1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
"""Routines to help draw star charts."""
import numpy as np
from IPython.display import HTML
from matplotlib import rc_context, rcParams
from matplotlib.animation import FuncAnimation, FFMpegWriter, writers
from .starlib import Star
def _plot_stars(catalog, observer, project, ax, mag1, mag2, margin=1.25):
"""Experiment in progress, hence the underscore; expect changes."""
art = []
# from astropy import wcs
# w = wcs.WCS(naxis=2)
# w.wcs.crpix = [-234.75, 8.3393]
# w.wcs.cdelt = np.array([-0.066667, 0.066667])
# w.wcs.crval = [0, -90]
# w.wcs.ctype = ["RA---AIR", "DEC--AIR"]
# w.wcs.set_pv([(2, 1, 45.0)])
# import matplotlib.pyplot as plt
# plt.subplot(projection=wcs)
# #plt.imshow(hdu.data, vmin=-2.e-5, vmax=2.e-4, origin='lower')
# plt.grid(color='white', ls='solid')
# plt.xlabel('Galactic Longitude')
# plt.ylabel('Galactic Latitude')
xmin, xmax = ax.get_xlim()
ymin, ymax = ax.get_xlim()
lim = max(abs(xmin), abs(xmax), abs(ymin), abs(ymax)) * margin
lims = (-lim, lim)
ax.set_xlim(lims)
ax.set_ylim(lims)
ax.set_aspect('equal')
o = observer[0]
# Dim stars: points of with varying gray levels.
c = catalog
c = c[c['magnitude'] > mag1]
c = c[c['magnitude'] <= mag2]
#print('Second star group:', len(c))
c = c.sort_values('magnitude', ascending=False)
s = Star(ra_hours=c.ra_hours, dec_degrees=c.dec_degrees)
spos = o.observe(s)
x, y = project(spos)
m = (mag2 - c['magnitude']) / (mag2 - mag1)
# Note that "gray_r" is white for 0.0 and black for 1.0
art.append(ax.scatter(
x, y, s=1.0,
c=1 - 0.8 * m, cmap='gray_r', vmin=0.0, vmax=1.0,
))
# Bright stars: black circles of varying radius, surrounded by a
# white gap in case stars are touching. Draw the brightest stars
# first to stop them from completely occluding smaller companions.
def mag_to_radius(m):
return (mag1 - m) * scale + 1.0
c = catalog
c = c[c['magnitude'] <= mag1]
c = c.sort_values('magnitude', ascending=True)
#print('First star group:', len(c))
s = Star(ra_hours=c.ra_hours, dec_degrees=c.dec_degrees)
spos = o.observe(s)
x, y = project(spos)
scale = 1.5
radius = mag_to_radius(c['magnitude'])
x2 = np.repeat(x, 2)
y2 = np.repeat(y, 2)
radius2 = (radius[:,None] + (3.0,0.0)).flatten()
c2 = ('w', 'k')
c2 = ('k', 'w')
art.append(ax.scatter(x2, y2, s=radius2 ** 2.0, c=c2))
return art, mag_to_radius
@writers.register('ffmpeg_small')
class _FFMpegWriter(FFMpegWriter):
def _args(self):
args = super(_FFMpegWriter, self)._args()
i = args.index('h264') + 1
args[i:i] = ['-x264-params', 'keyint=99999999:scenecut=0']
#args.append('keyint=123:min-keyint=20')
return args
X = []
class _Animation(FuncAnimation):
patcher = None
def _draw_next_frame(self, framedata, blit):
blit = True # override matplotlib's refusal to blit in save()
super(_Animation, self)._draw_next_frame(framedata, blit)
if self.patcher is None:
self.patcher = patch('matplotlib.backends.backend_agg'
'.FigureCanvasAgg.draw', draw)
self.patcher.__enter__()
# Experiment to avoid drawing month names over each other when they
# are outside the axis borders and don't get blitted:
# def _pre_draw(self, framedata, blit):
# artists = self._drawn_artists
# for figure in set(a.axes.figure for a in artists):
# from IPython.core.debugger import set_trace
# #set_trace()
# #figure.canvas.renderer.clear()
# super(_Animation, self)._pre_draw(framedata, blit)
def draw(self):
pass
from unittest.mock import patch
def _animate(projection, t, stars, observer, planet):
import matplotlib.pyplot as plt
# print(t)
# print(t[0].utc_strftime('%Y %B'))
o = observer.at(t)
p = o.observe(planet)
p0 = planet.at(t)
mag = -8.88 + 5.0 * np.log10(p.distance().au * p0.distance().au)
project = projection(p)
x, y = project(p)
fig, ax = plt.subplots()
plt.tick_params(axis='both', which='both',
bottom=False, labelbottom=False,
left=False, labelleft=False)
