1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
r"""
==========================================================
Using Polar and Log-Polar Transformations for Registration
==========================================================
Phase correlation (``registration.phase_cross_correlation``) is an efficient
method for determining translation offset between pairs of similar images.
However this approach relies on a near absence of rotation/scaling differences
between the images, which are typical in real-world examples.
To recover rotation and scaling differences between two images, we can take
advantage of two geometric properties of the log-polar transform and the
translation invariance of the frequency domain. First, rotation in Cartesian
space becomes translation along the angular coordinate (:math:`\theta`) axis
of log-polar space. Second, scaling in Cartesian space becomes translation
along the radial coordinate (:math:`\rho = \ln\sqrt{x^2 + y^2}`) of log-polar
space. Finally, differences in translation in the spatial domain do not impact
magnitude spectrum in the frequency domain.
In this series of examples, we build on these concepts to show how the
log-polar transform ``transform.warp_polar`` can be used in conjunction with
phase correlation to recover rotation and scaling differences between two
images that also have a translation offset.
"""
######################################################################
# Recover rotation difference with a polar transform
# ==================================================
#
# In this first example, we consider the simple case of two images that only
# differ with respect to rotation around a common center point. By remapping
# these images into polar space, the rotation difference becomes a simple
# translation difference that can be recovered by phase correlation.
import numpy as np
import matplotlib.pyplot as plt
from skimage import data
from skimage.registration import phase_cross_correlation
from skimage.transform import warp_polar, rotate, rescale
from skimage.util import img_as_float
radius = 705
angle = 35
image = data.retina()
image = img_as_float(image)
rotated = rotate(image, angle)
image_polar = warp_polar(image, radius=radius, channel_axis=-1)
rotated_polar = warp_polar(rotated, radius=radius, channel_axis=-1)
fig, axes = plt.subplots(2, 2, figsize=(8, 8))
ax = axes.ravel()
ax[0].set_title("Original")
ax[0].imshow(image)
ax[1].set_title("Rotated")
ax[1].imshow(rotated)
ax[2].set_title("Polar-Transformed Original")
ax[2].imshow(image_polar)
ax[3].set_title("Polar-Transformed Rotated")
ax[3].imshow(rotated_polar)
plt.show()
shifts, error, phasediff = phase_cross_correlation(
image_polar, rotated_polar, normalization=None
)
print(f'Expected value for counterclockwise rotation in degrees: ' f'{angle}')
print(f'Recovered value for counterclockwise rotation: ' f'{shifts[0]}')
######################################################################
# Recover rotation and scaling differences with log-polar transform
# =================================================================
#
# In this second example, the images differ by both rotation and scaling (note
# the axis tick values). By remapping these images into log-polar space,
# we can recover rotation as before, and now also scaling, by phase
# correlation.
# radius must be large enough to capture useful info in larger image
radius = 1500
angle = 53.7
scale = 2.2
image = data.retina()
image = img_as_float(image)
rotated = rotate(image, angle)
rescaled = rescale(rotated, scale, channel_axis=-1)
image_polar = warp_polar(image, radius=radius, scaling='log', channel_axis=-1)
rescaled_polar = warp_polar(rescaled, radius=radius, scaling='log', channel_axis=-1)
fig, axes = plt.subplots(2, 2, figsize=(8, 8))
ax = axes.ravel()
ax[0].set_title("Original")
ax[0].imshow(image)
ax[1].set_title("Rotated and Rescaled")
ax[1].imshow(rescaled)
ax[2].set_title("Log-Polar-Transformed Original")
ax[2].imshow(image_polar)
ax[3].set_title("Log-Polar-Transformed Rotated and Rescaled")
ax[3].imshow(rescaled_polar)
plt.show()
# setting `upsample_factor` can increase precision
shifts, error, phasediff = phase_cross_correlation(
image_polar, rescaled_polar, upsample_factor=20, normalization=None
)
shiftr, shiftc = shifts[:2]
# Calculate scale factor from translation
klog = radius / np.log(radius)
shift_scale = 1 / (np.exp(shiftc / klog))
print(f'Expected value for cc rotation in degrees: {angle}')
print(f'Recovered value for cc rotation: {shiftr}')
print()
print(f'Expected value for scaling difference: {scale}')
print(f'Recovered value for scaling difference: {shift_scale}')
######################################################################
# Register rotation and scaling on a translated image - Part 1
# =================================================================
#
# The above examples only work when the images to be registered share a
# center. However, it is more often the case that there is also a translation
# component to the difference between two images to be registered. One
# approach to register rotation, scaling and translation is to first correct
# for rotation and scaling, then solve for translation. It is possible to
# resolve rotation and scaling differences for translated images by working on
# the magnitude spectra of the Fourier-transformed images.
#
# In this next example, we first show how the above approaches fail when two
# images differ by rotation, scaling, and translation.
from skimage.color import rgb2gray
from skimage.filters import window, difference_of_gaussians
from scipy.fft import fft2, fftshift
angle = 24
scale = 1.4
shiftr = 30
shiftc = 15
image = rgb2gray(data.retina())
translated = image[shiftr:, shiftc:]
rotated = rotate(translated, angle)
rescaled = rescale(rotated, scale)
sizer, sizec = image.shape
rts_image = rescaled[:sizer, :sizec]
