1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
(***********************************************************************)
(* pSet.ml - Sets over ordered types *)
(* *)
(* Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, *)
(* 2011, 2012, 2013 Yaron Minsky and Contributors *)
(* *)
(* This file is part of SKS. SKS is free software; you can *)
(* redistribute it and/or modify it under the terms of the GNU General *)
(* Public License as published by the Free Software Foundation; either *)
(* version 2 of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, but *)
(* WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *)
(* General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU General Public License *)
(* along with this program; if not, write to the Free Software *)
(* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *)
(* USA or see <http://www.gnu.org/licenses/>. *)
(***********************************************************************)
open StdLabels
open MoreLabels
module type OrderedType =
sig val compare: 'elt -> 'elt -> int end
module ClassicalType =
struct let compare = (* Pervasives. *) compare end
module type S =
sig
type 'elt t
val empty: 'elt t
val is_empty: 'elt t -> bool
val mem: 'elt -> 'elt t -> bool
val add: 'elt -> 'elt t -> 'elt t
val singleton: 'elt -> 'elt t
val remove: 'elt -> 'elt t -> 'elt t
val union: 'elt t -> 'elt t -> 'elt t
val inter: 'elt t -> 'elt t -> 'elt t
val diff: 'elt t -> 'elt t -> 'elt t
val compare: 'elt t -> 'elt t -> int
val equal: 'elt t -> 'elt t -> bool
val subset: 'elt t -> 'elt t -> bool
val iter: f:('elt -> unit) -> 'elt t -> unit
val fold: f:('elt -> 'a -> 'a) -> 'elt t -> init:'a -> 'a
val for_all: f:('elt -> bool) -> 'elt t -> bool
val exists: f:('elt -> bool) -> 'elt t -> bool
val filter: f:('elt -> bool) -> 'elt t -> 'elt t
val partition: f:('elt -> bool) -> 'elt t -> 'elt t * 'elt t
val cardinal: 'elt t -> int
val elements: 'elt t -> 'elt list
val min_elt: 'elt t -> 'elt
val max_elt: 'elt t -> 'elt
val choose: 'elt t -> 'elt
val of_list: 'elt list -> 'elt t
end
module Make(Ord: OrderedType) =
struct
type 'elt t = Empty | Node of 'elt t * 'elt * 'elt t * int
(* Sets are represented by balanced binary trees (the heights of the
children differ by at most 2 *)
let height = function
Empty -> 0
| Node(_, _, _, h) -> h
(* Creates a new node with left son l, value x and right son r.
l and r must be balanced and | height l - height r | <= 2.
Inline expansion of height for better speed. *)
let create l x r =
let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in
let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in
Node(l, x, r, (if hl >= hr then hl + 1 else hr + 1))
(* Same as create, but performs one step of rebalancing if necessary.
Assumes l and r balanced.
Inline expansion of create for better speed in the most frequent case
where no rebalancing is required. *)
let bal l x r =
let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in
let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in
if hl > hr + 2 then begin
match l with
Empty -> invalid_arg "Set.bal"
| Node(ll, lv, lr, _) ->
if height ll >= height lr then
create ll lv (create lr x r)
else begin
match lr with
Empty -> invalid_arg "Set.bal"
| Node(lrl, lrv, lrr, _)->
create (create ll lv lrl) lrv (create lrr x r)
end
end else if hr > hl + 2 then begin
match r with
Empty -> invalid_arg "Set.bal"
| Node(rl, rv, rr, _) ->
if height rr >= height rl then
create (create l x rl) rv rr
else begin
match rl with
Empty -> invalid_arg "Set.bal"
| Node(rll, rlv, rlr, _) ->
create (create l x rll) rlv (create rlr rv rr)
end
end else
Node(l, x, r, (if hl >= hr then hl + 1 else hr + 1))
(* Same as bal, but repeat rebalancing until the final result
is balanced. *)
let rec join l x r =
match bal l x r with
Empty -> invalid_arg "Set.join"
| Node(l', x', r', _) as t' ->
let d = height l' - height r' in
if d < -2 || d > 2 then join l' x' r' else t'
(* Merge two trees l and r into one.
All elements of l must precede the elements of r.
