File: dataframe_mapper.py

package info (click to toggle)
sklearn-pandas 2.2.0-5
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 440 kB
  • sloc: python: 1,177; sh: 12; makefile: 8
file content (443 lines) | stat: -rw-r--r-- 16,444 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import contextlib
from datetime import datetime
import pandas as pd
import numpy as np
from scipy import sparse
from sklearn.base import BaseEstimator, TransformerMixin
from .cross_validation import DataWrapper
from .pipeline import make_transformer_pipeline, _call_fit, TransformerPipeline
from . import logger

string_types = text_type = str


def _handle_feature(fea):
    """
    Convert 1-dimensional arrays to 2-dimensional column vectors.
    """
    if len(fea.shape) == 1:
        fea = np.array([fea]).T

    return fea


def _build_transformer(transformers):
    if isinstance(transformers, list):
        transformers = make_transformer_pipeline(*transformers)
    return transformers


def _build_feature(columns, transformers, options={}, X=None):
    if X is None:
        return (columns, _build_transformer(transformers), options)
    return (
        columns(X) if callable(columns) else columns,
        _build_transformer(transformers),
        options
    )


def _elapsed_secs(t1):
    return (datetime.now()-t1).total_seconds()


def _get_feature_names(estimator):
    """
    Attempt to extract feature names based on a given estimator
    """
    if hasattr(estimator, 'classes_'):
        return estimator.classes_
    elif hasattr(estimator, 'get_feature_names'):
        return estimator.get_feature_names()
    return None


@contextlib.contextmanager
def add_column_names_to_exception(column_names):
    # Stolen from https://stackoverflow.com/a/17677938/356729
    try:
        yield
    except Exception as ex:
        if ex.args:
            msg = u'{}: {}'.format(column_names, ex.args[0])
        else:
            msg = text_type(column_names)
        ex.args = (msg,) + ex.args[1:]
        raise


class DataFrameMapper(BaseEstimator, TransformerMixin):
    """
    Map Pandas data frame column subsets to their own
    sklearn transformation.
    """

    def __init__(self, features, default=False, sparse=False, df_out=False,
                 input_df=False, drop_cols=None):
        """
        Params:

        features    a list of tuples with features definitions.
                    The first element is the pandas column selector. This can
                    be a string (for one column) or a list of strings.
                    The second element is an object that supports
                    sklearn's transform interface, or a list of such objects
                    The third element is optional and, if present, must be
                    a dictionary with the options to apply to the
                    transformation. Example: {'alias': 'day_of_week'}

        default     default transformer to apply to the columns not
                    explicitly selected in the mapper. If False (default),
                    discard them. If None, pass them through untouched. Any
                    other transformer will be applied to all the unselected
                    columns as a whole, taken as a 2d-array.

        sparse      will return sparse matrix if set True and any of the
                    extracted features is sparse. Defaults to False.

        df_out      return a pandas data frame, with each column named using
                    the pandas column that created it (if there's only one
                    input and output) or the input columns joined with '_'
                    if there's multiple inputs, and the name concatenated with
                    '_1', '_2' etc if there's multiple outputs. NB: does not
                    work if *default* or *sparse* are true

        input_df    If ``True`` pass the selected columns to the transformers
                    as a pandas DataFrame or Series. Otherwise pass them as a
                    numpy array. Defaults to ``False``.

        drop_cols   List of columns to be dropped. Defaults to None.

        """
        self.features = features
        self.default = default
        self.built_default = None
        self.sparse = sparse
        self.df_out = df_out
        self.input_df = input_df
        self.drop_cols = [] if drop_cols is None else drop_cols
        self.transformed_names_ = []
        if (df_out and (sparse or default)):
            raise ValueError("Can not use df_out with sparse or default")

    def _build(self, X=None):
        """
        Build attributes built_features and built_default.
        """
        if isinstance(self.features, list):
            self.built_features = [
                _build_feature(*f, X=X) for f in self.features
            ]
        else:
            self.built_features = _build_feature(*self.features, X=X)
        self.built_default = _build_transformer(self.default)

    @property
    def _selected_columns(self):
        """
        Return a set of selected columns in the feature list.
        """
        selected_columns = set()
        for feature in self.features:
            columns = feature[0]
            if isinstance(columns, list):
                selected_columns = selected_columns.union(set(columns))
            else:
                selected_columns.add(columns)
        return selected_columns

    def _unselected_columns(self, X):
        """
        Return list of columns present in X and not selected explicitly in the
        mapper.