# Draw invisibly the entire path, so that the bounding boxes are
# known ahead of time.
ax.scatter(x, y, color='b', alpha=0.0)
art, mag_to_radius = _plot_stars(stars, o, project, ax, 6.0, 8.5, 0.8)
# http://aa.usno.navy.mil/software/mica/USNO-AA-TN-2003-04.pdf
# m - M = 5 (log10 d - 1)
# m = 5 (log10 d - 1) + M
x_left, x_right = ax.get_xlim()
y_bottom, y_top = ax.get_ylim()
text_x = x_left
text_y = y_bottom - (y_top - y_bottom) * 0.01
saturn_color = '#f7dfae'
#'#a69276' # chroma('#d8c2a5').darken().hex()
# Somehow matplotlib is (a) drawing the date text twice which ruins
# the anti-aliasing and makes it look blocky, and (b) also never
# erasing that part of the figure so the month names all pile up on
# top of each other. So let's manually paint a white rectangle
# behind the text each time to overwrite the previous text.
r = ax.add_patch(plt.Rectangle(
(x_left, y_bottom - 0.012), 0.08, 0.01,
clip_on=False, facecolor='white',
))
items = [] # so update() can get the axes init() created
def init():
print('init()')
planet_art = ax.scatter(x[100], y[100], color=saturn_color)
#print(dir(planet_art))
date_text = ax.text(text_x, text_y, '', ha='left', va='top')
items[:] = [planet_art, date_text]
return planet_art, r, #date_text
def update(i):
#print('Frame {}'.format(i))
planet_art, date_text = items
# planet_art.set_xdata(x[i])
# planet_art.set_ydata(y[i])
planet_art.set_offsets(((x[i], y[i]),))
planet_art.set_sizes((mag_to_radius(mag[i]) ** 2.0,))
date_text.set_text(t[i].utc_strftime('%Y %B'))
ax.set_facecolor('black')
return planet_art, r, date_text
frames = len(x)
#frames = 90
ax.set_facecolor('black')
anim = _Animation(fig, update, frames=frames,
blit=True, init_func=init,
interval=16)
plt.close()
return anim
rcParams.validate['animation.writer'].valid['ffmpeg_small'] = 'ffmpeg_small'
with rc_context({'animation.writer': 'ffmpeg_small'}):
html = anim.to_html5_video()
anim.patcher.__exit__()
return HTML(html)
def _save_and_display(anim, path):
Writer = _FFMpegWriter
writer = Writer(codec='h264',
bitrate=rcParams['animation.bitrate'],
fps=1000. / anim._interval)
anim.save(path, writer=writer)
anim.patcher.__exit__()
return HTML(r'''<video autoplay loop>
<source type="video/mp4" src="{}">
Alas! Your browser does not support the video tag.
</video>'''.format(path)) #'file://' + path))
class T(object):
from time import time
def __enter__(self):
self.t0 = self.time()
def __exit__(self, *args):
print('<<< %s >>>' % (self.time() - self.t0))
def printout(thing):
print()
for line in debug(thing):
print(line)
print()
def debug(thing, indent=0):
a = 'A' if thing.get_animated() else '-'
yield '{:<{}}{} {} {}'.format('', indent, hex(id(thing)), a, repr(thing))
indent += 2
for child in thing.get_children():
yield from debug(child, indent)
|