1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
|
package ij.process;
import java.util.*;
import java.awt.*;
import java.awt.image.*;
import ij.gui.*;
import ij.util.*;
import ij.plugin.filter.GaussianBlur;
import ij.plugin.Binner;
import ij.process.AutoThresholder.Method;
import ij.gui.Roi;
import ij.gui.ShapeRoi;
import ij.gui.Overlay;
import ij.Prefs;
/**
This abstract class is the superclass for classes that process
the four data types (byte, short, float and RGB) supported by ImageJ.
An ImageProcessor contains the pixel data of a 2D image and
some basic methods to manipulate it.
@see ByteProcessor
@see ShortProcessor
@see FloatProcessor
@see ColorProcessor
@see ij.ImagePlus
@see ij.ImageStack
*/
public abstract class ImageProcessor implements Cloneable {
/** Value of pixels included in masks. */
public static final int BLACK = 0xFF000000;
/** Value returned by getMinThreshold() when thresholding is not enabled. */
public static final double NO_THRESHOLD = -808080.0;
/** Left justify text. */
public static final int LEFT_JUSTIFY = 0;
/** Center justify text. */
public static final int CENTER_JUSTIFY = 1;
/** Right justify text. */
public static final int RIGHT_JUSTIFY = 2;
/** Isodata thresholding method */
public static final int ISODATA = 0;
/** Modified isodata method used in Image/Adjust/Threshold tool */
public static final int ISODATA2 = 1;
/** Interpolation methods */
public static final int NEAREST_NEIGHBOR=0, NONE=0, BILINEAR=1, BICUBIC=2;
public static final int BLUR_MORE=0, FIND_EDGES=1, MEDIAN_FILTER=2, MIN=3, MAX=4, CONVOLVE=5;
static public final int RED_LUT=0, BLACK_AND_WHITE_LUT=1, NO_LUT_UPDATE=2, OVER_UNDER_LUT=3;
static final int INVERT=0, FILL=1, ADD=2, MULT=3, AND=4, OR=5,
XOR=6, GAMMA=7, LOG=8, MINIMUM=9, MAXIMUM=10, SQR=11, SQRT=12, EXP=13, ABS=14, SET=15;
static final String WRONG_LENGTH = "width*height!=pixels.length";
int fgColor = 0;
protected int lineWidth = 1;
protected int cx, cy; //current drawing coordinates
protected Font font = ij.ImageJ.SansSerif12;
protected FontMetrics fontMetrics;
protected boolean antialiasedText;
protected boolean boldFont;
private static String[] interpolationMethods;
// Over/Under tresholding colors
private static int overRed, overGreen=255, overBlue;
private static int underRed, underGreen, underBlue=255;
private static boolean useBicubic;
private int sliceNumber;
private Overlay overlay;
ProgressBar progressBar;
protected int width, snapshotWidth;
protected int height, snapshotHeight;
protected int roiX, roiY, roiWidth, roiHeight;
protected int xMin, xMax, yMin, yMax;
boolean snapshotCopyMode;
ImageProcessor mask;
protected ColorModel baseCM; // base color model
protected ColorModel cm;
protected byte[] rLUT1, gLUT1, bLUT1; // base LUT
protected byte[] rLUT2, gLUT2, bLUT2; // LUT as modified by setMinAndMax and setThreshold
protected boolean interpolate; // replaced by interpolationMethod
protected int interpolationMethod = NONE;
protected double minThreshold=NO_THRESHOLD, maxThreshold=NO_THRESHOLD;
protected int histogramSize = 256;
protected double histogramMin, histogramMax;
protected float[] cTable;
protected boolean lutAnimation;
protected MemoryImageSource source;
protected Image img;
protected boolean newPixels;
/** Updated by TAM (original change to 138k, updated June 19,2014) */
// protected Color drawingColor = Color.black;
protected Color drawingColor = Color.white;
protected int clipXMin, clipXMax, clipYMin, clipYMax; // clip rect used by drawTo, drawLine, drawDot and drawPixel
protected int justification = LEFT_JUSTIFY;
protected int lutUpdateMode;
protected WritableRaster raster;
protected BufferedImage image;
protected BufferedImage fmImage;
protected ColorModel cm2;
protected SampleModel sampleModel;
protected static IndexColorModel defaultColorModel;
protected boolean minMaxSet;
/* ------ Code inserted by TAM. Originally added to 138k
* ------ Updated to 149b June 19, 2014
* Adds capabilities to write strings at any angle into an image.
* Allows us to ensure that a given color is available for writing
* but only adds it to color table if not already there.
*/
private class PlotString {
String text;
double x;
double y;
double angle;
PlotString(String text, double x, double y, double angle) {
this.text = text;
this.x = x;
this.y = y;
this.angle = angle;
}
}
private java.util.ArrayList<PlotString> plotStrings;
public void addPlotString(String str, double x, double y, double angle) {
if (plotStrings == null) {
plotStrings = new ArrayList<PlotString>();
}
plotStrings.add(new PlotString(str, x, y, angle));
}
public void clearPlotStrings() {
if (plotStrings != null) {
plotStrings.clear();
}
}
public void plotStrings() {
if (plotStrings != null && plotStrings.size() > 0) {
Image img;
if (getColorModel() instanceof IndexColorModel) {
img = new BufferedImage(width, height, BufferedImage.TYPE_BYTE_INDEXED, (IndexColorModel) getColorModel());
} else {
img = new BufferedImage(width, height, BufferedImage.TYPE_BYTE_INDEXED);
}
Graphics2D g = (Graphics2D) img.getGraphics();
g.drawImage(this.createImage(), 0, 0, null);
g.setColor(drawingColor);
if (font==null)
font = new Font("SansSerif", Font.PLAIN, 12);
g.setFont(font);
FontMetrics metrics = g.getFontMetrics(font);
int fontHeight = metrics.getHeight();
int descent = metrics.getDescent();
for (PlotString ps: plotStrings) {
String text = ps.text;
int x = (int)(ps.x+0.5);
int y = (int)(ps.y+0.5);
double angle = ps.angle;
if (ps.angle != 0) {
g.rotate(angle, x, y);
}
int sWidth = metrics.stringWidth(text);
g.drawString(text, x-sWidth/2, y);
if (angle != 0) {
g.rotate(-angle, x, y);
}
}
g.dispose();
ImageProcessor ip = new ByteProcessor(img);
if (this instanceof ByteProcessor) {
ip = ip.convertToByte(false);
// if (isInvertedLut())
// ip.invert();
}
insert(ip, 0, 0);
}
clearPlotStrings();
}
/** Adds the color to the end of the color model
* if not already there.
*/
public boolean addColor(Color color) {
return addColor(color, -1);
}
/** Adds the color to the color model at the specified
* index.
*/
public boolean addColor(Color color, int index) {
if (color == null) {
return false;
}
int red = color.getRed();
int green = color.getGreen();
int blue = color.getBlue();
int best = getBestIndex(color);
IndexColorModel icm;
if (cm==null)
makeDefaultColorModel();
if (minThreshold != NO_THRESHOLD) {
double saveMin = getMinThreshold();
double saveMax = getMaxThreshold();
resetThreshold();
icm = (IndexColorModel)cm;
setThreshold(saveMin, saveMax, lutUpdateMode);
} else
icm = (IndexColorModel)cm;
int mapSize = icm.getMapSize();
byte[] rLUT = new byte[mapSize];
byte[] gLUT = new byte[mapSize];
byte[] bLUT = new byte[mapSize];
icm.getReds(rLUT);
icm.getGreens(gLUT);
icm.getBlues(bLUT);
for (int i=0; i<mapSize; i += 1) {
if (red == rLUT[i] && green == gLUT[i] && blue == bLUT[i]) {
return false;
}
}
if (index < 0 || index >= mapSize) {
index = mapSize-1;
}
rLUT[index] = (byte) red;
gLUT[index] = (byte) green;
bLUT[index] = (byte) blue;
setColorModel(new IndexColorModel(8, mapSize, rLUT, gLUT, bLUT));
return true;
}
protected void showProgress(double percentDone) {
if (progressBar!=null)
progressBar.show(percentDone);
}
/** @deprecated */
protected void hideProgress() {
showProgress(1.0);
}
/** Returns the width of this image in pixels. */
public int getWidth() {
return width;
}
/** Returns the height of this image in pixels. */
public int getHeight() {
return height;
}
/** Returns the bit depth, 8, 16, 24 (RGB) or 32. RGB images actually use 32 bits per pixel. */
public int getBitDepth() {
Object pixels = getPixels();
if (pixels==null)
return 0;
else if (pixels instanceof byte[])
return 8;
else if (pixels instanceof short[])
return 16;
else if (pixels instanceof int[])
return 24;
else if (pixels instanceof float[])
return 32;
else
return 0;
}
/** Returns this processor's color model. For non-RGB processors,
this is the base lookup table (LUT), not the one that may have
been modified by setMinAndMax() or setThreshold(). */
public ColorModel getColorModel() {
if (cm==null)
makeDefaultColorModel();
if (baseCM!=null)
return baseCM;
else
return cm;
}
/** Returns the current color model, which may have
been modified by setMinAndMax() or setThreshold(). */
public ColorModel getCurrentColorModel() {
if (cm==null) makeDefaultColorModel();
return cm;
}
/** Sets the color model. Must be an IndexColorModel (aka LUT)
for all processors except the ColorProcessor. */
public void setColorModel(ColorModel cm) {
if (cm!=null && !(cm instanceof IndexColorModel))
throw new IllegalArgumentException("IndexColorModel required");
this.cm = cm;
baseCM = null;
rLUT1 = rLUT2 = null;
newPixels = true;
inversionTested = false;
minThreshold = NO_THRESHOLD;
source = null;
}
public LUT getLut() {
ColorModel cm2 = getColorModel();
if (cm2!=null && (cm2 instanceof IndexColorModel))
return new LUT((IndexColorModel)cm2, getMin(), getMax());
else
return null;
}
public void setLut(LUT lut) {
setColorModel(lut);
if (lut!=null && (lut.min!=0.0||lut.max!=0.0))
setMinAndMax(lut.min, lut.max);
}
protected void makeDefaultColorModel() {
cm = getDefaultColorModel();
}
/** Inverts the values in this image's LUT (indexed color model).