        Unselected columns are returned in the order they appear in the
        dataframe to avoid issues with different ordering during default fit
        and transform steps.
        """
        X_columns = list(X.columns)
        return [column for column in X_columns if
                column not in self._selected_columns
                and column not in self.drop_cols]

    def __setstate__(self, state):
        # compatibility for older versions of sklearn-pandas
        super().__setstate__(state)
        self.features = [_build_feature(*feat) for feat in state['features']]
        self.sparse = state.get('sparse', False)
        self.default = state.get('default', False)
        self.df_out = state.get('df_out', False)
        self.input_df = state.get('input_df', False)
        self.drop_cols = state.get('drop_cols', [])
        self.built_features = state.get('built_features', self.features)
        self.built_default = state.get('built_default', self.default)
        self.transformed_names_ = state.get('transformed_names_', [])

    def __getstate__(self):
        state = super().__getstate__()
        state['features'] = self.features
        state['sparse'] = self.sparse
        state['default'] = self.default
        state['df_out'] = self.df_out
        state['input_df'] = self.input_df
        state['drop_cols'] = self.drop_cols
        state['build_features'] = getattr(self, 'built_features', None)
        state['built_default'] = self.built_default
        state['transformed_names_'] = self.transformed_names_
        return state

    def _get_col_subset(self, X, cols, input_df=False):
        """
        Get a subset of columns from the given table X.

        X       a Pandas dataframe; the table to select columns from
        cols    a string or list of strings representing the columns to select.
                It can also be a callable that returns True or False, i.e.
                compatible with the built-in filter function.

        Returns a numpy array with the data from the selected columns
        """

        if isinstance(cols, string_types):
            return_vector = True
            cols = [cols]
        else:
            return_vector = False

        # Needed when using the cross-validation compatibility
        # layer for sklearn<0.16.0.
        # Will be dropped on sklearn-pandas 2.0.
        if isinstance(X, list):
            X = [x[cols] for x in X]
            X = pd.DataFrame(X)

        elif isinstance(X, DataWrapper):
            X = X.df  # fetch underlying data

        if return_vector:
            t = X[cols[0]]
        else:
            t = X[cols]

        # return either a DataFrame/Series or a numpy array
        if input_df:
            return t
        else:
            return t.values

    def fit(self, X, y=None):
        """
        Fit a transformation from the pipeline

        X       the data to fit

        y       the target vector relative to X, optional

        """
        self._build(X=X)

        for columns, transformers, options in self.built_features:
            t1 = datetime.now()
            input_df = options.get('input_df', self.input_df)

            if transformers is not None:
                with add_column_names_to_exception(columns):
                    Xt = self._get_col_subset(X, columns, input_df)
                    _call_fit(transformers.fit, Xt, y)
            logger.info(f"[FIT] {columns}: {_elapsed_secs(t1)} secs")

        # handle features not explicitly selected
        if self.built_default:  # not False and not None
            unsel_cols = self._unselected_columns(X)
            with add_column_names_to_exception(unsel_cols):
                Xt = self._get_col_subset(X, unsel_cols, self.input_df)
                _call_fit(self.built_default.fit, Xt, y)
        return self

    def get_names(self, columns, transformer, x, alias=None, prefix='',
                  suffix=''):
        """
        Return verbose names for the transformed columns.

        columns       name (or list of names) of the original column(s)
        transformer   transformer - can be a TransformerPipeline
        x             transformed columns (numpy.ndarray)
        alias         base name to use for the selected columns
        """
        if alias is not None:
            name = alias
        elif isinstance(columns, list):
            name = '_'.join(map(str, columns))
        else:
            name = columns
        num_cols = x.shape[1] if len(x.shape) > 1 else 1

        output = []

        if num_cols > 1:
            # If there are as many columns as classes in the transformer,
            # infer column names from classes names.

            # If we are dealing with multiple transformers for these columns
            # attempt to extract the names from each of them, starting from the
            # last one
            if isinstance(transformer, TransformerPipeline):
                inverse_steps = transformer.steps[::-1]
                estimators = (estimator for name, estimator in inverse_steps)
                names_steps = (_get_feature_names(e) for e in estimators)
                names = next((n for n in names_steps if n is not None), None)
            # Otherwise use the only estimator present
            else:
                names = _get_feature_names(transformer)

            if names is not None and len(names) == num_cols:
                output = [f"{name}_{o}" for o in names]
                # otherwise, return name concatenated with '_1', '_2', etc.
            else:
                output = [name + '_' + str(o) for o in range(num_cols)]
        else:
            output = [name]

