1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
"""
===============================
Using geometric transformations
===============================
In this example, we will see how to use geometric transformations in the context
of image processing.
"""
import math
import numpy as np
import matplotlib.pyplot as plt
from skimage import data
from skimage import transform
######################################################################
# Basics
# ======
#
# Several different geometric transformation types are supported: similarity,
# affine, projective and polynomial. For a tutorial on the available types of
# transformations, see :ref:`sphx_glr_auto_examples_transform_plot_transform_types.py`.
#
# Geometric transformations can either be created using the explicit
# parameters (e.g. scale, shear, rotation and translation) or the
# transformation matrix.
#
# First we create a transformation using explicit parameters:
tform = transform.SimilarityTransform(scale=1, rotation=math.pi / 2, translation=(0, 1))
print(tform.params)
######################################################################
# Alternatively you can define a transformation by the transformation matrix
# itself:
matrix = tform.params.copy()
matrix[1, 2] = 2
tform2 = transform.SimilarityTransform(matrix)
######################################################################
# These transformation objects can then be used to apply forward and inverse
# coordinate transformations between the source and destination coordinate
# systems:
coord = [1, 0]
print(tform2(coord))
print(tform2.inverse(tform(coord)))
######################################################################
# Image warping
# =============
#
# Geometric transformations can also be used to warp images:
text = data.text()
tform = transform.SimilarityTransform(
scale=1, rotation=math.pi / 4, translation=(text.shape[0] / 2, -100)
)
rotated = transform.warp(text, tform)
back_rotated = transform.warp(rotated, tform.inverse)
fig, ax = plt.subplots(nrows=3)
ax[0].imshow(text, cmap=plt.cm.gray)
ax[1].imshow(rotated, cmap=plt.cm.gray)
ax[2].imshow(back_rotated, cmap=plt.cm.gray)
for a in ax:
a.axis('off')
plt.tight_layout()
######################################################################
# Parameter estimation
# ====================
#
# In addition to the basic functionality mentioned above you can also
# generate a transform by estimating the parameters of a geometric
# transformation using the least squares method.
#
# This can amongst other things be used for image registration or
# rectification, where you have a set of control points or
# homologous/corresponding points in two images.
#
# Let's assume we want to recognize letters on a photograph which was not
# taken from the front but at a certain angle. In the simplest case of a
# plane paper surface the letters are projectively distorted. Simple matching
# algorithms would not be able to match such symbols. One solution to this
# problem would be to warp the image so that the distortion is removed and
# then apply a matching algorithm:
text = data.text()
src = np.array([[0, 0], [0, 50], [300, 50], [300, 0]])
dst = np.array([[155, 15], [65, 40], [260, 130], [360, 95]])
tform3 = transform.ProjectiveTransform.from_estimate(src, dst)
######################################################################
# .. note::
#
# For many transform types, including the ``ProjectiveTransform``, it is
# possible for the estimation to fail. If this is the case,
# ``from_estimate`` returns a special object of type ``FailedEstimation``.
# This object describes the reason for the failure and can be tested for.
# The following is a typical pattern to handle failed estimations
# explicitly:
#
# .. code-block:: python
#
# if not tform3: # If result is *falsey*, we have a failed estimation.
# raise RuntimeError(f'Failed estimation: {tform3}')
#
# See :ref:`failed-estimation` below for more details.
warped = transform.warp(text, tform3, output_shape=(50, 300))
fig, ax = plt.subplots(nrows=2, figsize=(8, 3))
ax[0].imshow(text, cmap=plt.cm.gray)
ax[0].plot(dst[:, 0], dst[:, 1], '.r')
ax[1].imshow(warped, cmap=plt.cm.gray)
for a in ax:
a.axis('off')
plt.tight_layout()
plt.show()
######################################################################
# The above estimation relies on accurate knowledge of the location of points
# and an accurate selection of their correspondence. If point locations have
# an uncertainty associated with them, then weighting can be provided so that
# the resulting transform prioritises an accurate fit to those points with the
# highest weighting.
# An alternative approach called the
# `RANSAC algorithm <https://en.wikipedia.org/wiki/Random_sample_consensus>`_
# is useful when the correspondence points are not perfectly accurate.
# See the :ref:`sphx_glr_auto_examples_transform_plot_matching.py` tutorial
# for an in-depth description of how to use this approach in scikit-image.
######################################################################
# .. _failed-estimation:
#
# Failed estimation
# ====================
#
# There are situations where transform classes can fail to estimate a valid
# transformation, and we recommend that you always check for this possible
# case.
#
# If estimation succeeds, the result you get back will be a valid estimated
# transform. You can check if you have a valid transform by truth testing.
# E.g., the estimation from the previous section ``tform3`` is valid and *truthy*:
bool(tform3)
######################################################################
# However, if estimation failed, the ``from_estimate`` method returns a
# special object of type ``FailedEstimation``. Here is an example of a failed
# estimation, where all the input points are the same:
# Repeat last point 4 times, for four identical points.
bad_src = np.tile(src[-1, :], (4, 1))
bad_tform = transform.ProjectiveTransform.from_estimate(bad_src, dst)
bad_tform
######################################################################
# This object type is *falsey*---meaning that:
bool(bad_tform)
######################################################################
# You can access the raw message string of the failure with
str(bad_tform)
######################################################################
# We recommend that you put in a routine check to confirm the estimation
# succeeded:
#
# .. code-block:: python
#
# if not bad_tform:
# raise RuntimeError(f'Failed estimation: {bad_tform}')
#
# Of course, there may be times, where you did not check the *truthiness* of
# the estimation, and you nevertheless try to use the returned estimate. In
# this case, you'll get a :class:`~.FailedEstimationAccessError`---a custom
# subclass of a :class:`AttributeError`.
|