Does nothing if this is a ColorProcessor. */
public void invertLut() {
IndexColorModel icm = (IndexColorModel)getColorModel();
int mapSize = icm.getMapSize();
byte[] reds = new byte[mapSize];
byte[] greens = new byte[mapSize];
byte[] blues = new byte[mapSize];
byte[] reds2 = new byte[mapSize];
byte[] greens2 = new byte[mapSize];
byte[] blues2 = new byte[mapSize];
icm.getReds(reds);
icm.getGreens(greens);
icm.getBlues(blues);
for (int i=0; i<mapSize; i++) {
reds2[i] = (byte)(reds[mapSize-i-1]&255);
greens2[i] = (byte)(greens[mapSize-i-1]&255);
blues2[i] = (byte)(blues[mapSize-i-1]&255);
}
ColorModel cm = new IndexColorModel(8, mapSize, reds2, greens2, blues2);
double min=getMin(), max=getMax();
setColorModel(cm);
setMinAndMax(min, max);
}
/** Returns the LUT index that's the best match for this color. */
public int getBestIndex(Color c) {
IndexColorModel icm;
if (cm==null)
makeDefaultColorModel();
if (minThreshold!=NO_THRESHOLD) {
double saveMin = getMinThreshold();
double saveMax = getMaxThreshold();
resetThreshold();
icm = (IndexColorModel)cm;
setThreshold(saveMin, saveMax, lutUpdateMode);
} else
icm = (IndexColorModel)cm;
int mapSize = icm.getMapSize();
byte[] rLUT = new byte[mapSize];
byte[] gLUT = new byte[mapSize];
byte[] bLUT = new byte[mapSize];
icm.getReds(rLUT);
icm.getGreens(gLUT);
icm.getBlues(bLUT);
int minDistance = Integer.MAX_VALUE;
int distance;
int minIndex = 0;
int r1=c.getRed();
int g1=c.getGreen();
int b1=c.getBlue();
int r2,b2,g2;
for (int i=0; i<mapSize; i++) {
r2 = rLUT[i]&0xff; g2 = gLUT[i]&0xff; b2 = bLUT[i]&0xff;
distance = (r2-r1)*(r2-r1)+(g2-g1)*(g2-g1)+(b2-b1)*(b2-b1);
//ij.IJ.write(i+" "+minIndex+" "+distance+" "+(rLUT[i]&255));
if (distance<minDistance) {
minDistance = distance;
minIndex = i;
}
if (minDistance==0.0)
break;
}
return minIndex;
}
protected boolean inversionTested = false;
protected boolean invertedLut;
/** Returns true if this image uses an inverting LUT
that displays zero as white and 255 as black. */
public boolean isInvertedLut() {
if (inversionTested)
return invertedLut;
if (cm==null || !(cm instanceof IndexColorModel)) {
invertedLut = false;
inversionTested = true;
return invertedLut;
}
IndexColorModel icm = (IndexColorModel)cm;
boolean hasAscendingStep = false;
int v1, v2;
for (int i=1; i<255; i++) {
v1 = icm.getRed(i-1)+icm.getGreen(i-1)+icm.getBlue(i-1);
v2 = icm.getRed(i)+icm.getGreen(i)+icm.getBlue(i);
if (v1<v2) {
hasAscendingStep = true;
break;
}
}
invertedLut = !hasAscendingStep;
inversionTested = true;
return invertedLut;
}
/** Returns 'true' if this is an image with a grayscale LUT or an
* RGB image with identical red, green and blue channels.
*/
public boolean isGrayscale() {
return !isColorLut();
}
/** Returns true if this image uses a color LUT. */
public boolean isColorLut() {
if (cm==null || !(cm instanceof IndexColorModel))
return false;
IndexColorModel icm = (IndexColorModel)cm;
int mapSize = icm.getMapSize();
byte[] reds = new byte[mapSize];
byte[] greens = new byte[mapSize];
byte[] blues = new byte[mapSize];
icm.getReds(reds);
icm.getGreens(greens);
icm.getBlues(blues);
boolean isColor = false;
for (int i=0; i<mapSize; i++) {
if ((reds[i] != greens[i]) || (greens[i] != blues[i])) {
isColor = true;
break;
}
}
return isColor;
}
/** Returns true if this image uses a pseudocolor or grayscale LUT,
in other words, is this an image that can be filtered. */
public boolean isPseudoColorLut() {
if (cm==null || !(cm instanceof IndexColorModel))
return false;
if (getMinThreshold()!=NO_THRESHOLD)
return true;
IndexColorModel icm = (IndexColorModel)cm;
int mapSize = icm.getMapSize();
if (mapSize!=256)
return false;
byte[] reds = new byte[mapSize];
byte[] greens = new byte[mapSize];
byte[] blues = new byte[mapSize];
icm.getReds(reds);
icm.getGreens(greens);
icm.getBlues(blues);
int r, g, b, d;
int r2=reds[0]&255, g2=greens[0]&255, b2=blues[0]&255;
double sum=0.0, sum2=0.0;
for (int i=0; i<mapSize; i++) {
r=reds[i]&255; g=greens[i]&255; b=blues[i]&255;
d=r-r2; sum+=d; sum2+=d*d;
d=g-g2; sum+=d; sum2+=d*d;
d=b-b2; sum+=d; sum2+=d*d;
r2=r; g2=g; b2=b;
}
double stdDev = (768*sum2-sum*sum)/768.0;
if (stdDev>0.0)
stdDev = Math.sqrt(stdDev/(767.0));
else
stdDev = 0.0;
boolean isPseudoColor = stdDev<20.0;
if ((int)stdDev==67) isPseudoColor = true; // "3-3-2 RGB" LUT
if (ij.IJ.debugMode)
ij.IJ.log("isPseudoColorLut: "+(isPseudoColor) + " " + stdDev);
return isPseudoColor;
}
/** Returns true if the image is using the default grayscale LUT. */
public boolean isDefaultLut() {
if (cm==null)
makeDefaultColorModel();
if (!(cm instanceof IndexColorModel))
return false;
IndexColorModel icm = (IndexColorModel)cm;
int mapSize = icm.getMapSize();
if (mapSize!=256)
return false;
byte[] reds = new byte[mapSize];
byte[] greens = new byte[mapSize];
byte[] blues = new byte[mapSize];
icm.getReds(reds);
icm.getGreens(greens);
icm.getBlues(blues);
boolean isDefault = true;
for (int i=0; i<mapSize; i++) {
if ((reds[i]&255)!=i || (greens[i]&255)!=i || (blues[i]&255)!=i) {
isDefault = false;
break;
}
}
return isDefault;
}
/** Sets the default fill/draw value to the pixel
value closest to the specified color. */
public abstract void setColor(Color color);
/** Sets the default fill/draw value. */
public void setColor(int value) {
setValue(value);
}
/** Sets the default fill/draw value. */
public void setColor(double value) {
setValue(value);
}
/** Sets the default fill/draw value. */
public abstract void setValue(double value);
/** Sets the background fill value used by the rotate() and scale() methods. */
public abstract void setBackgroundValue(double value);
/** Returns the background fill value. */
public abstract double getBackgroundValue();
/** Returns the smallest displayed pixel value. */
public abstract double getMin();
/** Returns the largest displayed pixel value. */
public abstract double getMax();
/** This image will be displayed by mapping pixel values in the
range min-max to screen values in the range 0-255. For
byte images, this mapping is done by updating the LUT. For
short and float images, it's done by generating 8-bit AWT
images. For RGB images, it's done by changing the pixel values. */
public abstract void setMinAndMax(double min, double max);
/** For short and float images, recalculates the min and max
image values needed to correctly display the image. For
ByteProcessors, resets the LUT. */
public void resetMinAndMax() {}
/** Sets the lower and upper threshold levels. The 'lutUpdate' argument
can be RED_LUT, BLACK_AND_WHITE_LUT, OVER_UNDER_LUT or NO_LUT_UPDATE.
Thresholding of RGB images is not supported. */
public void setThreshold(double minThreshold, double maxThreshold, int lutUpdate) {
//ij.IJ.log("setThreshold: "+" "+minThreshold+" "+maxThreshold+" "+lutUpdate);
if (this instanceof ColorProcessor)
return;
this.minThreshold = minThreshold;
this.maxThreshold = maxThreshold;
lutUpdateMode = lutUpdate;
if (minThreshold==NO_THRESHOLD) {
resetThreshold();
return;
}
if (lutUpdate==NO_LUT_UPDATE)
return;
if (rLUT1==null) {
if (cm==null)
makeDefaultColorModel();
baseCM = cm;
IndexColorModel m = (IndexColorModel)cm;
rLUT1 = new byte[256]; gLUT1 = new byte[256]; bLUT1 = new byte[256];
m.getReds(rLUT1); m.getGreens(gLUT1); m.getBlues(bLUT1);
rLUT2 = new byte[256]; gLUT2 = new byte[256]; bLUT2 = new byte[256];
}
int t1 = (int)minThreshold;
int t2 = (int)maxThreshold;
int index;
if (lutUpdate==RED_LUT)
for (int i=0; i<256; i++) {
if (i>=t1 && i<=t2) {
rLUT2[i] = (byte)255;
gLUT2[i] = (byte)0;
bLUT2[i] = (byte)0;
} else {
rLUT2[i] = rLUT1[i];
gLUT2[i] = gLUT1[i];
bLUT2[i] = bLUT1[i];
}
}
else if (lutUpdate==BLACK_AND_WHITE_LUT) {
// updated in v1.43i by Gabriel Lindini to use blackBackground setting
byte foreground = Prefs.blackBackground?(byte)255:(byte)0;
byte background = (byte)(255 - foreground);
for (int i=0; i<256; i++) {
if (i>=t1 && i<=t2) {
rLUT2[i] = foreground;
gLUT2[i] = foreground;
bLUT2[i] = foreground;
} else {
rLUT2[i] = background;
gLUT2[i] =background;
bLUT2[i] =background;
}
}
} else {
for (int i=0; i<256; i++) {
if (i>=t1 && i<=t2) {
rLUT2[i] = rLUT1[i];
gLUT2[i] = gLUT1[i];
bLUT2[i] = bLUT1[i];
} else if (i>t2) {
rLUT2[i] = (byte)overRed;
gLUT2[i] = (byte)overGreen;
bLUT2[i] = (byte)overBlue;
} else {
rLUT2[i] = (byte)underRed;
gLUT2[i] = (byte)underGreen;
bLUT2[i] = (byte)underBlue;
}
}
}
cm = new IndexColorModel(8, 256, rLUT2, gLUT2, bLUT2);
newPixels = true;
source = null;
}
public void setAutoThreshold(String mString) {
if (mString==null)
throw new IllegalArgumentException("Null method");
boolean darkBackground = mString.indexOf("dark")!=-1;
int index = mString.indexOf(" ");
if (index!=-1)
mString = mString.substring(0, index);
setAutoThreshold(mString, darkBackground, RED_LUT);
}
public void setAutoThreshold(String mString, boolean darkBackground, int lutUpdate) {
Method m = null;
try {
m = Method.valueOf(Method.class, mString);
} catch(Exception e) {
m = null;
}
if (m==null)
throw new IllegalArgumentException("Invalid method (\""+mString+"\")");
setAutoThreshold(m, darkBackground, lutUpdate);
}
public void setAutoThreshold(Method method, boolean darkBackground) {
setAutoThreshold(method, darkBackground, RED_LUT);
}
public void setAutoThreshold(Method method, boolean darkBackground, int lutUpdate) {
if (method==null || (this instanceof ColorProcessor))
return;
double min=0.0, max=0.0;
boolean notByteData = !(this instanceof ByteProcessor);
ImageProcessor ip2 = this;
if (notByteData) {
ImageProcessor mask = ip2.getMask();
Rectangle rect = ip2.getRoi();
resetMinAndMax();
min = getMin(); max = getMax();
ip2 = convertToByte(true);
ip2.setMask(mask);
ip2.setRoi(rect);
}
ImageStatistics stats = ip2.getStatistics();
AutoThresholder thresholder = new AutoThresholder();
int threshold = thresholder.getThreshold(method, stats.histogram);
double lower, upper;
if (darkBackground) {
if (isInvertedLut())
{lower=0.0; upper=threshold;}
else
{lower=threshold+1; upper=255.0;}
} else {
if (isInvertedLut())
{lower=threshold+1; upper=255.0;}
else
{lower=0.0; upper=threshold;}
}
if (lower>255) lower = 255;
if (notByteData) {
if (max>min) {
lower = min + (lower/255.0)*(max-min);
upper = min + (upper/255.0)*(max-min);
} else
lower = upper = min;
}
setThreshold(lower, upper, lutUpdate);
}
/** Automatically sets the lower and upper threshold levels, where 'method'
must be ISODATA or ISODATA2 and 'lutUpdate' must be RED_LUT,
BLACK_AND_WHITE_LUT, OVER_UNDER_LUT or NO_LUT_UPDATE.
