1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
|
(***********************************************************************)
(* prefixTree.ml *)
(* *)
(* Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, *)
(* 2011, 2012, 2013 Yaron Minsky and Contributors *)
(* *)
(* This file is part of SKS. SKS is free software; you can *)
(* redistribute it and/or modify it under the terms of the GNU General *)
(* Public License as published by the Free Software Foundation; either *)
(* version 2 of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, but *)
(* WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *)
(* General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU General Public License *)
(* along with this program; if not, write to the Free Software *)
(* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *)
(* USA or see <http://www.gnu.org/licenses/>. *)
(***********************************************************************)
open StdLabels
open MoreLabels
open Printf
open Common
module Unix=UnixLabels
(*module ZZp = RMisc.ZZp *)
module Set = PSet.Set
module ZSet = ZZp.Set
exception Bug of string
(** Invariants:
- Parent of dirty node is dirty.
- A dirty non-leaf node has at least one dirty child
- dirty nodes are reachable from the root
- All nodes not InMem are mirrored on disk.
- All nodes on disk are in real tree.
*)
(** TODO:
- Make sure that newly created nodes (in particular, in a split)
start out Dirty
- Nodes that are destroyed should have their backing store on disk
destroyed as well. In particular, in a join.
*)
type key = Bitstring.t
module WHash =
Weak.Make(struct
type t = key
let equal = (=)
and hash = Hashtbl.hash
end)
type writestatus = Clean | Dirty
type 'a disk = OnDisk of key | InMem of 'a
type children = | Leaf of string Set.t
| Children of node disk array
and node = { svalues: ZZp.mut_array;
key: key;
mutable num_elements: int;
mutable children: children;
mutable wstatus: writestatus;
}
type 'txn db = { load : string -> string;
save : 'txn option -> key:string -> data:string -> unit;
delete : 'txn option -> string -> unit;
create_txn : unit -> 'txn option;
commit_txn : 'txn option -> unit;
abort_txn : 'txn option -> unit;
mutable maxnodes : int;
mutable inmem_count : int;
}
type 'txn tree = { root: node;
num_samples: int;
split_thresh: int; (* threshold for splitting node *)
join_thresh: int; (* threshold for deleting node.
Should be less than split_thresh *)
bitquantum: int; (* amount by which depths differ
from each other *)
points: ZZp.zz array;
db: 'txn db option;
mutable synctime: float;
}
type dheader = { d_num_samples: int;
d_split_thresh: int;
d_join_thresh: int;
d_bitquantum: int;
d_points: ZZp.zz array;
}
(******************************************************************)
let op_unwrap x = match x with
Some y -> y
| None -> failwith "Attempt to unwrap None"
let op_apply ~f x = match x with
None -> None
| Some x -> Some (f x)
let op_map ~f list = List.map ~f:(op_apply ~f) list
(******************************************************************)
(******************************************************************)
(******************************************************************)
(** Returns all extensions of bs to length ~len,
* starting at bit ~bit
*)
let rec child_keys_rec bs ~bit ~len =
if bit >= len
then
Set.add (Bitstring.copy bs) Set.empty
else (
Bitstring.set bs bit;
let keys_1 = child_keys_rec bs ~bit:(bit+1) ~len in
Bitstring.unset bs bit;
let keys_2 = child_keys_rec bs ~bit:(bit+1) ~len in
Set.union keys_1 keys_2
)
(** Return 2^t.bitquantum bitstrings which consist of all possible
* t.bitquantum-bit extensions of the key.