        if prefix == suffix == "":
            return output

        return ['{}{}{}'.format(prefix, x, suffix) for x in output]

    def get_dtypes(self, extracted):
        dtypes_features = [self.get_dtype(ex) for ex in extracted]
        return [dtype for dtype_feature in dtypes_features
                for dtype in dtype_feature]

    def get_dtype(self, ex):
        if isinstance(ex, np.ndarray) or sparse.issparse(ex):
            return [ex.dtype] * ex.shape[1]
        elif isinstance(ex, pd.DataFrame):
            return list(ex.dtypes)
        else:
            raise TypeError(type(ex))

    def _transform(self, X, y=None, do_fit=False):
        """
        Transform the given data with possibility to fit in advance.
        Avoids code duplication for implementation of transform and
        fit_transform.
        """
        if do_fit:
            self._build(X=X)

        extracted = []
        transformed_names_ = []
        for columns, transformers, options in self.built_features:
            input_df = options.get('input_df', self.input_df)

            # columns could be a string or list of
            # strings; we don't care because pandas
            # will handle either.
            Xt = self._get_col_subset(X, columns, input_df)

            if transformers is not None:
                with add_column_names_to_exception(columns):
                    if do_fit and hasattr(transformers, 'fit_transform'):
                        t1 = datetime.now()
                        Xt = _call_fit(transformers.fit_transform, Xt, y)
                        logger.info(f"[FIT_TRANSFORM] {columns}: {_elapsed_secs(t1)} secs")  # NOQA
                    else:
                        if do_fit:
                            t1 = datetime.now()
                            _call_fit(transformers.fit, Xt, y)
                            logger.info(
                                f"[FIT] {columns}: {_elapsed_secs(t1)} secs")

                        t1 = datetime.now()
                        Xt = transformers.transform(Xt)
                        logger.info(f"[TRANSFORM] {columns}: {_elapsed_secs(t1)} secs")  # NOQA

            extracted.append(_handle_feature(Xt))

            alias = options.get('alias')

            prefix = options.get('prefix', '')
            suffix = options.get('suffix', '')

            transformed_names_ += self.get_names(
                columns, transformers, Xt, alias, prefix, suffix)

        # handle features not explicitly selected
        if self.built_default is not False:
            unsel_cols = self._unselected_columns(X)
            Xt = self._get_col_subset(X, unsel_cols, self.input_df)
            if self.built_default is not None:
                with add_column_names_to_exception(unsel_cols):
                    if do_fit and hasattr(self.built_default, 'fit_transform'):
                        Xt = _call_fit(self.built_default.fit_transform, Xt, y)
                    else:
                        if do_fit:
                            _call_fit(self.built_default.fit, Xt, y)
                        Xt = self.built_default.transform(Xt)
                transformed_names_ += self.get_names(
                    unsel_cols, self.built_default, Xt)
            else:
                # if not applying a default transformer,
                # keep column names unmodified
                transformed_names_ += unsel_cols

            extracted.append(_handle_feature(Xt))

        self.transformed_names_ = transformed_names_

        # combine the feature outputs into one array.
        # at this point we lose track of which features
        # were created from which input columns, so it's
        # assumed that that doesn't matter to the model.

        # If any of the extracted features is sparse, combine sparsely.
        # Otherwise, combine as normal arrays.
        if any(sparse.issparse(fea) for fea in extracted):
            stacked = sparse.hstack(extracted).tocsr()
            # return a sparse matrix only if the mapper was initialized
            # with sparse=True
            if not self.sparse:
                stacked = stacked.toarray()
        else:
            stacked = np.hstack(extracted)

        if self.df_out:
            # if no rows were dropped preserve the original index,
            # otherwise use a new integer one
            no_rows_dropped = len(X) == len(stacked)
            if no_rows_dropped:
                index = X.index
            else:
                index = None

            # output different data types, if appropriate
            dtypes = self.get_dtypes(extracted)
            df_out = pd.DataFrame(
                stacked,
                columns=self.transformed_names_,
                index=index)
            # preserve types
            for col, dtype in zip(self.transformed_names_, dtypes):
                df_out[col] = df_out[col].astype(dtype)
            return df_out
        else:
            return stacked

    def transform(self, X):
        """
        Transform the given data. Assumes that fit has already been called.

        X       the data to transform
        """
        return self._transform(X)

    def fit_transform(self, X, y=None):
        """
        Fit a transformation from the pipeline and directly apply
        it to the given data.

        X       the data to fit

        y       the target vector relative to X, optional
        """
        return self._transform(X, y, True)