*/
public void setAutoThreshold(int method, int lutUpdate) {
if (method<0 || method>ISODATA2)
throw new IllegalArgumentException("Invalid thresholding method");
if (this instanceof ColorProcessor)
return;
double min=0.0, max=0.0;
boolean notByteData = !(this instanceof ByteProcessor);
ImageProcessor ip2 = this;
if (notByteData) {
ImageProcessor mask = ip2.getMask();
Rectangle rect = ip2.getRoi();
resetMinAndMax();
min = getMin(); max = getMax();
ip2 = convertToByte(true);
ip2.setMask(mask);
ip2.setRoi(rect);
}
ImageStatistics stats = ip2.getStatistics();
int[] histogram = stats.histogram;
int originalModeCount = histogram[stats.mode];
if (method==ISODATA2) {
int maxCount2 = 0;
for (int i = 0; i<stats.nBins; i++) {
if ((histogram[i] > maxCount2) && (i!=stats.mode))
maxCount2 = histogram[i];
}
int hmax = stats.maxCount;
if ((hmax>(maxCount2 * 2)) && (maxCount2 != 0)) {
hmax = (int)(maxCount2 * 1.5);
histogram[stats.mode] = hmax;
}
}
int threshold = ip2.getAutoThreshold(stats.histogram);
histogram[stats.mode] = originalModeCount;
float[] hist = new float[256];
for (int i=0; i<256; i++)
hist[i] = stats.histogram[i];
FloatProcessor fp = new FloatProcessor(256, 1, hist, null);
GaussianBlur gb = new GaussianBlur();
gb.blur1Direction(fp, 2.0, 0.01, true, 0);
float maxCount=0f, sum=0f, mean, count;
int mode = 0;
for (int i=0; i<256; i++) {
count = hist[i];
sum += count;
if (count>maxCount) {
maxCount = count;
mode = i;
}
}
double avg = sum/256.0;
double lower, upper;
if (maxCount/avg>1.5) {
if ((stats.max-mode)>(mode-stats.min))
{lower=threshold; upper=255.0;}
else
{lower=0.0; upper=threshold;}
} else {
if (isInvertedLut())
{lower=threshold; upper=255.0;}
else
{lower=0.0; upper=threshold;}
}
if (notByteData) {
if (max>min) {
lower = min + (lower/255.0)*(max-min);
upper = min + (upper/255.0)*(max-min);
} else
lower = upper = min;
}
setThreshold(lower, upper, lutUpdate);
//if (notByteData && lutUpdate!=NO_LUT_UPDATE)
// setLutAnimation(true);
}
/** Disables thresholding. */
public void resetThreshold() {
minThreshold = NO_THRESHOLD;
if (baseCM!=null) {
cm = baseCM;
baseCM = null;
}
rLUT1 = rLUT2 = null;
inversionTested = false;
newPixels = true;
source = null;
}
/** Returns the lower threshold level. Returns NO_THRESHOLD
if thresholding is not enabled. */
public double getMinThreshold() {
return minThreshold;
}
/** Returns the upper threshold level. */
public double getMaxThreshold() {
return maxThreshold;
}
/** Returns the LUT update mode, which can be RED_LUT, BLACK_AND_WHITE_LUT,
OVER_UNDER_LUT or NO_LUT_UPDATE. */
public int getLutUpdateMode() {
return lutUpdateMode;
}
/* Sets the threshold levels (non-visible) of an 8-bit mask based on
the state of Prefs.blackBackground and isInvertedLut().
@see ImageProcessor#resetBinaryThreshold
*/
public void setBinaryThreshold() {
//ij.IJ.log("setMaskThreshold1");
if (!(this instanceof ByteProcessor)) return;
double t1=255.0, t2=255.0;
boolean invertedLut = isInvertedLut();
if ((invertedLut&&ij.Prefs.blackBackground) || (!invertedLut&&!ij.Prefs.blackBackground)) {
t1 = 0.0;
t2 = 0.0;
}
//ij.IJ.log("setMaskThreshold2 "+t1+" "+t2);
setThreshold(t1, t2, ImageProcessor.NO_LUT_UPDATE);
}
/** Resets the threshold if minThreshold=maxThreshold and lutUpdateMode=NO_LUT_UPDATE.
This removes the invisible threshold set by the MakeBinary and Convert to Mask commands.
@see ImageProcessor#setBinaryThreshold
*/
public void resetBinaryThreshold() {
if (minThreshold==maxThreshold && lutUpdateMode==NO_LUT_UPDATE)
resetThreshold();
}
/** Defines a rectangular region of interest and sets the mask
to null if this ROI is not the same size as the previous one.
@see ImageProcessor#resetRoi
*/
public void setRoi(Rectangle roi) {
if (roi==null)
resetRoi();
else
setRoi(roi.x, roi.y, roi.width, roi.height);
}
/** Defines a rectangular region of interest and sets the mask to
null if this ROI is not the same size as the previous one.
@see ImageProcessor#resetRoi
*/
public void setRoi(int x, int y, int rwidth, int rheight) {
if (x<0 || y<0 || x+rwidth>width || y+rheight>height) {
//find intersection of roi and this image
Rectangle r1 = new Rectangle(x, y, rwidth, rheight);
Rectangle r2 = r1.intersection(new Rectangle(0, 0, width, height));
if (r2.width<=0 || r2.height<=0) {
roiX=0; roiY=0; roiWidth=0; roiHeight=0;
xMin=0; xMax=0; yMin=0; yMax=0;
mask=null;
return;
}
if (mask!=null && mask.getWidth()==rwidth && mask.getHeight()==rheight) {
Rectangle r3 = new Rectangle(0, 0, r2.width, r2.height);
if (x<0) r3.x = -x;
if (y<0) r3.y = -y;
mask.setRoi(r3);
mask = mask.crop();
}
roiX=r2.x; roiY=r2.y; roiWidth=r2.width; roiHeight=r2.height;
} else {
roiX=x; roiY=y; roiWidth=rwidth; roiHeight=rheight;
}
if (mask!=null && (mask.getWidth()!=roiWidth||mask.getHeight()!=roiHeight))
mask = null;
//setup limits for 3x3 filters
xMin = Math.max(roiX, 1);
xMax = Math.min(roiX + roiWidth - 1, width - 2);
yMin = Math.max(roiY, 1);
yMax = Math.min(roiY + roiHeight - 1, height - 2);
}
/** Defines a non-rectangular region of interest that will consist of a
rectangular ROI and a mask. After processing, call <code>reset(mask)</code>
to restore non-masked pixels. Here is an example:
<pre>
ip.setRoi(new OvalRoi(50, 50, 100, 50));
ip.fill();
ip.reset(ip.getMask());
</pre>
The example assumes <code>snapshot()</code> has been called, which is the case
for code executed in the <code>run()</code> method of plugins that implement the
<code>PlugInFilter</code> interface.
@see ij.ImagePlus#getRoi
*/
public void setRoi(Roi roi) {
if (roi==null)
resetRoi();
else {
if (roi instanceof PointRoi && ((PointRoi)roi).getNCoordinates()==1) {
setMask(null);
FloatPolygon p = roi.getFloatPolygon();
setRoi((int)p.xpoints[0], (int)p.ypoints[0], 1, 1);
} else {
setMask(roi.getMask());
setRoi(roi.getBounds());
}
}
}
/** Defines a polygonal region of interest that will consist of a
rectangular ROI and a mask. After processing, call <code>reset(mask)</code>
to restore non-masked pixels. Here is an example:
<pre>
Polygon p = new Polygon();
p.addPoint(50, 0); p.addPoint(100, 100); p.addPoint(0, 100);
ip.setRoi(triangle);
ip.invert();
ip.reset(ip.getMask());
</pre>
The example assumes <code>snapshot()</code> has been called, which is the case
for code executed in the <code>run()</code> method of plugins that implement the
<code>PlugInFilter</code> interface.
