1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
============================================
Image adjustment: transforming image content
============================================
Color manipulation
------------------
.. currentmodule:: skimage.color
Most functions for manipulating color channels are found in the submodule
:mod:`skimage.color`.
Conversion between color models
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Color images can be represented using different `color spaces
<https://en.wikipedia.org/wiki/Color_space>`_. One of the most common
color spaces is the `RGB space
<https://en.wikipedia.org/wiki/RGB_color_model>`_, where an image has red,
green and blue channels. However, other color models are widely used,
such as the `HSV color model
<https://en.wikipedia.org/wiki/HSL_and_HSV>`_, where hue, saturation and
value are independent channels, or the `CMYK model
<https://en.wikipedia.org/wiki/CMYK_color_model>`_ used for printing.
:mod:`skimage.color` provides utility functions to convert images
to and from different color spaces. Integer-type arrays can be
transformed to floating-point type by the conversion operation::
>>> # bright saturated red
>>> red_pixel_rgb = np.array([[[255, 0, 0]]], dtype=np.uint8)
>>> color.rgb2hsv(red_pixel_rgb)
array([[[ 0., 1., 1.]]])
>>> # darker saturated blue
>>> dark_blue_pixel_rgb = np.array([[[0, 0, 100]]], dtype=np.uint8)
>>> color.rgb2hsv(dark_blue_pixel_rgb)
array([[[ 0.66666667, 1. , 0.39215686]]])
>>> # less saturated pink
>>> pink_pixel_rgb = np.array([[[255, 100, 255]]], dtype=np.uint8)
>>> color.rgb2hsv(pink_pixel_rgb)
array([[[ 0.83333333, 0.60784314, 1. ]]])
Conversion from RGBA to RGB - Removing alpha channel through alpha blending
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Converting an RGBA image to an RGB image by alpha blending it with a
background is realized with :func:`rgba2rgb` ::
>>> import skimage as ski
>>> img_rgba = ski.data.logo()
>>> img_rgb = ski.color.rgba2rgb(img_rgba)
Conversion between color and gray values
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Converting an RGB image to a grayscale image is realized with
:func:`rgb2gray` ::
>>> img = ski.data.astronaut()
>>> img_gray = ski.color.rgb2gray(img)
:func:`rgb2gray` uses a non-uniform weighting of color channels, because of the
different sensitivity of the human eye to different colors. Therefore,
such a weighting ensures `luminance preservation
<https://en.wikipedia.org/wiki/Grayscale#Converting_color_to_grayscale>`_
from RGB to grayscale::
>>> red_pixel = np.array([[[255, 0, 0]]], dtype=np.uint8)
>>> ski.color.rgb2gray(red_pixel)
array([[ 0.2125]])
>>> green_pixel = np.array([[[0, 255, 0]]], dtype=np.uint8)
>>> ski.color.rgb2gray(green_pixel)
array([[ 0.7154]])
Converting a grayscale image to RGB with :func:`gray2rgb` simply
duplicates the gray values over the three color channels.
Image inversion
~~~~~~~~~~~~~~~
An inverted image is also called complementary image. For binary images, True values
become False and conversely. For grayscale images, pixel values are replaced by the
difference of the maximum value of the data type and the actual value. For RGB
images, the same operation is done for each channel. This operation can be achieved
with :py:func:`skimage.util.invert`::
>>> import skimage as ski
>>> img = ski.data.camera()
>>> inverted_img = ski.util.invert(img)
Painting images with labels
~~~~~~~~~~~~~~~~~~~~~~~~~~~
:func:`label2rgb` can be used to superimpose colors on a grayscale image
using an array of labels to encode the regions to be represented with the
same color.
.. image:: ../auto_examples/segmentation/images/sphx_glr_plot_join_segmentations_001.png
:target: ../auto_examples/segmentation/plot_join_segmentations.html
:align: center
:width: 80%
.. topic:: Examples:
* :ref:`sphx_glr_auto_examples_color_exposure_plot_tinting_grayscale_images.py`
* :ref:`sphx_glr_auto_examples_segmentation_plot_join_segmentations.py`
* :ref:`sphx_glr_auto_examples_segmentation_plot_rag_mean_color.py`
.. _exposure:
Contrast and exposure
---------------------
.. currentmodule:: skimage.exposure
Image pixels can take values determined by the ``dtype`` of the image
(see :ref:`data_types`), such as 0 to 255 for ``uint8`` images or ``[0,
1]`` for floating-point images. However, most images either have a
narrower range of values (because of poor contrast), or have most pixel
values concentrated in a subrange of the accessible values.
:mod:`skimage.exposure` provides functions that spread the intensity
values over a larger range.
A first class of methods compute a nonlinear function of the intensity,
that is independent of the pixel values of a specific image. Such methods
are often used for correcting a known non-linearity of sensors, or
receptors such as the human eye. A well-known example is `Gamma
correction <https://en.wikipedia.org/wiki/Gamma_correction>`_, implemented
in :func:`adjust_gamma`.
Other methods re-distribute pixel values according to the *histogram* of
the image. The histogram of pixel values is computed with
:func:`skimage.exposure.histogram`::
>>> import numpy as np
>>> import skimage as ski
>>> image = np.array([[1, 3], [1, 1]])
>>> ski.exposure.histogram(image)
(array([3, 0, 1]), array([1, 2, 3]))
:func:`histogram` returns the number of pixels for each value bin, and
the centers of the bins. The behavior of :func:`histogram` is therefore
slightly different from the one of :func:`numpy.histogram`, which returns
the boundaries of the bins.
The simplest contrast enhancement :func:`rescale_intensity` consists in
stretching pixel values to the whole allowed range, using a linear
transformation::
>>> import skimage as ski
>>> text = ski.data.text()
>>> text.min(), text.max()
(10, 197)
>>> better_contrast = ski.exposure.rescale_intensity(text)
>>> better_contrast.min(), better_contrast.max()
(0, 255)
Even if an image uses the whole value range, sometimes there is very
little weight at the ends of the value range. In such a case, clipping
pixel values using percentiles of the image improves the contrast (at the
expense of some loss of information, because some pixels are saturated by
this operation)::
>>> moon = ski.data.moon()
>>> v_min, v_max = np.percentile(moon, (0.2, 99.8))
>>> v_min, v_max
(10.0, 186.0)
>>> better_contrast = ski.exposure.rescale_intensity(moon, in_range=(v_min, v_max))
The function :func:`equalize_hist` maps the cumulative distribution
function (cdf) of pixel values onto a linear cdf, ensuring that all parts
of the value range are equally represented in the image. As a result,
details are enhanced in large regions with poor contrast. As a further
refinement, histogram equalization can be performed in subregions of the
image with :func:`equalize_adapthist`, in order to correct for exposure
gradients across the image. See the example
:ref:`sphx_glr_auto_examples_color_exposure_plot_equalize.py`.
.. image:: ../auto_examples/color_exposure/images/sphx_glr_plot_equalize_001.png
:target: ../auto_examples/color_exposure/plot_equalize.html
:align: center
:width: 90%
.. topic:: Examples:
* :ref:`sphx_glr_auto_examples_color_exposure_plot_equalize.py`
|