*)
let child_keys_raw bitquantum key =
let len = Bitstring.num_bits key in
let newlen = len + bitquantum in
let bs = Bitstring.copy_len key newlen in
let keys = child_keys_rec bs ~bit:len ~len:newlen in
Set.elements keys
let child_keys t key = child_keys_raw t.bitquantum key
(******************************************************************)
(******************************************************************)
(******************************************************************)
let marshal_to_string ~f x =
let bufc = Channel.new_buffer_outc 1000 in
f (bufc#upcast) x;
bufc#contents
let unmarshal_of_string ~f s =
let strc = new Channel.string_in_channel s 0 in
f (strc#upcast)
(******************************************************************)
(******************************************************************)
(******************************************************************)
let samesize set =
let sizes = Set.fold ~init:Set.empty set
~f:(fun string set -> Set.add (String.length string) set)
in
let nsizes = Set.cardinal sizes in
nsizes = 1 || nsizes = 0
let marshal_node (cout:Channel.out_channel_obj) n =
cout#write_int n.num_elements;
cout#write_int (Bitstring.num_bits n.key);
cout#write_string (Bitstring.to_bytes n.key);
Array.iter ~f:(fun zz -> cout#write_string (ZZp.to_bytes zz))
(ZZp.mut_array_to_array n.svalues);
(match n.children with
Leaf set ->
cout#write_byte 1;
assert (samesize set);
cout#write_int (Set.cardinal set);
Set.iter ~f:(fun s -> cout#write_string s) set
| Children _ ->
cout#write_byte 0)
let unmarshal_node ~bitquantum ~num_samples (cin:Channel.in_channel_obj) =
let zzp_len = ZZp.num_bytes () in
let num_elements = cin#read_int in
let keybits = cin#read_int in
let keybytes = Bitstring.bytelength keybits in
let keydata = cin#read_string keybytes in
let key = Bitstring.of_bytes keydata keybits in
let svalues = Array.init num_samples
~f:(fun _ -> ZZp.of_bytes (cin#read_string zzp_len)) in
let isleaf = cin#read_byte = 1 in
let children =
if isleaf then
let size = cin#read_int in
let a = Array.init size ~f:( fun i -> cin#read_string zzp_len ) in
Leaf (Set.of_list (Array.to_list a))
else
let ckeys = child_keys_raw bitquantum key in
Children (Array.map ~f:(fun key -> OnDisk key)
(Array.of_list ckeys))
in
{ svalues = ZZp.mut_array_of_array svalues;
num_elements = num_elements;
children = children;
wstatus = Clean;
key = key;
}
let node_to_string n = marshal_to_string ~f:marshal_node n
let node_of_string_raw ~bitquantum ~num_samples s =
unmarshal_of_string ~f:(unmarshal_node ~bitquantum ~num_samples) s
let node_of_string tree s =
node_of_string_raw ~bitquantum:tree.bitquantum
~num_samples:tree.num_samples s
(******************************************************************)
let marshal_header cout tree =
ignore (cout :> Channel.out_channel_obj);
cout#write_int tree.num_samples;
cout#write_int tree.split_thresh;
cout#write_int tree.join_thresh;
cout#write_byte tree.bitquantum;
Array.iter ~f:(fun zz -> cout#write_string (ZZp.to_bytes zz))
tree.points
let unmarshal_dheader cin =
ignore (cin :> Channel.in_channel_obj);
let zzp_len = ZZp.num_bytes () in
let num_samples = cin#read_int in
let split_thresh = cin#read_int in
let join_thresh = cin#read_int in
let bitquantum = cin#read_byte in
let points = Array.init num_samples
~f:(fun zz -> ZZp.of_bytes (cin#read_string zzp_len))
in
{ d_num_samples = num_samples;
d_split_thresh = split_thresh;
d_join_thresh = join_thresh;
d_bitquantum = bitquantum;
d_points = points;
}
(************)
let header_to_string tree =
marshal_to_string ~f:marshal_header tree
let dheader_of_string s =
unmarshal_of_string ~f:unmarshal_dheader s
let dheader_to_header db root dh synctime =
{ num_samples = dh.d_num_samples;
split_thresh = dh.d_split_thresh;
join_thresh = dh.d_join_thresh;
bitquantum = dh.d_bitquantum;
points = dh.d_points;
db = db;
root = root;
synctime = synctime;
}
(******************************************************************)
let marshal_synctime cout time = cout#write_float time
let unmarshal_synctime cin = cin#read_float
let synctime_to_string time =
marshal_to_string ~f:marshal_synctime time
let synctime_of_string time =
unmarshal_of_string ~f:unmarshal_synctime time
(******************************************************************)
(** converts bitstring to dbkey by writing the bitlength of the key followed
by the bytes of the key itself.
Note that a more efficient coding is possible, since really you only need 3
bits, to tell you how much of the last byte is used.