@see ij.gui.Roi#getPolygon
@see ImageProcessor#drawPolygon
@see ImageProcessor#fillPolygon
*/
public void setRoi(Polygon roi) {
if (roi==null)
{resetRoi(); return;}
Rectangle bounds = roi.getBounds();
for (int i=0; i<roi.npoints; i++) {
roi.xpoints[i] -= bounds.x;
roi.ypoints[i] -= bounds.y;
}
PolygonFiller pf = new PolygonFiller();
pf.setPolygon(roi.xpoints, roi.ypoints, roi.npoints);
ImageProcessor mask = pf.getMask(bounds.width, bounds.height);
setMask(mask);
setRoi(bounds);
for (int i=0; i<roi.npoints; i++) {
roi.xpoints[i] += bounds.x;
roi.ypoints[i] += bounds.y;
}
}
/** Sets the ROI (Region of Interest) and clipping rectangle to the entire image. */
public void resetRoi() {
roiX=0; roiY=0; roiWidth=width; roiHeight=height;
xMin=1; xMax=width-2; yMin=1; yMax=height-2;
mask=null;
clipXMin=0; clipXMax=width-1; clipYMin=0; clipYMax=height-1;
}
/** Returns a Rectangle that represents the current
region of interest. */
public Rectangle getRoi() {
return new Rectangle(roiX, roiY, roiWidth, roiHeight);
}
/** Defines a byte mask that limits processing to an
irregular ROI. Background pixels in the mask have
a value of zero. */
public void setMask(ImageProcessor mask) {
this.mask = mask;
}
/** For images with irregular ROIs, returns a mask, otherwise,
returns null. Pixels outside the mask have a value of zero. */
public ImageProcessor getMask() {
return mask;
}
/** Returns a reference to the mask pixel array, or null if there is no mask. */
public byte[] getMaskArray() {
return mask!=null?(byte[])mask.getPixels():null;
}
/** Assigns a progress bar to this processor. Set 'pb' to
null to disable the progress bar. */
public void setProgressBar(ProgressBar pb) {
progressBar = pb;
}
/** This method has been replaced by setInterpolationMethod(). */
public void setInterpolate(boolean interpolate) {
this.interpolate = interpolate;
if (interpolate)
interpolationMethod = useBicubic?BICUBIC:BILINEAR;
else
interpolationMethod = NONE;
}
/** Use this method to set the interpolation method (NONE,
BILINEAR or BICUBIC) used by scale(), resize() and rotate(). */
public void setInterpolationMethod(int method) {
if (method<NONE || method>BICUBIC)
throw new IllegalArgumentException("Invalid interpolation method");
interpolationMethod = method;
interpolate = method!=NONE?true:false;
}
/** Returns the current interpolation method (NONE, BILINEAR or BICUBIC). */
public int getInterpolationMethod() {
return interpolationMethod;
}
public static String[] getInterpolationMethods() {
if (interpolationMethods==null)
interpolationMethods = new String[] {"None", "Bilinear", "Bicubic"};
return interpolationMethods;
}
/** Returns the value of the interpolate field. */
public boolean getInterpolate() {
return interpolate;
}
/** @deprecated */
public boolean isKillable() {
return false;
}
private void process(int op, double value) {
double SCALE = 255.0/Math.log(255.0);
int v;
int[] lut = new int[256];
for (int i=0; i<256; i++) {
switch(op) {
case INVERT:
v = 255 - i;
break;
case FILL:
v = fgColor;
break;
case SET:
v = (int)value;
break;
case ADD:
v = i + (int)value;
break;
case MULT:
v = (int)Math.round(i * value);
break;
case AND:
v = i & (int)value;
break;
case OR:
v = i | (int)value;
break;
case XOR:
v = i ^ (int)value;
break;
case GAMMA:
v = (int)(Math.exp(Math.log(i/255.0)*value)*255.0);
break;
case LOG:
if (i==0)
v = 0;
else
v = (int)(Math.log(i) * SCALE);
break;
case EXP:
v = (int)(Math.exp(i/SCALE));
break;
case SQR:
v = i*i;
break;
case SQRT:
v = (int)Math.sqrt(i);
break;
case MINIMUM:
if (i<value)
v = (int)value;
else
v = i;
break;
case MAXIMUM:
if (i>value)
v = (int)value;
else
v = i;
break;
default:
v = i;
}
if (v < 0)
v = 0;
if (v > 255)
v = 255;
lut[i] = v;
}
applyTable(lut);
}
/**
Returns an array containing the pixel values along the
line starting at (x1,y1) and ending at (x2,y2). For byte
and short images, returns calibrated values if a calibration
table has been set using setCalibrationTable().
@see ImageProcessor#setInterpolate
*/
public double[] getLine(double x1, double y1, double x2, double y2) {
double dx = x2-x1;
double dy = y2-y1;
int n = (int)Math.round(Math.sqrt(dx*dx + dy*dy));
double xinc = dx/n;
double yinc = dy/n;
if (!((xinc==0&&n==height) || (yinc==0&&n==width)))
n++;
double[] data = new double[n];
double rx = x1;
double ry = y1;
if (interpolate) {
for (int i=0; i<n; i++) {
data[i] = getInterpolatedValue(rx, ry);
rx += xinc;
ry += yinc;
}
} else {
for (int i=0; i<n; i++) {
data[i] = getPixelValue((int)(rx+0.5), (int)(ry+0.5));
rx += xinc;
ry += yinc;
}
}
return data;
}
/** Returns the pixel values along the horizontal line starting at (x,y). */
public void getRow(int x, int y, int[] data, int length) {
for (int i=0; i<length; i++)
data[i] = getPixel(x++, y);
}
/** Returns the pixel values along the horizontal line starting at (x,y). */
public float[] getRow(int x, int y, float[] data, int length) {
if (data==null)
data = new float[length];
for (int i=0; i<length; i++)
data[i] = getf(x++, y);
return data;
}
/** Returns the pixel values down the column starting at (x,y). */
public void getColumn(int x, int y, int[] data, int length) {
for (int i=0; i<length; i++)
data[i] = getPixel(x, y++);
}
/** Inserts the pixels contained in 'data' into a
horizontal line starting at (x,y). */
public void putRow(int x, int y, int[] data, int length) {
for (int i=0; i<length; i++)
putPixel(x++, y, data[i]);
}
/** Inserts the pixels contained in 'data' into a
horizontal line starting at (x,y). */
public void putRow(int x, int y, float[] data, int length) {
for (int i=0; i<length; i++)
setf(x++, y, data[i]);
}
/** Inserts the pixels contained in 'data' into a
column starting at (x,y). */
public void putColumn(int x, int y, int[] data, int length) {
//if (x>=0 && x<width && y>=0 && (y+length)<=height)
// ((ShortProcessor)this).putColumn2(x, y, data, length);
//else
for (int i=0; i<length; i++)
putPixel(x, y++, data[i]);
}
/**
Sets the current drawing location.
@see ImageProcessor#lineTo
@see ImageProcessor#drawString
*/
public void moveTo(int x, int y) {
cx = x;
cy = y;
}
/** Sets the line width used by lineTo() and drawDot(). */
public void setLineWidth(int width) {
lineWidth = width;
if (lineWidth<1) lineWidth = 1;
}
/** Returns the current line width. */
public int getLineWidth() {
return lineWidth;
}
/** Draws a line from the current drawing location to (x2,y2). */
public void lineTo(int x2, int y2) {
int dx = x2-cx;
int dy = y2-cy;
int absdx = dx>=0?dx:-dx;
int absdy = dy>=0?dy:-dy;
int n = absdy>absdx?absdy:absdx;
double xinc = (double)dx/n;
double yinc = (double)dy/n;
double x = cx;
double y = cy;
n++;
cx = x2; cy = y2;
if (n>1000000) return;
do {
if (lineWidth==1)
drawPixel((int)Math.round(x), (int)Math.round(y));
else if (lineWidth==2)
drawDot2((int)Math.round(x), (int)Math.round(y));
else
drawDot((int)x, (int)y);
x += xinc;
y += yinc;
} while (--n>0);
//if (lineWidth>2) resetRoi();
}
/** Draws a line from (x1,y1) to (x2,y2). */
public void drawLine(int x1, int y1, int x2, int y2) {
moveTo(x1, y1);
lineTo(x2, y2);
}
/** Draws a rectangle. */
public void drawRect(int x, int y, int width, int height) {
if (width<1 || height<1)
return;
if (lineWidth==1) {
moveTo(x, y);
lineTo(x+width-1, y);
lineTo(x+width-1, y+height-1);
lineTo(x, y+height-1);
lineTo(x, y);
} else {
moveTo(x, y);
lineTo(x+width, y);
lineTo(x+width, y+height);
lineTo(x, y+height);
lineTo(x, y);
}
}
/** Draws an elliptical shape. */
public void drawOval(int x, int y, int width, int height) {
if ((long)width*height>4*this.width*this.height) return;
OvalRoi oval = new OvalRoi(x, y, width, height);
drawPolygon(oval.getPolygon());
}
/** Fills an elliptical shape. */
public void fillOval(int x, int y, int width, int height) {
if ((long)width*height>4*this.width*this.height) return;
OvalRoi oval = new OvalRoi(x, y, width, height);
fillPolygon(oval.getPolygon());
}
/** Draws a polygon. */
public void drawPolygon(Polygon p) {
moveTo(p.xpoints[0], p.ypoints[0]);
for (int i=0; i<p.npoints; i++)
lineTo(p.xpoints[i], p.ypoints[i]);
lineTo(p.xpoints[0], p.ypoints[0]);
}
/** Fills a polygon. */
public void fillPolygon(Polygon p) {
setRoi(p);
fill(getMask());
resetRoi();
}
/** @deprecated */
public void drawDot2(int x, int y) {
drawPixel(x, y);
drawPixel(x-1, y);
drawPixel(x, y-1);
drawPixel(x-1, y-1);
}
/** Draws a dot using the current line width and fill/draw value. */
public void drawDot(int xcenter, int ycenter) {
double r = lineWidth/2.0;
int xmin=(int)(xcenter-r+0.5), ymin=(int)(ycenter-r+0.5);
int xmax=xmin+lineWidth, ymax=ymin+lineWidth;
if (xmin<clipXMin || ymin<clipYMin || xmax>clipXMax || ymax>clipYMax ) {
// draw edge dot
double r2 = r*r;
r -= 0.5;
double xoffset=xmin+r, yoffset=ymin+r;
double xx, yy;
for (int y=ymin; y<ymax; y++) {
for (int x=xmin; x<xmax; x++) {
xx = x-xoffset; yy = y-yoffset;
if (xx*xx+yy*yy<=r2)
drawPixel(x, y);
}
}
} else {
if (dotMask==null || lineWidth!=dotMask.getWidth()) {
OvalRoi oval = new OvalRoi(0, 0, lineWidth, lineWidth);
dotMask = oval.getMask();
}
setRoi(xmin, ymin, lineWidth, lineWidth);
fill(dotMask);
}
}
private ImageProcessor dotMask;
private void setupFontMetrics() {
if (fmImage==null)
fmImage=new BufferedImage(1, 1, BufferedImage.TYPE_INT_RGB);
if (fontMetrics==null) {
Graphics g = fmImage.getGraphics();
fontMetrics = g.getFontMetrics(font);
}
}
/** Draws a string at the current location using the current fill/draw value.
Draws multiple lines if the string contains newline characters. */
public void drawString(String s) {
if (s==null || s.equals("")) return;
setupFontMetrics();
if (ij.IJ.isMacOSX()) s += " ";
if (s.indexOf("\n")==-1)
drawString2(s);
else {
String[] s2 = Tools.split(s, "\n");
for (int i=0; i<s2.length; i++)
drawString2(s2[i]);
}
}
private void drawString2(String s) {
int w = getStringWidth(s);
int cxx = cx;
if (justification==CENTER_JUSTIFY)
cxx -= w/2;
else if (justification==RIGHT_JUSTIFY)
cxx -= w;
int h = fontMetrics.getHeight();
if (w<=0 || h<=0) return;
Image bi = new BufferedImage(w, h, BufferedImage.TYPE_INT_RGB);
Graphics g = bi.getGraphics();
FontMetrics metrics = g.getFontMetrics(font);
int fontHeight = metrics.getHeight();
int descent = metrics.getDescent();
g.setFont(font);
if (antialiasedText && cxx>=00 && cy-h>=0) {
Java2.setAntialiasedText(g, true);
setRoi(cxx, cy-h, w, h);
ImageProcessor ip = crop();
resetRoi();
if (ip.getWidth()==0||ip.getHeight()==0)
return;
g.drawImage(ip.createImage(), 0, 0, null);
g.setColor(drawingColor);
g.drawString(s, 0, h-descent);
g.dispose();
ip = new ColorProcessor(bi);
if (this instanceof ByteProcessor) {
ip = ip.convertToByte(false);
if (isInvertedLut()) ip.invert();
}
//new ij.ImagePlus("ip",ip).show();
insert(ip, cxx, cy-h);
cy += h;
return;
}
Java2.setAntialiasedText(g, false);
g.setColor(Color.white);
g.fillRect(0, 0, w, h);
g.setColor(Color.black);
g.drawString(s, 0, h-descent);
g.dispose();
ImageProcessor ip = new ColorProcessor(bi);
ImageProcessor textMask = ip.convertToByte(false);
byte[] mpixels = (byte[])textMask.getPixels();
//new ij.ImagePlus("textmask",textMask).show();
textMask.invert();
if (cxx<width && cy-h<height) {
setMask(textMask);
setRoi(cxx,cy-h,w,h);
fill(getMask());
}
resetRoi();
cy += h;
}
/** Draws a string at the specified location using the current fill/draw value. */
public void drawString(String s, int x, int y) {
moveTo(x, y);
drawString(s);
}
/** Draws a string at the specified location with a filled background.
