1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
(***********************************************************************)
(* poly.ml - Simple polynomial implementation *)
(* *)
(* Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, *)
(* 2011, 2012, 2013 Yaron Minsky and Contributors *)
(* *)
(* This file is part of SKS. SKS is free software; you can *)
(* redistribute it and/or modify it under the terms of the GNU General *)
(* Public License as published by the Free Software Foundation; either *)
(* version 2 of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, but *)
(* WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *)
(* General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU General Public License *)
(* along with this program; if not, write to the Free Software *)
(* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *)
(* USA or see <http://www.gnu.org/licenses/>. *)
(***********************************************************************)
open StdLabels
open MoreLabels
module Unix = UnixLabels
open Printf
open Scanf
open ZZp.Infix
module Map = PMap.Map
let rec rfind ~f low high =
if low >= high then raise Not_found
else if f(low) then low
else rfind ~f (low + 1) high
type t = { a : ZZp.zz array;
(** coefficients, listed from lowest to highest degree *)
degree : int; (** degree of polynomial *)
}
let compute_degree a =
let rec loop a i =
if i <= 0 then 0
else (
if a.(i) =: ZZp.zero
then loop a (i - 1)
else i
)
in
loop a (Array.length a - 1)
let init degree ~f =
let a = Array.init (degree + 1) ~f:(fun i -> f i) in
let degree = compute_degree a in
{ a = (if degree + 1 < Array.length a
then Array.sub a ~pos:0 ~len:(degree + 1)
else a);
degree = degree;
}
let make degree x =
if x =: ZZp.zero then { a = [| ZZp.zero |]; degree = 0; }
else
{ a = Array.init (degree + 1) ~f:(fun i -> x);
degree = degree;
}
let zero = make 0 ZZp.zero
let one = make 0 ZZp.one
(* Get and set coeffs *)
(*let getc x i = x.a.(i)
let setc x i v = x.a.(i) <- v
let lgetc x i = x.a.(i)
let rgetc x i = x.a.(i) *)
let degree x = x.degree
let length x = Array.length x.a
let copy x = { x with a = Array.copy x.a }
let to_string x =
let buf = Buffer.create 0 in
for i = degree x downto 1 do
bprintf buf "%s z^%d + " (ZZp.to_string x.a.(i)) i;
done;
if degree x >= 0
then bprintf buf "%s" (ZZp.to_string x.a.(0))
else bprintf buf "0";
Buffer.contents buf
let splitter = Str.regexp "[ \t]+\\+[ \t]+"
let parse_digit s =
try sscanf s "%s z^%d" (fun digit degree -> (degree,ZZp.of_string digit))
with End_of_file -> (0,ZZp.of_string s)
let map_keys map =
Map.fold ~init:[] ~f:(fun ~key ~data keylist -> key::keylist) map
let of_string s =
let digits = List.map ~f:parse_digit (Str.split splitter s) in
let digitmap = Map.of_alist digits in
let degree = MList.reduce ~f:max (map_keys digitmap) in
init degree ~f:(fun deg ->
try Map.find deg digitmap
with Not_found -> ZZp.zero)
let print x =
for i = degree x downto 1 do
ZZp.print x.a.(i);
printf " z^%d + " i;
done;
if degree x >= 0 then
ZZp.print x.a.(0)
else
print_string "0"
exception NotEqual
let eq x y =
try
if x.degree <> y.degree then raise NotEqual;
for i = 0 to x.degree do
if x.a.(i) <>: y.a.(i)
then raise NotEqual
done;
true
with
NotEqual -> false
let of_array array =
if Array.length array = 0 then zero
else
let deg = compute_degree array in
{ a = Array.init (deg + 1) ~f:(fun i -> array.(i));
degree = deg;
}
let term deg c =
init ~f:(fun i -> if i = deg then c else ZZp.zero) deg
let set_length length x =
assert (length + 1 > degree x);
{ a = Array.init (length + 1)
~f:(fun i ->
if i <= x.degree
then x.a.(i)
else ZZp.zero);
degree = x.degree
}
let to_array x = Array.copy x.a
let is_monic x = x.a.(degree x) =: ZZp.one
let eval poly z =
let zd = ref ZZp.one
and sum = ref ZZp.zero in
for deg = 0 to degree poly do
sum := !sum +: poly.a.(deg) *: !zd;
zd := !zd *: z
done;
!sum
let mult x y =
let mdegree = degree x + degree y in
let prod = { a = Array.make ( mdegree + 1 ) ZZp.zero;
degree = mdegree ;
}
in
for i = 0 to degree x do
for j = 0 to degree y do
prod.a.(i + j) <- prod.a.(i + j) +: x.a.(i) *: y.a.(j)
done
done;
prod
(** scalar multiplication *)
let scmult x c =
{ x with a = Array.map ~f:(fun z -> z *: c) x.a; }
let add x y =
let deg = max x.degree y.degree in
init deg
~f:(fun i ->
(if i <= x.degree then x.a.(i) else ZZp.zero) +:
(if i <= y.degree then y.a.(i) else ZZp.zero))
let neg x = { x with a = Array.map ~f:(fun c -> ZZp.neg c) x.a }
let sub x y = add x (neg y)
let rec divmod x y =
if eq x zero then (zero,zero)
else if degree y > degree x then (zero,x)
else
let degdiff = degree x - degree y in
assert (degdiff >= 0);
let c = x.a.(degree x) /: y.a.(degree y) in
let m = term degdiff c in
let new_x = sub x (mult m y) in
assert (degree new_x < degree x || degree x = 0);
let (q,r) = divmod new_x y in
(add q m,r)
let modulo x y = let (q,r) = divmod x y in r
let div x y = let (q,r) = divmod x y in q
let const_coeff x = x.a.(0)
let nth_coeff x n = x.a.(n)
let const c = make 0 c
let rec gcd_rec x y =
if eq y zero then x
else
let (q,r) = divmod x y in
gcd_rec y r
let gcd x y =
let result = gcd_rec x y in
(* force the GCD to be monic *)
mult result (const (ZZp.inv result.a.(degree result)))
|