*)
let dbkey_of_key key =
let bufc = Channel.new_buffer_outc 8 in
let length = Bitstring.num_bits key in
let data = Bitstring.to_bytes key in
bufc#write_int length;
bufc#write_string data;
bufc#contents
(** dbkey for storing header *)
let int_to_bstring i =
let bufc = Channel.new_buffer_outc 1 in
bufc#write_int i;
bufc#contents
let root_dbkey = dbkey_of_key (Bitstring.create 0)
let header_dbkey = int_to_bstring (-1)
let synctime_dbkey = int_to_bstring (-2)
(******************************************************************)
(** returns the on-disk version of the node corresponding to dbkey.
No changes are made to the in-memory tree *)
let load_node tree dbkey =
let db = op_unwrap tree.db in
let nodestr = db.load dbkey in
node_of_string tree nodestr
(** Returns the node corresponding to the [cindex]'th child from the
[children] array. If an OnDisk node has been loaded into memory, [children]
is updated accordingly.
*)
let load_child t children cindex =
match children.(cindex) with
| OnDisk key ->
let db = op_unwrap t.db in
let cnode = load_node t (dbkey_of_key key) in
children.(cindex) <- InMem cnode;
db.inmem_count <- db.inmem_count + 1;
cnode
| InMem cnode -> cnode
(** side-effect-free version of load_child *)
let load_child_sef t children cindex =
match children.(cindex) with
| OnDisk key -> load_node t (dbkey_of_key key)
| InMem cnode -> cnode
(******************************************************************)
let save_node t txn node =
match t.db with
None -> ()
| Some db ->
let dbkey = dbkey_of_key node.key in
db.save txn ~key:dbkey ~data:(node_to_string node)
let save_synctime tree txn =
match tree.db with
None -> ()
| Some db ->
db.save txn ~key:synctime_dbkey
~data:(synctime_to_string tree.synctime)
(******************************************************************)
(******************************************************************)
(******************************************************************)
let rec clean_subtree tree txn node = match node.wstatus with
| Dirty ->
( match node.children with
Leaf _ -> ()
| Children children ->
Array.iter children
~f:(function
OnDisk key -> ()
| InMem cnode -> clean_subtree tree txn cnode)
);
save_node tree txn node;
node.wstatus <- Clean;
| Clean -> ()
let clean txn tree =
match tree.db with
None -> ()
| Some _ ->
clean_subtree tree txn tree.root;
save_synctime tree txn
(*************************************************************)
let rec delete_subtree_rec txn tree disknode =
let node = match disknode with
InMem node -> node
| OnDisk key -> load_node tree (dbkey_of_key key)
in
let db = op_unwrap tree.db in
db.delete txn (dbkey_of_key node.key);
match node.children with
Leaf _ -> ()
| Children children ->
Array.iter ~f:(delete_subtree_rec txn tree) children
let delete_subtree txn tree node =
perror "Fix this!";
delete_subtree_rec txn tree (InMem node)
(******************************************************************)
(* Full Tree Summaries ******************************************)
(******************************************************************)
let rec summarize_tree_rec ~lagg ~cagg tree nodedisk =
let node = match nodedisk with
InMem node -> node
| OnDisk key -> load_node tree (dbkey_of_key key)
in
match node.children with
| Leaf elements ->
lagg elements
| Children children ->
let values =
Array.map ~f:(summarize_tree_rec ~lagg ~cagg tree) children
in
cagg values
let summarize_tree ~lagg ~cagg tree =
summarize_tree_rec ~lagg ~cagg tree (InMem tree.root)
(******************************************************************)
let depth tree =
summarize_tree
~lagg:(fun _ -> 1)
~cagg:(fun depths -> 1 + MArray.max depths)
tree
let count_nodes tree =
summarize_tree
~lagg:(fun _ -> 1)
~cagg:(fun counts -> 1 + Array.fold_left ~f:(+) ~init:0 counts)
tree
let (<+>) (x1,y1) (x2,y2) = (x1 + x2, y1 + y2)
(* returns (# internal nodes, # leaf nodes) below & including current node *)
let count_node_types tree =
summarize_tree
~lagg:(fun _ -> (0,1))
~cagg:(fun counts ->
(1,0) <+>
Array.fold_left ~f:(<+>) ~init:(0,0) counts
)
tree