A JavaScript example is available at
http://imagej.nih.gov/ij/macros/js/DrawTextWithBackground.js
*/
public void drawString(String s, int x, int y, Color background) {
Color foreground = drawingColor;
FontMetrics metrics = getFontMetrics();
int w = 0;
int h = metrics.getAscent() + metrics.getDescent();
int y2 = y;
if (s.indexOf("\n")!=-1) {
String[] s2 = Tools.split(s, "\n");
for (int i=0; i<s2.length; i++) {
int w2 = getStringWidth(s2[i]);
if (w2>w) w = w2;
}
int h2 = metrics.getHeight();
y2 += h2*(s2.length-1);
h += h2*(s2.length-1);
} else
w = getStringWidth(s);
int x2 = x;
if (justification==CENTER_JUSTIFY)
x2 -= w/2;
else if (justification==RIGHT_JUSTIFY)
x2 -= w;
setColor(background);
setRoi(x2, y2-h, w, h);
fill();
resetRoi();
setColor(foreground);
drawString(s, x, y);
}
/** Sets the justification used by drawString(), where <code>justification</code>
is CENTER_JUSTIFY, RIGHT_JUSTIFY or LEFT_JUSTIFY. The default is LEFT_JUSTIFY. */
public void setJustification(int justification) {
this.justification = justification;
}
/** Sets the font used by drawString(). */
public void setFont(Font font) {
this.font = font;
fontMetrics = null;
boldFont = font.isBold();
}
/** Specifies whether or not text is drawn using antialiasing. Antialiased
test requires an 8 bit or RGB image. Antialiasing does not
work with 8-bit images that are not using 0-255 display range. */
public void setAntialiasedText(boolean antialiasedText) {
if (antialiasedText && (((this instanceof ByteProcessor)&&getMin()==0.0&&getMax()==255.0) || (this instanceof ColorProcessor)))
this.antialiasedText = true;
else
this.antialiasedText = false;
}
/** Returns the width in pixels of the specified string. */
public int getStringWidth(String s) {
setupFontMetrics();
int w;
if (antialiasedText) {
Graphics g = fmImage.getGraphics();
if (g==null) {
fmImage = null;
setupFontMetrics();
g = fmImage.getGraphics();
}
Java2.setAntialiasedText(g, true);
w = Java2.getStringWidth(s, fontMetrics, g);
g.dispose();
} else
w = fontMetrics.stringWidth(s);
return w;
}
/** Returns the current font. */
public Font getFont() {
setupFontMetrics();
return font;
}
/** Returns the current FontMetrics. */
public FontMetrics getFontMetrics() {
setupFontMetrics();
return fontMetrics;
}
/** Replaces each pixel with the 3x3 neighborhood mean. */
public void smooth() {
if (width>1)
filter(BLUR_MORE);
}
/** Sharpens the image or ROI using a 3x3 convolution kernel. */
public void sharpen() {
if (width>1) {
int[] kernel = {-1, -1, -1,
-1, 12, -1,
-1, -1, -1};
convolve3x3(kernel);
}
}
/** Finds edges in the image or ROI using a Sobel operator. */
public void findEdges() {
if (width>1)
filter(FIND_EDGES);
}
/** Flips the image or ROI vertically. */
public abstract void flipVertical();
/** Flips the image or ROI horizontally. */
public void flipHorizontal() {
int[] col1 = new int[roiHeight];
int[] col2 = new int[roiHeight];
for (int x=0; x<roiWidth/2; x++) {
getColumn(roiX+x, roiY, col1, roiHeight);
getColumn(roiX+roiWidth-x-1, roiY, col2, roiHeight);
putColumn(roiX+x, roiY, col2, roiHeight);
putColumn(roiX+roiWidth-x-1, roiY, col1, roiHeight);
}
}
/** Rotates the entire image 90 degrees clockwise. Returns
a new ImageProcessor that represents the rotated image. */
public ImageProcessor rotateRight() {
int width2 = height;
int height2 = width;
ImageProcessor ip2 = createProcessor(width2, height2);
int[] arow = new int[width];
for (int row=0; row<height; row++) {
getRow(0, row, arow, width);
ip2.putColumn(width2-row-1, 0, arow, height2);
}
return ip2;
}
/** Rotates the entire image 90 degrees counter-clockwise. Returns
a new ImageProcessor that represents the rotated image. */
public ImageProcessor rotateLeft() {
int width2 = height;
int height2 = width;
ImageProcessor ip2 = createProcessor(width2, height2);
int[] arow = new int[width];
int[] arow2 = new int[width];
for (int row=0; row<height; row++) {
getRow(0, row, arow, width);
for (int i=0; i<width; i++) {
arow2[i] = arow[width-i-1];
}
ip2.putColumn(row, 0, arow2, height2);
}
return ip2;
}
/** Inserts the image contained in 'ip' at (xloc, yloc). */
public void insert(ImageProcessor ip, int xloc, int yloc) {
copyBits(ip, xloc, yloc, Blitter.COPY);
}
/** Returns a string containing information about this ImageProcessor. */
public String toString() {
return ("ip[width="+width+", height="+height+", bits="+getBitDepth()+", min="+getMin()+", max="+getMax()+"]");
}
/** Fills the image or ROI bounding rectangle with the current fill/draw value. Use
* fill(Roi) or fill(ip.getMask()) to fill non-rectangular selections.
* @see #setColor(Color)
* @see #setValue(double)
* @see #fill(Roi)
*/
public void fill() {
process(FILL, 0.0);
}
/** Fills pixels that are within the ROI bounding rectangle and part of
* the mask (i.e. pixels that have a value=BLACK in the mask array).
* Use ip.getMask() to acquire the mask.
* Throws and IllegalArgumentException if the mask is null or
* the size of the mask is not the same as the size of the ROI.
* @see #setColor(Color)
* @see #setValue(double)
* @see #getMask
* @see #fill(Roi)
*/
public abstract void fill(ImageProcessor mask);
/** Fills the ROI with the current fill/draw value.
* @see #setColor(Color)
* @see #setValue(double)
* @see #fill(Roi)
*/
public void fill(Roi roi) {
ImageProcessor m = getMask();
Rectangle r = getRoi();
setRoi(roi);
fill(getMask());
setMask(m);
setRoi(r);
}
/** Fills outside an Roi. */
public void fillOutside(Roi roi) {
if (roi==null || !roi.isArea()) return;
ImageProcessor m = getMask();
Rectangle r = getRoi();
ShapeRoi s1, s2;
if (roi instanceof ShapeRoi)
s1 = (ShapeRoi)roi;
else
s1 = new ShapeRoi(roi);
s2 = new ShapeRoi(new Roi(0,0, width, height));
setRoi(s1.xor(s2));
fill(getMask());
setMask(m);
setRoi(r);
}
/** Draws the specified ROI on this image using the line
width and color defined by ip.setLineWidth() and ip.setColor().
@see ImageProcessor#drawRoi
*/
public void draw(Roi roi) {
roi.drawPixels(this);
}
/** Draws the specified ROI on this image using the stroke
width, stroke color and fill color defined by roi.setStrokeWidth,
roi.setStrokeColor() and roi.setFillColor(). Works best with RGB
images. Does not work with 16-bit and float images.
Requires Java 1.6.
@see ImageProcessor#draw
@see ImageProcessor#drawOverlay
*/
public void drawRoi(Roi roi) {
Image img = createImage();
Graphics g = img.getGraphics();
ij.ImagePlus imp = roi.getImage();
if (imp!=null) {
roi.setImage(null);
roi.drawOverlay(g);
roi.setImage(imp);
} else
roi.drawOverlay(g);
}
/** Draws the specified Overlay on this image. Works best
with RGB images. Does not work with 16-bit and float
images. Requires Java 1.6.
@see ImageProcessor#drawRoi
*/
public void drawOverlay(Overlay overlay) {
Roi[] rois = overlay.toArray();
for (int i=0; i<rois.length; i++)
drawRoi(rois[i]);
}
/** Set a lookup table used by getPixelValue(), getLine() and
convertToFloat() to calibrate pixel values. The length of
the table must be 256 for byte images and 65536 for short
images. RGB and float processors do not do calibration.
@see ij.measure.Calibration#setCTable
*/
public void setCalibrationTable(float[] cTable) {
this.cTable = cTable;
}
/** Returns the calibration table or null. */
public float[] getCalibrationTable() {
return cTable;
}
/** Set the number of bins to be used for histograms of float images. */
public void setHistogramSize(int size) {
histogramSize = size;
if (histogramSize<1) histogramSize = 1;
}
/** Returns the number of float image histogram bins. The bin
count is fixed at 256 for the other three data types. */
public int getHistogramSize() {
return histogramSize;
}
/** Set the range used for histograms of float images. The image range is
used if both <code>histMin</code> and <code>histMax</code> are zero. */
public void setHistogramRange(double histMin, double histMax) {
if (histMin>histMax) {
histMin = 0.0;
histMax = 0.0;
}
histogramMin = histMin;
histogramMax = histMax;
}
/** Returns the minimum histogram value used for histograms of float images. */
public double getHistogramMin() {
return histogramMin;
}
/** Returns the maximum histogram value used for histograms of float images. */
public double getHistogramMax() {
return histogramMax;
}
/** Returns a reference to this image's pixel array. The
array type (byte[], short[], float[] or int[]) varies
depending on the image type. */
public abstract Object getPixels();
/** Returns a copy of the pixel data. Or returns a reference to the
snapshot buffer if it is not null and 'snapshotCopyMode' is true.
@see ImageProcessor#snapshot
@see ImageProcessor#setSnapshotCopyMode
*/
public abstract Object getPixelsCopy();
/** Returns the value of the pixel at (x,y). For RGB images, the
argb values are packed in an int. For float images, the
the value must be converted using Float.intBitsToFloat().
