(8, 8))
ax[0, 0].imshow(image, cmap='gray')
ax[0, 0].set_title('Original Image')
ax[0, 1].imshow(np.log(im_f_mag), cmap='magma')
ax[0, 1].set_title('Original FFT Magnitude (log)')
ax[1, 0].imshow(filtered_image, cmap='gray')
ax[1, 0].set_title('Filtered Image')
ax[1, 1].imshow(np.log(fim_f_mag), cmap='magma')
ax[1, 1].set_title('Filtered FFT Magnitude (log)')
plt.show()