let get_elements tree node =
summarize_tree_rec
~lagg:(fun x -> x)
~cagg:(fun sets -> Array.fold_left ~f:Set.union ~init:Set.empty sets)
tree (InMem node)
let get_zzp_elements tree node =
let selem = get_elements tree node in
Set.fold selem ~init:ZSet.empty
~f:(fun x set -> ZSet.add (ZZp.of_bytes x) set)
let iter ~f tree =
summarize_tree
~lagg:(Set.iter ~f)
~cagg:(fun _ -> ())
tree
(******************************************************************)
(** returns the number of inmem nodes below and including
the present node *)
let rec count_inmem node = match node.children with
Leaf _ -> 1
| Children children ->
let counts = Array.map ~f:(function
OnDisk x -> 0
| InMem cnode -> count_inmem cnode)
children
in
1 + Array.fold_left ~f:(+) ~init:0 counts
(** returns the number of inmen nodes in the tree,
not counting the root. *)
let count_inmem_tree tree = count_inmem tree.root - 1
let get_inmem_count tree =
match tree.db with
None -> raise Not_found
| Some db -> db.inmem_count
let set_inmem_count tree newcount =
match tree.db with
None -> raise Not_found
| Some db -> db.inmem_count <- newcount
(*************************************************************)
(* Code for limiting number of InMem nodes ****************)
(*************************************************************)
let rec list_extract ~f list = match list with
[] -> []
| hd::tl -> match f hd with
None -> list_extract ~f tl
| Some x -> x::(list_extract ~f tl)
let rec list_prefix k list = match k with
0 -> []
| _ -> match list with
[] -> failwith "Requested prefix longer than list"
| hd::tl -> hd::(list_prefix (k-1) tl)
let list_prefix_suffix k list =
let rec loop k list prefix =
match k with
0 -> (List.rev prefix,list)
| _ -> match list with
[] -> failwith "Requested prefix longer than list"
| hd::tl ->
loop (k-1) tl (hd::prefix)
in
loop k list []
let inmem_children node = match node.children with
Leaf _ -> []
| Children children ->
list_extract ~f:(function
InMem x -> Some x
| OnDisk _ -> None
)
(Array.to_list children)
let rec get_frontier tree ~frontier ~newfrontier ~n ~count =
if count > n then failwith "get_frontier called with count>n"
else
match frontier, newfrontier with
| [],[] ->
raise (Bug "frontier and newfrontier both empty")
| [],newfrontier ->
get_frontier tree ~frontier:newfrontier ~newfrontier:[]
~n ~count
| hd::tl,newfrontier ->
let children = inmem_children hd in
let num_kids = List.length children in
if num_kids + count >= n then
(List.rev_append frontier newfrontier, count)
else
let newfrontier =
List.rev_append children newfrontier
in
let frontier = tl in
get_frontier tree ~frontier ~newfrontier ~n ~count:(count + num_kids)
(*
let inmem_children node = match node.children with
Leaf _ -> []
| Children children ->
list_extract ~f:(function
(i,InMem x) -> Some (i,x)
| (i,OnDisk _) -> None )
(Array.to_list (Array.mapi ~f:(fun i x -> (i,x)) children))
let rec get_frontier tree ~frontier ~newfrontier ~n ~count =
if count > n then raise (Bug (sprintf "count(%d) exceeded n(%d)" count n))
else if count = n then (frontier,None)
else
match frontier, newfrontier with
[],[] ->
raise (Bug "frontier and newfrontier should never both be empty")
| [],newfrontier ->
get_frontier tree ~frontier:newfrontier ~newfrontier:[]
~n ~count
| hd::tl, newfrontier ->
let children = inmem_children hd in
if List.length children + count <= n then
let children = List.map ~f:snd children in
get_frontier tree
~frontier:tl
~newfrontier:(List.rev_append children newfrontier)
~n ~count:(count + List.length children)
else
let needed = List.length children + count - n in
let (needed_children,unneeded_children) =
list_prefix_suffix needed children in
(tl @ newfrontier,
Some (hd,
List.map ~f:(fun (i,x) -> x) needed_children,
List.map ~f:(fun (i,x) -> i) unneeded_children)
)
*)
(** marks all the children of a node as being OnDisk *)
let disconnect_children node =
if node.wstatus = Dirty then
failwith "Disconnect children called on Dirty node";
match node.children with
| Leaf _ -> ()
| Children children ->
for i = 0 to Array.length children - 1 do