Returns zero if either the x or y coodinate is out of range. */
public abstract int getPixel(int x, int y);
public int getPixelCount() {
return width*height;
}
/** This is a faster version of getPixel() that does not do bounds checking. */
public abstract int get(int x, int y);
public abstract int get(int index);
/** This is a faster version of putPixel() that does not clip
out of range values and does not do bounds checking. */
public abstract void set(int x, int y, int value);
public abstract void set(int index, int value);
/** Returns the value of the pixel at (x,y) as a float. Faster than
getPixel() because no bounds checking is done. */
public abstract float getf(int x, int y);
public abstract float getf(int index);
/** Sets the value of the pixel at (x,y) to 'value'. Does no bounds
checking or clamping, making it faster than putPixel(). Due to the lack
of bounds checking, (x,y) coordinates outside the image may cause
an exception. Due to the lack of clamping, values outside the 0-255
range (for byte) or 0-65535 range (for short) are not handled correctly.
*/
public abstract void setf(int x, int y, float value);
public abstract void setf(int index, float value);
/** Returns a copy of the pixel data as a 2D int array with
dimensions [x=0..width-1][y=0..height-1]. With RGB
images, the returned values are in packed ARGB format.
With float images, the returned values must be converted
to float using Float.intBitsToFloat(). */
public int[][] getIntArray() {
int[][] a = new int [width][height];
for(int y=0; y<height; y++) {
for(int x=0; x<width; x++)
a[x][y]=get(x,y);
}
return a;
}
/** Replaces the pixel data with contents of the specified 2D int array. */
public void setIntArray(int[][] a) {
for(int y=0; y<height; y++) {
for(int x=0; x<width; x++)
set(x, y, a[x][y]);
}
}
/** Returns a copy of the pixel data as a 2D float
array with dimensions [x=0..width-1][y=0..height-1]. */
public float[][] getFloatArray() {
float[][] a = new float[width][height];
for(int y=0; y<height; y++) {
for(int x=0; x<width; x++)
a[x][y]=getf(x,y);
}
return a;
}
/** Replaces the pixel data with contents of the specified 2D float array. */
public void setFloatArray(float[][] a) {
for(int y=0; y<height; y++) {
for(int x=0; x<width; x++)
setf(x, y, a[x][y]);
}
}
/** Experimental */
public void getNeighborhood(int x, int y, double[][] arr) {
int nx=arr.length;
int ny=arr[0].length;
int nx2 = (nx-1)/2;
int ny2 = (ny-1)/2;
if (x>=nx2 && y>=ny2 && x<width-nx2-1 && y<height-ny2-1) {
int index = (y-ny2)*width + (x-nx2);
for (int y2=0; y2<ny; y2++) {
for (int x2=0; x2<nx; x2++)
arr[x2][y2] = getf(index++);
index += (width - nx);
}
} else {
for (int y2=0; y2<ny; y2++) {
for (int x2=0; x2<nx; x2++)
arr[x2][y2] = getPixelValue(x2, y2);
}
}
}
/** Returns the samples for the pixel at (x,y) in an int array.
RGB pixels have three samples, all others have one.
Returns zeros if the the coordinates are not in bounds.
iArray is an optional preallocated array. */
public int[] getPixel(int x, int y, int[] iArray) {
if (iArray==null) iArray = new int[1];
iArray[0] = getPixel(x, y);
return iArray;
}
/** Sets a pixel in the image using an int array of samples.
RGB pixels have three samples, all others have one. */
public void putPixel(int x, int y, int[] iArray) {
putPixel(x, y, iArray[0]);
}
/** Uses the current interpolation method (bilinear or bicubic)
to find the pixel value at real coordinates (x,y). */
public abstract double getInterpolatedPixel(double x, double y);
/** Uses the current interpolation method to find the pixel value at real coordinates (x,y).
For RGB images, the argb values are packed in an int. For float images,
the value must be converted using Float.intBitsToFloat(). Returns zero
if the (x, y) is not inside the image. */
public abstract int getPixelInterpolated(double x, double y);
/** Uses bilinear interpolation to find the pixel value at real coordinates (x,y).
Returns zero if the (x, y) is not inside the image. */
public final double getInterpolatedValue(double x, double y) {
if (useBicubic)
return getBicubicInterpolatedPixel(x, y, this);
if (x<0.0 || x>=width-1.0 || y<0.0 || y>=height-1.0) {
if (x<-1.0 || x>=width || y<-1.0 || y>=height)
return 0.0;
else
return getInterpolatedEdgeValue(x, y);
}
int xbase = (int)x;
int ybase = (int)y;
double xFraction = x - xbase;
double yFraction = y - ybase;
if (xFraction<0.0) xFraction = 0.0;
if (yFraction<0.0) yFraction = 0.0;
double lowerLeft = getPixelValue(xbase, ybase);
double lowerRight = getPixelValue(xbase+1, ybase);
double upperRight = getPixelValue(xbase+1, ybase+1);
double upperLeft = getPixelValue(xbase, ybase+1);
double upperAverage = upperLeft + xFraction * (upperRight - upperLeft);
double lowerAverage = lowerLeft + xFraction * (lowerRight - lowerLeft);
return lowerAverage + yFraction * (upperAverage - lowerAverage);
}
/** This method is from Chapter 16 of "Digital Image Processing:
An Algorithmic Introduction Using Java" by Burger and Burge
(http://www.imagingbook.com/). */
public double getBicubicInterpolatedPixel(double x0, double y0, ImageProcessor ip2) {
int u0 = (int) Math.floor(x0); //use floor to handle negative coordinates too
int v0 = (int) Math.floor(y0);
if (u0<=0 || u0>=width-2 || v0<=0 || v0>=height-2)
return ip2.getBilinearInterpolatedPixel(x0, y0);
double q = 0;
for (int j = 0; j <= 3; j++) {
int v = v0 - 1 + j;
double p = 0;
for (int i = 0; i <= 3; i++) {
int u = u0 - 1 + i;
p = p + ip2.get(u,v) * cubic(x0 - u);
}
q = q + p * cubic(y0 - v);
}
return q;
}
final double getBilinearInterpolatedPixel(double x, double y) {
if (x>=-1 && x<width && y>=-1 && y<height) {
int method = interpolationMethod;
interpolationMethod = BILINEAR;
double value = getInterpolatedPixel(x, y);
interpolationMethod = method;
return value;
} else
return getBackgroundValue();
}
static final double a = 0.5; // Catmull-Rom interpolation
public static final double cubic(double x) {
if (x < 0.0) x = -x;
double z = 0.0;
if (x < 1.0)
z = x*x*(x*(-a+2.0) + (a-3.0)) + 1.0;
else if (x < 2.0)
z = -a*x*x*x + 5.0*a*x*x - 8.0*a*x + 4.0*a;
return z;
}
/*
// a = 0.5
double cubic2(double x) {
if (x < 0) x = -x;
double z = 0;
if (x < 1)
z = 1.5*x*x*x + -2.5*x*x + 1.0;
else if (x < 2)
z = -0.5*x*x*x + 2.5*x*x - 4.0*x + 2.0;
return z;
}
*/
private final double getInterpolatedEdgeValue(double x, double y) {
int xbase = (int)x;
int ybase = (int)y;
double xFraction = x - xbase;
double yFraction = y - ybase;
if (xFraction<0.0) xFraction = 0.0;
if (yFraction<0.0) yFraction = 0.0;
double lowerLeft = getEdgeValue(xbase, ybase);
double lowerRight = getEdgeValue(xbase+1, ybase);
double upperRight = getEdgeValue(xbase+1, ybase+1);
double upperLeft = getEdgeValue(xbase, ybase+1);
double upperAverage = upperLeft + xFraction * (upperRight - upperLeft);
double lowerAverage = lowerLeft + xFraction * (lowerRight - lowerLeft);
return lowerAverage + yFraction * (upperAverage - lowerAverage);
}
private float getEdgeValue(int x, int y) {
if (x<=0) x = 0;
if (x>=width) x = width-1;
if (y<=0) y = 0;
if (y>=height) y = height-1;
return getPixelValue(x, y);
}
/** Stores the specified value at (x,y). Does
nothing if (x,y) is outside the image boundary.
For 8-bit and 16-bit images, out of range values
are clamped. For RGB images, the
argb values are packed in 'value'. For float images,
'value' is expected to be a float converted to an int
using Float.floatToIntBits(). */
public abstract void putPixel(int x, int y, int value);
/** Returns the value of the pixel at (x,y). For byte and short
images, returns a calibrated value if a calibration table
has been set using setCalibraionTable(). For RGB images,
returns the luminance value. */
public abstract float getPixelValue(int x, int y);
/** Stores the specified value at (x,y). */
public abstract void putPixelValue(int x, int y, double value);
/** Sets the pixel at (x,y) to the current fill/draw value. */
public abstract void drawPixel(int x, int y);
/** Sets a new pixel array for the image. The length of the array must be equal to width*height.
Use setSnapshotPixels(null) to clear the snapshot buffer. */
public abstract void setPixels(Object pixels);
/** Copies the image contained in 'ip' to (xloc, yloc) using one of
the transfer modes defined in the Blitter interface. */
public abstract void copyBits(ImageProcessor ip, int xloc, int yloc, int mode);
/** Transforms the image or ROI using a lookup table. The
length of the table must be 256 for byte images and
65536 for short images. RGB and float images are not
supported. */
public abstract void applyTable(int[] lut);
/** Inverts the image or ROI. */
public void invert() {process(INVERT, 0.0);}
/** Adds 'value' to each pixel in the image or ROI. */
public void add(int value) {process(ADD, value);}
/** Adds 'value' to each pixel in the image or ROI. */
public void add(double value) {process(ADD, value);}
/** Subtracts 'value' from each pixel in the image or ROI. */
public void subtract(double value) {
add(-value);
}
/** Multiplies each pixel in the image or ROI by 'value'. */
public void multiply(double value) {process(MULT, value);}
/** Assigns 'value' to each pixel in the image or ROI. */
public void set(double value) {process(SET, value);}
/** Binary AND of each pixel in the image or ROI with 'value'. */
public void and(int value) {process(AND, value);}
/** Binary OR of each pixel in the image or ROI with 'value'. */
public void or(int value) {process(OR, value);}
/** Binary exclusive OR of each pixel in the image or ROI with 'value'. */
public void xor(int value) {process(XOR, value);}
/** Performs gamma correction of the image or ROI. */
public void gamma(double value) {process(GAMMA, value);}
/** Does a natural logarithmic (base e) transform of the image or ROI. */
public void log() {process(LOG, 0.0);}
/** Does a natural logarithmic (base e) transform of the image or ROI. */
public void ln() {log();}
/** Performs a exponential transform on the image or ROI. */
public void exp() {process(EXP, 0.0);}
/** Performs a square transform on the image or ROI. */
public void sqr() {process(SQR, 0.0);}
/** Performs a square root transform on the image or ROI. */
public void sqrt() {process(SQRT, 0.0);}
/** If this is a 32-bit or signed 16-bit image, performs an
absolute value transform, otherwise does nothing. */
public void abs() {}
/** Pixels less than 'value' are set to 'value'. */
public void min(double value) {process(MINIMUM, value);}
/** Pixels greater than 'value' are set to 'value'. */
public void max(double value) {process(MAXIMUM, value);}
/** Returns a copy of this image is the form of an AWT Image. */
public abstract Image createImage();
/** Returns this image as a BufferedImage. */
public BufferedImage getBufferedImage() {
BufferedImage bi = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB);
Graphics2D g = (Graphics2D)bi.getGraphics();
g.drawImage(createImage(), 0, 0, null);
return bi;
}
/** Returns a new, blank processor with the specified width and height. */
public abstract ImageProcessor createProcessor(int width, int height);
/** Makes a copy of this image's pixel data that can be
later restored using reset() or reset(mask).