Assumes | height l - height r | <= 2. *)
let rec merge t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
bal l1 v1 (bal (merge r1 l2) v2 r2)
(* Same as merge, but does not assume anything about l and r. *)
let rec concat t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
join l1 v1 (join (concat r1 l2) v2 r2)
(* Splitting *)
let rec split x = function
Empty ->
(Empty, None, Empty)
| Node(l, v, r, _) ->
let c = Ord.compare x v in
if c = 0 then (l, Some v, r)
else if c < 0 then
let (ll, vl, rl) = split x l in (ll, vl, join rl v r)
else
let (lr, vr, rr) = split x r in (join l v lr, vr, rr)
(* Implementation of the set operations *)
let empty = Empty
let is_empty = function Empty -> true | _ -> false
let rec mem x = function
Empty -> false
| Node(l, v, r, _) ->
let c = Ord.compare x v in
c = 0 || mem x (if c < 0 then l else r)
let rec add x = function
Empty -> Node(Empty, x, Empty, 1)
| Node(l, v, r, _) as t ->
let c = Ord.compare x v in
if c = 0 then t else
if c < 0 then bal (add x l) v r else bal l v (add x r)
let singleton x = Node(Empty, x, Empty, 1)
let rec remove x = function
Empty -> Empty
| Node(l, v, r, _) ->
let c = Ord.compare x v in
if c = 0 then merge l r else
if c < 0 then bal (remove x l) v r else bal l v (remove x r)
let rec union s1 s2 =
match (s1, s2) with
(Empty, t2) -> t2
| (t1, Empty) -> t1
| (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
if h1 >= h2 then
if h2 = 1 then add v2 s1 else begin
let (l2, _, r2) = split v1 s2 in
join (union l1 l2) v1 (union r1 r2)
end
else
if h1 = 1 then add v1 s2 else begin
let (l1, _, r1) = split v2 s1 in
join (union l1 l2) v2 (union r1 r2)
end
let rec inter s1 s2 =
match (s1, s2) with
(Empty, t2) -> Empty
| (t1, Empty) -> Empty
| (Node(l1, v1, r1, _), t2) ->
match split v1 t2 with
(l2, None, r2) ->
concat (inter l1 l2) (inter r1 r2)
| (l2, Some _, r2) ->
join (inter l1 l2) v1 (inter r1 r2)
let rec diff s1 s2 =
match (s1, s2) with
(Empty, t2) -> Empty
| (t1, Empty) -> t1
| (Node(l1, v1, r1, _), t2) ->
match split v1 t2 with
(l2, None, r2) ->
join (diff l1 l2) v1 (diff r1 r2)
| (l2, Some _, r2) ->
concat (diff l1 l2) (diff r1 r2)
let rec compare_aux l1 l2 =
match (l1, l2) with
([], []) -> 0
| ([], _) -> -1
| (_, []) -> 1
| (Empty :: t1, Empty :: t2) ->
compare_aux t1 t2
| (Node(Empty, v1, r1, _) :: t1, Node(Empty, v2, r2, _) :: t2) ->
let c = Ord.compare v1 v2 in
if c <> 0 then c else compare_aux (r1::t1) (r2::t2)
| (Node(l1, v1, r1, _) :: t1, t2) ->
compare_aux (l1 :: Node(Empty, v1, r1, 0) :: t1) t2
| (t1, Node(l2, v2, r2, _) :: t2) ->
compare_aux t1 (l2 :: Node(Empty, v2, r2, 0) :: t2)
let compare s1 s2 =
compare_aux [s1] [s2]
let equal s1 s2 =
compare s1 s2 = 0
let rec subset s1 s2 =
match (s1, s2) with
Empty, _ ->
true
| _, Empty ->
false
| Node (l1, v1, r1, _), (Node (l2, v2, r2, _) as t2) ->
let c = Ord.compare v1 v2 in
if c = 0 then
subset l1 l2 && subset r1 r2
else if c < 0 then
subset (Node (l1, v1, Empty, 0)) l2 && subset r1 t2
else
subset (Node (Empty, v1, r1, 0)) r2 && subset l1 t2
let rec iter ~f = function
Empty -> ()
| Node(l, v, r, _) -> iter ~f l; f v; iter ~f r
let rec fold ~f s ~init:accu =
match s with
Empty -> accu
| Node(l, v, r, _) -> fold ~f l ~init:(f v (fold ~f r ~init:accu))
let rec for_all ~f:p = function
Empty -> true
| Node(l, v, r, _) -> p v && for_all ~f:p l && for_all ~f:p r
let rec exists ~f:p = function
Empty -> false
| Node(l, v, r, _) -> p v || exists ~f:p l || exists ~f:p r
let filter ~f:p s =
let rec filt accu = function
| Empty -> accu
| Node(l, v, r, _) ->
filt (filt (if p v then add v accu else accu) l) r in
filt Empty s
let partition ~f:p s =
let rec part (t, f as accu) = function
| Empty -> accu
| Node(l, v, r, _) ->
part (part (if p v then (add v t, f) else (t, add v f)) l) r in
part (Empty, Empty) s
let rec cardinal = function
Empty -> 0
| Node(l, v, r, _) -> cardinal l + 1 + cardinal r
let rec elements_aux accu = function
Empty -> accu
| Node(l, v, r, _) -> elements_aux (v :: elements_aux accu r) l
let elements s =
elements_aux [] s
let rec min_elt = function
Empty -> raise Not_found
| Node(Empty, v, r, _) -> v
| Node(l, v, r, _) -> min_elt l
let rec max_elt = function
Empty -> raise Not_found
| Node(l, v, Empty, _) -> v
| Node(l, v, r, _) -> max_elt r
let choose = min_elt
let of_list list =
List.fold_left ~f:(fun set el -> add el set) ~init:empty list
end
module Set = Make(ClassicalType)
|