match children.(i) with
| OnDisk key -> ()
| InMem node -> children.(i) <- OnDisk node.key
done
(** Reduce number of InMem nodes to no more than n *)
let shrink_tree tree txn n =
clean txn tree;
let (frontier,count) = get_frontier tree
~frontier:[ tree.root ]
~newfrontier:[]
~n ~count:0 (* we don't count the root since it's
always in memory *)
in
List.iter frontier ~f:disconnect_children;
let real_count = count_inmem_tree tree in
if count <> real_count then
failwith (sprintf "%s. expected %d, found %d"
"tree shrinkage failed to produce tree of expected size"
count real_count) ;
set_inmem_count tree count
let shrink_tree_if_necessary tree txn =
match tree.db with
None -> ()
| Some db ->
if db.inmem_count > db.maxnodes
then shrink_tree tree txn (db.maxnodes / 2)
(******************************************************************)
(******************************************************************)
let width = 8
let rmask i = 0xFF lsl (width - i)
let lmask i = 0xFF lsr (width - i)
let string_index t depth string =
let q = t.bitquantum in
let lowbit = depth * q in
let highbit = lowbit + q - 1
in
let lowbyte = lowbit / 8
and lowbit = lowbit mod 8
and highbyte = highbit / 8
and highbit = highbit mod 8
in
if lowbyte = highbyte then
let byte = int_of_char string.[lowbyte] in
let key = (byte lsr (7 - highbit)) land
(lmask (highbit - lowbit + 1)) in
key
else (* extract from two adjacent bytes *)
let byte1 = int_of_char string.[lowbyte] in
let byte2 = int_of_char string.[highbyte] in
let key1 = (byte1 land (lmask (8 - lowbit))) lsl (highbit + 1) in
let key2 = (byte2 land (rmask (highbit + 1))) lsr (7 - highbit) in
let key = key1 lor key2 in
key
(******************************************************************)
let create_svalues points =
ZZp.svalues (Array.length points)
let incr_inmem_count tree =
match tree.db with
None -> ()
| Some db ->
db.inmem_count <- db.inmem_count + 1
let decr_inmem_count tree =
match tree.db with
None -> ()
| Some db ->
db.inmem_count <- db.inmem_count - 1
let create_node_basic key points =
{ svalues = create_svalues points;
num_elements = 0;
children = Leaf Set.empty;
key = key;
wstatus = Dirty;
}
let create_node tree key =
let points = tree.points in
incr_inmem_count tree;
create_node_basic key points
let add_to_node t node zz zzs marray =
ZZp.mult_array ~svalues:node.svalues marray;
node.num_elements <- node.num_elements + 1;
node.wstatus <- Dirty;
match node.children with
| Leaf elements ->
node.children <-
if Set.mem zzs elements
then failwith "add_to_node: attempt to reinsert element into prefix tree"
else Leaf (Set.add zzs elements)
| _ -> ()
let remove_from_node t node zz zzs marray =
ZZp.mult_array ~svalues:node.svalues marray;
node.num_elements <- node.num_elements - 1;
node.wstatus <- Dirty;
match node.children with
| Leaf elements ->
if not (Set.mem zzs elements)
then failwith "remove_from_node: attempt to delete non-existant element from prefix tree"
else node.children <- Leaf (Set.remove zzs elements)
| _ -> ()
(******************************************************************)
let split_at_depth t zz zzs node depth =
match node.children with
Children _ -> raise (Bug "split of non-leaf node.");
| Leaf elements ->
let ckeys = Array.of_list (child_keys t node.key) in
let children =
Array.map ~f:(fun key -> InMem (create_node t key)) ckeys
in
node.children <- Children children;
Set.iter elements
~f:(fun (zzs) ->
let zz = ZZp.of_bytes zzs in
let idx = string_index t depth zzs in
let marray = ZZp.add_el_array ~points:t.points zz in
let cnode = load_child t children idx in
add_to_node t cnode zz zzs marray
)
(******************************************************************)
let pad string bytes =
let len = String.length string in
if bytes > len then
let nstr = String.create bytes in
String.fill nstr ~pos:len ~len:(bytes - len) '\000';
String.blit ~src:string ~dst:nstr ~src_pos:0 ~dst_pos:0 ~len;
nstr
else
string
(******************************************************************)
(* Interface functions *******************************************)