@see ImageProcessor#reset
@see ImageProcessor#reset(ImageProcessor)
*/
public abstract void snapshot();
/** Restores the pixel data from the snapshot (undo) buffer. */
public abstract void reset();
/** Swaps the pixel and snapshot (undo) buffers. */
public abstract void swapPixelArrays();
/** Restores pixels from the snapshot buffer that are
within the rectangular roi but not part of the mask. */
public abstract void reset(ImageProcessor mask);
/** Sets a new pixel array for the snapshot (undo) buffer. */
public abstract void setSnapshotPixels(Object pixels);
/** Returns a reference to the snapshot (undo) buffer, or null. */
public abstract Object getSnapshotPixels();
/** Convolves the image or ROI with the specified
3x3 integer convolution kernel. */
public abstract void convolve3x3(int[] kernel);
/** A 3x3 filter operation, where the argument (BLUR_MORE, FIND_EDGES,
MEDIAN_FILTER, MIN or MAX) determines the filter type. */
public abstract void filter(int type);
/** A 3x3 median filter. Requires 8-bit or RGB image. */
public abstract void medianFilter();
/** Adds pseudorandom, Gaussian ("normally") distributed values, with
mean 0.0 and the specified standard deviation, to this image or ROI. */
public abstract void noise(double standardDeviation);
/** Creates a new processor containing an image
that corresponds to the current ROI. */
public abstract ImageProcessor crop();
/** Sets pixels less than or equal to level to 0 and all other
pixels to 255. Only works with 8-bit and 16-bit images. */
public abstract void threshold(int level);
/** Returns a duplicate of this image. */
public abstract ImageProcessor duplicate();
/** Scales the image by the specified factors. Does not
change the image size.
@see ImageProcessor#setInterpolate
@see ImageProcessor#resize
*/
public abstract void scale(double xScale, double yScale);
/** Creates a new ImageProcessor containing a scaled copy of this image or ROI.
@see ij.process.ImageProcessor#setInterpolate
*/
public abstract ImageProcessor resize(int dstWidth, int dstHeight);
/** Creates a new ImageProcessor containing a scaled copy
of this image or ROI, with the aspect ratio maintained. */
public ImageProcessor resize(int dstWidth) {
return resize(dstWidth, (int)(dstWidth*((double)roiHeight/roiWidth)));
}
/** Creates a new ImageProcessor containing a scaled copy of this image or ROI.
@param dstWidth Image width of the resulting ImageProcessor
@param dstHeight Image height of the resulting ImageProcessor
@param useAverging True means that the averaging occurs to avoid
aliasing artifacts; the kernel shape for averaging is determined by
the interpolationMethod. False if subsampling without any averaging
should be used on downsizing. Has no effect on upsizing.
@see ImageProcessor#setInterpolationMethod
Author: Michael Schmid
*/
public ImageProcessor resize(int dstWidth, int dstHeight, boolean useAverging) {
Rectangle r = getRoi();
int rWidth = r.width;
int rHeight = r.height;
if ((dstWidth>=rWidth && dstHeight>=rHeight) || !useAverging)
return resize(dstWidth, dstHeight); //upsizing or downsizing without averaging
else { //downsizing with averaging in at least one direction: convert to float
ImageProcessor ip2 = createProcessor(dstWidth, dstHeight);
FloatProcessor fp = null;
for (int channelNumber=0; channelNumber<getNChannels(); channelNumber++) {
fp = toFloat(channelNumber, fp);
fp.setInterpolationMethod(interpolationMethod);
fp.setRoi(getRoi());
FloatProcessor fp2 = fp.downsize(dstWidth, dstHeight);
ip2.setPixels(channelNumber, fp2);
}
return ip2;
}
}
/** Use linear interpolation to resize images that have a width or height of one. */
protected ImageProcessor resizeLinearly(int width2, int height2) {
int bitDepth = getBitDepth();
ImageProcessor ip1 = this;
boolean rotate = width==1;
if (rotate) {
ip1=ip1.rotateLeft();
int w2 = width2;
width2 = height2;
height2 = w2;
}
ip1 = ip1.convertToFloat();
int width1 = ip1.getWidth();
int height1 = ip1.getHeight();
ImageProcessor ip2 = ip1.createProcessor(width2, height2);
double scale = (double)(width1-1)/(width2-1);
float[] data1 = new float[width1];
float[] data2 = new float[width2];
ip1.getRow(0, 0, data1, width1);
double fraction;
for (int x=0; x<width2; x++) {
int x1 = (int)(x*scale);
int x2 = x1+1;
if (x2==width1) x2=width1-1;
fraction = x*scale - x1;
//ij.IJ.log(x+" "+x1+" "+x2+" "+fraction+" "+width1+" "+width2);
data2[x] = (float)((1.0-fraction)*data1[x1] + fraction*data1[x2]);
}
for (int y=0; y<height2; y++)
ip2.putRow(0, y, data2, width2);
if (bitDepth==8)
ip2 = ip2.convertToByte(false);
else if (bitDepth==16)
ip2 = ip2.convertToShort(false);
if (rotate)
ip2=ip2.rotateRight();
return ip2;
}
/** Returns a copy of this image that has been reduced in size using binning. */
public ImageProcessor bin(int shrinkFactor) {
return new Binner().shrink(this, shrinkFactor, shrinkFactor, 0);
}
/** Rotates the image or selection 'angle' degrees clockwise.
@see ImageProcessor#setInterpolationMethod
@see ImageProcessor#setBackgroundValue
*/
public abstract void rotate(double angle);
/** Moves the image or selection vertically or horizontally by a specified
number of pixels. Positive x values move the image or selection to the
right, negative values move it to the left. Positive y values move the
image or selection down, negative values move it up.
*/
public void translate(double xOffset, double yOffset) {
ImageProcessor ip2 = this.duplicate();
ip2.setBackgroundValue(0.0);
boolean integerOffsets = xOffset==(int)xOffset && yOffset==(int)yOffset;
if (integerOffsets || interpolationMethod==NONE) {
for (int y=roiY; y<(roiY + roiHeight); y++) {
for (int x=roiX; x<(roiX + roiWidth); x++)
putPixel(x, y, ip2.getPixel(x-(int)xOffset, y-(int)yOffset));
}
} else {
if (interpolationMethod==BICUBIC && (this instanceof ColorProcessor))
((ColorProcessor)this).filterRGB(ColorProcessor.RGB_TRANSLATE, xOffset, yOffset);
else {
for (int y=roiY; y<(roiY + roiHeight); y++) {
for (int x=roiX; x<(roiX + roiWidth); x++)
putPixel(x, y, ip2.getPixelInterpolated(x-xOffset, y-yOffset));
}
}
}
}
/**
* @deprecated
* replaced by translate(x,y)
*/
public void translate(int xOffset, int yOffset, boolean eraseBackground) {
translate(xOffset, yOffset);
}
/** Returns the histogram of the image or ROI. Returns
a luminosity histogram for RGB images and null
for float images.
<p>
For 8-bit and 16-bit images, returns an array with one entry for each possible
value that a pixel can have, from 0 to 255 (8-bit image) or 0-65535 (16-bit image).
Thus, the array size is 256 or 65536, and the bin width in uncalibrated units is 1.
<p>
For RGB images, the brightness is evaluated using the color weights (which would result in a
float value) and rounded to an int. This gives 256 bins. FloatProcessor.getHistogram is not
implemented (returns null).
*/
public abstract int[] getHistogram();
/** Erodes the image or ROI using a 3x3 maximum filter. Requires 8-bit or RGB image. */
public abstract void erode();
/** Dilates the image or ROI using a 3x3 minimum filter. Requires 8-bit or RGB image. */
public abstract void dilate();
/** For 16 and 32 bit processors, set 'lutAnimation' true
to have createImage() use the cached 8-bit version
of the image. */
public void setLutAnimation(boolean lutAnimation) {
this.lutAnimation = lutAnimation;
newPixels = true;
source = null;
}
void resetPixels(Object pixels) {
if (pixels==null) {
if (img!=null) {
img.flush();
img = null;
}
source = null;
}
newPixels = true;
source = null;
}
/** Returns an 8-bit version of this image as a ByteProcessor. */
public ImageProcessor convertToByte(boolean doScaling) {
TypeConverter tc = new TypeConverter(this, doScaling);
return tc.convertToByte();
}
/** Returns a 16-bit version of this image as a ShortProcessor. */
public ImageProcessor convertToShort(boolean doScaling) {
TypeConverter tc = new TypeConverter(this, doScaling);
return tc.convertToShort();
}
/** Returns a 32-bit float version of this image as a FloatProcessor.
For byte and short images, converts using a calibration function
if a calibration table has been set using setCalibrationTable(). */
public ImageProcessor convertToFloat() {
TypeConverter tc = new TypeConverter(this, false);
return tc.convertToFloat(cTable);
}
/** Returns an RGB version of this image as a ColorProcessor. */
public ImageProcessor convertToRGB() {
TypeConverter tc = new TypeConverter(this, true);
return tc.convertToRGB();
}
/** Returns an 8-bit version of this image as a ByteProcessor. 16-bit and 32-bit
* pixel data are scaled from min-max to 0-255.
*/
public ByteProcessor convertToByteProcessor() {
return convertToByteProcessor(true);
}
/** Returns an 8-bit version of this image as a ByteProcessor. 16-bit and 32-bit
* pixel data are scaled from min-max to 0-255 if 'scale' is true.
*/
public ByteProcessor convertToByteProcessor(boolean scale) {
ByteProcessor bp;
if (this instanceof ByteProcessor)
bp = (ByteProcessor)this.duplicate();
else
bp = (ByteProcessor)this.convertToByte(scale);
return bp;
}
/** Returns a 16-bit version of this image as a ShortProcessor. 32-bit
* pixel data are scaled from min-max to 0-255.
*/
public ShortProcessor convertToShortProcessor() {
return convertToShortProcessor(true);
}
/** Returns a 16-bit version of this image as a ShortProcessor. 32-bit
* pixel data are scaled from min-max to 0-255 if 'scale' is true.