# When center is not shared, log-polar transform is not helpful!
radius = 705
warped_image = warp_polar(image, radius=radius, scaling="log")
warped_rts = warp_polar(rts_image, radius=radius, scaling="log")
shifts, error, phasediff = phase_cross_correlation(
warped_image, warped_rts, upsample_factor=20, normalization=None
)
shiftr, shiftc = shifts[:2]
klog = radius / np.log(radius)
shift_scale = 1 / (np.exp(shiftc / klog))
fig, axes = plt.subplots(2, 2, figsize=(8, 8))
ax = axes.ravel()
ax[0].set_title("Original Image")
ax[0].imshow(image, cmap='gray')
ax[1].set_title("Modified Image")
ax[1].imshow(rts_image, cmap='gray')
ax[2].set_title("Log-Polar-Transformed Original")
ax[2].imshow(warped_image)
ax[3].set_title("Log-Polar-Transformed Modified")
ax[3].imshow(warped_rts)
fig.suptitle('log-polar-based registration fails when no shared center')
plt.show()
print(f'Expected value for cc rotation in degrees: {angle}')
print(f'Recovered value for cc rotation: {shiftr}')
print()
print(f'Expected value for scaling difference: {scale}')
print(f'Recovered value for scaling difference: {shift_scale}')
######################################################################
# Register rotation and scaling on a translated image - Part 2
# =================================================================
#
# We next show how rotation and scaling differences, but not translation
# differences, are apparent in the frequency magnitude spectra of the images.
# These differences can be recovered by treating the magnitude spectra as
# images themselves, and applying the same log-polar + phase correlation
# approach taken above.
# First, band-pass filter both images
image = difference_of_gaussians(image, 5, 20)
rts_image = difference_of_gaussians(rts_image, 5, 20)
# window images
wimage = image * window('hann', image.shape)
rts_wimage = rts_image * window('hann', image.shape)
# work with shifted FFT magnitudes
image_fs = np.abs(fftshift(fft2(wimage)))
rts_fs = np.abs(fftshift(fft2(rts_wimage)))
# Create log-polar transformed FFT mag images and register
shape = image_fs.shape
radius = shape[0] // 8 # only take lower frequencies
warped_image_fs = warp_polar(
image_fs, radius=radius, output_shape=shape, scaling='log', order=0
)
warped_rts_fs = warp_polar(
rts_fs, radius=radius, output_shape=shape, scaling='log', order=0
)
warped_image_fs = warped_image_fs[: shape[0] // 2, :] # only use half of FFT
warped_rts_fs = warped_rts_fs[: shape[0] // 2, :]
shifts, error, phasediff = phase_cross_correlation(
warped_image_fs, warped_rts_fs, upsample_factor=10, normalization=None
)
# Use translation parameters to calculate rotation and scaling parameters
shiftr, shiftc = shifts[:2]
recovered_angle = (360 / shape[0]) * shiftr
klog = shape[1] / np.log(radius)
shift_scale = np.exp(shiftc / klog)
fig, axes = plt.subplots(2, 2, figsize=(8, 8))
ax = axes.ravel()
ax[0].set_title("Original Image FFT\n(magnitude; zoomed)")
center = np.array(shape) // 2
ax[0].imshow(
image_fs[
center[0] - radius : center[0] + radius, center[1] - radius : center[1] + radius
],
cmap='magma',
)
ax[1].set_title("Modified Image FFT\n(magnitude; zoomed)")
ax[1].imshow(
rts_fs[
center[0] - radius : center[0] + radius, center[1] - radius : center[1] + radius
],
cmap='magma',
)
ax[2].set_title("Log-Polar-Transformed\nOriginal FFT")
ax[2].imshow(warped_image_fs, cmap='magma')
ax[3].set_title("Log-Polar-Transformed\nModified FFT")
ax[3].imshow(warped_rts_fs, cmap='magma')
fig.suptitle('Working in frequency domain can recover rotation and scaling')
plt.show()
print(f'Expected value for cc rotation in degrees: {angle}')
print(f'Recovered value for cc rotation: {recovered_angle}')
print()
print(f'Expected value for scaling difference: {scale}')
print(f'Recovered value for scaling difference: {shift_scale}')
######################################################################
# Some notes on this approach
# =================================================================
#
# It should be noted that this approach relies on a couple of parameters
# that have to be chosen ahead of time, and for which there are no clearly
# optimal choices:
#
# 1. The images should have some degree of bandpass filtering
# applied, particularly to remove high frequencies, and different choices here
# may impact outcome. The bandpass filter also complicates matters because,
# since the images to be registered will differ in scale and these scale
# differences are unknown, any bandpass filter will necessarily attenuate
# different features between the images. For example, the log-polar transformed
# magnitude spectra don't really look "alike" in the last example here. Yet if
# you look closely, there are some common patterns in those spectra, and they
# do end up aligning well by phase correlation as demonstrated.
#
# 2. Images must be windowed using windows with circular symmetry, to remove
# the spectral leakage coming from image borders. There is no clearly optimal
# choice of window.
#
# Finally, we note that large changes in scale will dramatically alter the
# magnitude spectra, especially since a big change in scale will usually be
# accompanied by some cropping and loss of information content. The literature
# advises staying within 1.8-2x scale change [1]_ [2]_. This is fine for most
# biological imaging applications.
#
# References
# ----------
#
# .. [1] B.S. Reddy and B.N. Chatterji. An FFT-based technique for translation,
# rotation and scale- invariant image registration. IEEE Trans. Image
# Processing, 5(8):1266–1271, 1996. :DOI:`10.1109/83.506761`
#
# .. [2] Tzimiropoulos, Georgios, and Tania Stathaki. "Robust FFT-based
# scale-invariant image registration." In 4th SEAS DTC Technical
# Conference. 2009. :DOI:`10.1109/TPAMI.2010.107`
|