(******************************************************************)
let create_empty_header ~points ~bitquantum ~num_samples ~thresh ~dbopt =
{ root = create_node_basic (Bitstring.create 0) points;
num_samples = num_samples;
bitquantum = bitquantum;
split_thresh = thresh;
join_thresh = thresh / 2;
points = points;
db = dbopt;
synctime = 0.0;
}
let create ?db:dbopt ~txn ~num_samples ~bitquantum ~thresh () =
let points = ZZp.points num_samples in
let dbopt =
match dbopt with
None -> None
| Some (load,save,delete,(create,commit,abort),maxnodes) ->
Some { load = load;
save = save;
delete = delete;
create_txn = create;
commit_txn = commit;
abort_txn = abort;
maxnodes = maxnodes;
inmem_count = 0;
}
in
match dbopt with
Some db ->
begin
try
let header_string = db.load header_dbkey in
let dheader = dheader_of_string header_string in
let root_string = db.load root_dbkey in
let root = node_of_string_raw ~bitquantum:dheader.d_bitquantum
~num_samples:dheader.d_num_samples root_string in
let synctime_string = db.load synctime_dbkey in
let synctime = synctime_of_string synctime_string in
dheader_to_header dbopt root dheader synctime
with
Not_found ->
(* no header found on disk. Start from scratch *)
let tree = create_empty_header ~points ~bitquantum
~num_samples ~thresh ~dbopt in
(* header and root must now be written to disk *)
let header_string = header_to_string tree in
let root_string = node_to_string tree.root in
let synctime_string = synctime_to_string tree.synctime in
db.save txn ~key:header_dbkey ~data:header_string;
db.save txn ~key:root_dbkey ~data:root_string;
db.save txn ~key:synctime_dbkey ~data:synctime_string;
tree
end
| None ->
(* No way of accessing the disk, so create a blank tree *)
create_empty_header ~points ~bitquantum ~num_samples ~thresh ~dbopt
(******************************************************************)
let rec insert_at_depth t zz zzs node marray depth =
add_to_node t node zz zzs marray;
(match node.children with
| Leaf elements ->
if node.num_elements > t.split_thresh
then split_at_depth t zz zzs node depth
| Children children -> (* insertion must continue at next depth *)
let cindex = string_index t depth zzs in
let cnode = load_child t children cindex in
insert_at_depth t zz zzs cnode marray (depth + 1)
)
let insert_both t txn zz zzs =
let zzs = pad zzs (ZZp.num_bytes ()) in
if String.length zzs <> ZZp.num_bytes ()
then raise (Invalid_argument
(sprintf "%s. %d found, %d expected"
"PrefixTree.insert_both: zzs has wrong length"
(String.length zzs) (ZZp.num_bytes ())
));
let marray = ZZp.add_el_array ~points:t.points zz in
let root = t.root in
insert_at_depth t zz zzs root marray 0;
shrink_tree_if_necessary t txn
let insert t txn zz =
let zzs = ZZp.to_bytes zz in
insert_both t txn zz zzs
let insert_str t txn zzs =
let zz = ZZp.of_bytes zzs in
insert_both t txn zz zzs
(******************************************************************)
let rec get_ondisk_subkeys tree db key =
try
ignore (db.load (dbkey_of_key key));
let ckeys = child_keys tree key in
let sets = List.map ~f:(get_ondisk_subkeys tree db) ckeys in
Set.add key (List.fold_left ~f:Set.union sets ~init:Set.empty)
with
Not_found -> (* has no subkeys, so emptyset *)
Set.empty
let rec delete_at_depth t txn zz zzs node marray depth =
remove_from_node t node zz zzs marray;
match node.children with
| Children children ->
if node.num_elements <= t.join_thresh then (
let elements = Set.remove zzs (get_elements t node) in
node.children <- Leaf elements;
match t.db with
None -> ()
| Some db ->
let subkeys = get_ondisk_subkeys t db node.key in
let subkeys = Set.remove node.key subkeys in
let inmem_delta = count_inmem node - 1 in
Set.iter ~f:(fun key -> db.delete txn (dbkey_of_key key))
subkeys;
db.inmem_count <- db.inmem_count - inmem_delta
) else (
let cindex = string_index t depth zzs in
let cnode = load_child t children cindex in
delete_at_depth t txn zz zzs cnode marray (depth + 1)
)
| _ -> ()
let delete_both t txn zz zzs =
let zzs = pad zzs (ZZp.num_bytes ()) in
if String.length zzs <> ZZp.num_bytes ()
then raise (Invalid_argument
"PrefixTree.delete_both: zzs has wrong length");
let marray = ZZp.del_el_array ~points:t.points zz in
let root = t.root in
delete_at_depth t txn zz zzs root marray 0
let delete t txn zz =
let zzs = ZZp.to_bytes zz in
delete_both t txn zz zzs
let delete_str t txn zzs =
let zz = ZZp.of_bytes zzs in
delete_both t txn zz zzs
(******************************************************************)
(******************************************************************)
(******************************************************************)
let set_maxnodes tree txn n =
match tree.db with
None -> ()
| Some db ->
db.maxnodes <- n;
shrink_tree_if_necessary tree txn
let get_maxnodes tree =
match tree.db with
None -> raise (Invalid_argument
"Attempt to invoke DB operation without DB")
| Some db -> db.maxnodes
(******************************************************************)
let rec get_node_rec ~sef t node zzs ~depth ~goal_depth =
if depth < goal_depth
then (
match node.children with
Children children ->
let cindex = string_index t depth zzs in
let cnode =
(if sef then load_child_sef else load_child)
t children cindex in
get_node_rec ~sef t cnode zzs ~depth:(depth+1) ~goal_depth
| Leaf _ ->
raise Not_found
)
else if depth = goal_depth then node
else failwith "Goal depth exceeded"
let get_node_str ?(sef=false) t zzs depth =
let rval = get_node_rec ~sef t t.root zzs ~depth:0 ~goal_depth:depth in
(** shrink the tree if required, creating transaction as needed *)
begin
match t.db with
None -> ()
| Some db ->
let txn = db.create_txn () in
try
shrink_tree_if_necessary t txn;
db.commit_txn txn
with
e -> db.abort_txn txn; raise e
end;
rval
let get_node ?(sef=false) t zz depth =
let zzs = ZZp.to_bytes zz in
get_node_str ~sef t zzs depth
let get_node_key ?(sef=false) t key =
if (Bitstring.num_bits key) mod t.bitquantum <> 0
then raise (Invalid_argument "Prefix given of wrong length")
else
let depth = (Bitstring.num_bits key) / t.bitquantum in
get_node_str ~sef t (Bitstring.to_bytes key) depth
(******************************************************************)
let root t = t.root
let children node = match node.children with
| Leaf _ -> None
| Children children -> Some children
let svalues node = node.svalues
let size node = node.num_elements
let is_leaf node =
match node.children with Leaf _ -> true | _ -> false
let points tree = tree.points
let elements tree node =
let pset = get_elements tree node in
Set.fold ~f:(fun zzs set -> ZSet.add (ZZp.of_bytes zzs) set)
~init:ZSet.empty pset
(******************************************************************)
let node_size tree nodedisk =
let node = match nodedisk with
InMem node -> node
| OnDisk key -> load_node tree (dbkey_of_key key)
in
node.num_elements
let nonempty_children tree children =
let sizes = Array.map ~f:(node_size tree) children in
let nonempty = Array.mapi ~f:(fun i s -> (i,s > 0) ) sizes in
Array.fold_left ~f:(fun list (i,nonempty) ->
if nonempty then i::list else list)
~init:[] nonempty
let random_element list =
let i = Random.int (List.length list) in
List.nth list i
let rec get_random tree node =
match node.children with
Leaf children ->
if Set.is_empty children then raise Not_found
else
let elements = Set.elements children in
let i = Random.int (Set.cardinal children) in
List.nth elements i
| Children children ->
let nonempty = nonempty_children tree children in
if List.length nonempty = 0
then raise (Bug "Internal node with no nonempty children");
let randchild =
match children.(random_element nonempty) with
InMem node -> node
| OnDisk key -> load_node tree (dbkey_of_key key)
in
get_random tree randchild
let set_synctime tree synctime = tree.synctime <- synctime
let get_synctime tree = tree.synctime
let depth tree node = Bitstring.num_bits node.key / tree.bitquantum
let num_elements tree node = node.num_elements
(******************************************************************)
(******************************************************************)
(******************************************************************)
|