*/
public ShortProcessor convertToShortProcessor(boolean scale) {
ShortProcessor sp;
if (this instanceof ShortProcessor)
sp = (ShortProcessor)this.duplicate();
else
sp = (ShortProcessor)this.convertToShort(scale);
return sp;
}
/** Returns a 32-bit float version of this image as a FloatProcessor.
For byte and short images, converts using a calibration function
if a calibration table has been set using setCalibrationTable(). */
public FloatProcessor convertToFloatProcessor() {
FloatProcessor fp;
if (this instanceof FloatProcessor)
fp = (FloatProcessor)this.duplicate();
else
fp = (FloatProcessor)this.convertToFloat();
return fp;
}
/** Returns an RGB version of this image as a ColorProcessor. */
public ColorProcessor convertToColorProcessor() {
ColorProcessor cp;
if (this instanceof ColorProcessor)
cp = (ColorProcessor)this.duplicate();
else
cp = (ColorProcessor)this.convertToRGB();
return cp;
}
/** Performs a convolution operation using the specified kernel.
KernelWidth and kernelHeight must be odd. */
public abstract void convolve(float[] kernel, int kernelWidth, int kernelHeight);
/** Converts the image to binary using an automatically determined threshold.
For byte and short images, converts to binary using an automatically determined
threshold. For RGB images, converts each channel to binary. For
float images, does nothing.
*/
public void autoThreshold() {
threshold(getAutoThreshold());
}
/** Returns a pixel value (threshold) that can be used to divide the image into objects
and background. It does this by taking a test threshold and computing the average
of the pixels at or below the threshold and pixels above. It then computes the average
of those two, increments the threshold, and repeats the process. Incrementing stops
when the threshold is larger than the composite average. That is, threshold = (average
background + average objects)/2. This description was posted to the ImageJ mailing
list by Jordan Bevic. */
public int getAutoThreshold() {
return getAutoThreshold(getHistogram());
}
/** This is a version of getAutoThreshold() that uses a histogram passed as an argument. */
public int getAutoThreshold(int[] histogram) {
int level;
int maxValue = histogram.length - 1;
double result, sum1, sum2, sum3, sum4;
int count0 = histogram[0];
histogram[0] = 0; //set to zero so erased areas aren't included
int countMax = histogram[maxValue];
histogram[maxValue] = 0;
int min = 0;
while ((histogram[min]==0) && (min<maxValue))
min++;
int max = maxValue;
while ((histogram[max]==0) && (max>0))
max--;
if (min>=max) {
histogram[0]= count0; histogram[maxValue]=countMax;
level = histogram.length/2;
return level;
}
int movingIndex = min;
int inc = Math.max(max/40, 1);
do {
sum1=sum2=sum3=sum4=0.0;
for (int i=min; i<=movingIndex; i++) {
sum1 += (double)i*histogram[i];
sum2 += histogram[i];
}
for (int i=(movingIndex+1); i<=max; i++) {
sum3 += (double)i*histogram[i];
sum4 += histogram[i];
}
result = (sum1/sum2 + sum3/sum4)/2.0;
movingIndex++;
} while ((movingIndex+1)<=result && movingIndex<max-1);
histogram[0]= count0; histogram[maxValue]=countMax;
level = (int)Math.round(result);
return level;
}
/** Updates the clipping rectangle used by lineTo(), drawLine(), drawDot() and drawPixel().
The clipping rectangle is reset by passing a null argument or by calling resetRoi(). */
public void setClipRect(Rectangle clipRect) {
if (clipRect==null) {
clipXMin=0;
clipXMax=width-1;
clipYMin=0;
clipYMax=height-1;
} else {
clipXMin = clipRect.x;
clipXMax = clipRect.x + clipRect.width - 1;
clipYMin = clipRect.y;
clipYMax = clipRect.y + clipRect.height - 1;
if (clipXMin<0) clipXMin = 0;
if (clipXMax>=width) clipXMax = width-1;
if (clipYMin<0) clipYMin = 0;
if (clipYMax>=height) clipYMax = height-1;
}
}
protected String maskSizeError(ImageProcessor mask) {
return "Mask size ("+mask.getWidth()+"x"+mask.getHeight()+") != ROI size ("+
roiWidth+"x"+roiHeight+")";
}
protected SampleModel getIndexSampleModel() {
if (sampleModel==null) {
IndexColorModel icm = getDefaultColorModel();
WritableRaster wr = icm.createCompatibleWritableRaster(1, 1);
sampleModel = wr.getSampleModel();
sampleModel = sampleModel.createCompatibleSampleModel(width, height);
}
return sampleModel;
}
/** Returns the default grayscale IndexColorModel. */
public IndexColorModel getDefaultColorModel() {
if (defaultColorModel==null) {
byte[] r = new byte[256];
byte[] g = new byte[256];
byte[] b = new byte[256];
for(int i=0; i<256; i++) {
r[i]=(byte)i;
g[i]=(byte)i;
b[i]=(byte)i;
}
defaultColorModel = new IndexColorModel(8, 256, r, g, b);
}
return defaultColorModel;
}
/** The getPixelsCopy() method returns a reference to the
snapshot buffer if it is not null and 'snapshotCopyMode' is true.
@see ImageProcessor#getPixelsCopy
@see ImageProcessor#snapshot
*/
public void setSnapshotCopyMode(boolean b) {
snapshotCopyMode = b;
}
/** Returns the number of color channels in the image. The color channels can be
* accessed by toFloat(channelNumber, fp) and written by setPixels(channelNumber, fp).
* @return 1 for grayscale images, 3 for RGB images
*/
public int getNChannels() {
return 1; /* superseded by ColorProcessor */
}
/** Returns a FloatProcessor with the image or one color channel thereof.
* The roi and mask are also set for the FloatProcessor.
* @param channelNumber Determines the color channel, 0=red, 1=green, 2=blue. Ignored for
* grayscale images.
* @param fp Here a FloatProcessor can be supplied, or null. The FloatProcessor
* is overwritten when converting data (re-using its pixels array
* improves performance).
* @return A FloatProcessor with the converted image data of the color channel selected
*/
public abstract FloatProcessor toFloat(int channelNumber, FloatProcessor fp);
/** Sets the pixels (of one color channel for RGB images) from a FloatProcessor.
* @param channelNumber Determines the color channel, 0=red, 1=green, 2=blue.Ignored for
* grayscale images.
* @param fp The FloatProcessor where the image data are read from.
*/
public abstract void setPixels(int channelNumber, FloatProcessor fp);
/** Returns the minimum possible pixel value. */
public double minValue() {
return 0.0;
}
/** Returns the maximum possible pixel value. */
public double maxValue() {
return 255.0;
}
/** CompositeImage calls this method to generate an updated color image. */
public void updateComposite(int[] rgbPixels, int channel) {
int redValue, greenValue, blueValue;
int size = width*height;
if (bytes==null || !lutAnimation)
bytes = create8BitImage();
if (cm==null)
makeDefaultColorModel();
if (reds==null || cm!=cm2)
updateLutBytes();
switch (channel) {
case 1: // update red channel
for (int i=0; i<size; i++)
rgbPixels[i] = (rgbPixels[i]&0xff00ffff) | reds[bytes[i]&0xff];
break;
case 2: // update green channel
for (int i=0; i<size; i++)
rgbPixels[i] = (rgbPixels[i]&0xffff00ff) | greens[bytes[i]&0xff];
break;
case 3: // update blue channel
for (int i=0; i<size; i++)
rgbPixels[i] = (rgbPixels[i]&0xffffff00) | blues[bytes[i]&0xff];
break;
case 4: // get first channel
for (int i=0; i<size; i++) {
redValue = reds[bytes[i]&0xff];
greenValue = greens[bytes[i]&0xff];
blueValue = blues[bytes[i]&0xff];
rgbPixels[i] = redValue | greenValue | blueValue;
}
break;
case 5: // merge next channel
int pixel;
for (int i=0; i<size; i++) {
pixel = rgbPixels[i];
redValue = (pixel&0x00ff0000) + reds[bytes[i]&0xff];
greenValue = (pixel&0x0000ff00) + greens[bytes[i]&0xff];
blueValue = (pixel&0x000000ff) + blues[bytes[i]&0xff];
if (redValue>16711680) redValue = 16711680;
if (greenValue>65280) greenValue = 65280;
if (blueValue>255) blueValue = 255;
rgbPixels[i] = redValue | greenValue | blueValue;
}
break;
}
lutAnimation = false;
}
// method and variables used by updateComposite()
byte[] create8BitImage() {return null;}
private byte[] bytes;
private int[] reds, greens, blues;
void updateLutBytes() {
IndexColorModel icm = (IndexColorModel)cm;
int mapSize = icm.getMapSize();
if (reds==null || reds.length!=mapSize) {
reds = new int[mapSize];
greens = new int[mapSize];
blues = new int[mapSize];
}
byte[] tmp = new byte[mapSize];
icm.getReds(tmp);
for (int i=0; i<mapSize; i++) reds[i] = (tmp[i]&0xff)<<16;
icm.getGreens(tmp);
for (int i=0; i<mapSize; i++) greens[i] = (tmp[i]&0xff)<<8;
icm.getBlues(tmp);
for (int i=0; i<mapSize; i++) blues[i] = tmp[i]&0xff;
cm2 = cm;
}
/** Sets the upper Over/Under threshold color. Can be called from a macro,
e.g., call("ij.process.ImageProcessor.setOverColor", 0,255,255). */
public static void setOverColor(int red, int green, int blue) {
overRed=red; overGreen=green; overBlue=blue;
}
/** Set the lower Over/Under thresholding color. */
public static void setUnderColor(int red, int green, int blue) {
underRed=red; underGreen=green; underBlue=blue;
}
/** Returns 'true' if this is a binary image (8-bit-image with only 0 and 255). */
public boolean isBinary() {
return false;
}
/* This method is experimental and may be removed. */
public static void setUseBicubic(boolean b) {
useBicubic = b;
}
/* Calculates and returns statistics (area, mean, std-dev, mode, min, max,
centroid, center of mass, 256 bin histogram) for this image or ROI. */
public ImageStatistics getStatistics() {
// 127 = AREA+MEAN+STD_DEV+MODE+MIN_MAX+CENTROID+CENTER_OF_MASS
return ImageStatistics.getStatistics(this, 127, null);
}
/** Blurs the image by convolving with a Gaussian function. */
public void blurGaussian(double sigma) {
double accuracy = getBitDepth()==8||getBitDepth()==24?0.002:0.0002;
resetRoi();
GaussianBlur gb = new GaussianBlur();
gb.showProgress(false);
gb.blurGaussian(this, sigma, sigma, accuracy);
}
/** Uses the Process/Math/Macro command to apply macro code to this image. */
public void applyMacro(String macro) {
ij.plugin.filter.ImageMath.applyMacro(this, macro, false);
}
/* Returns the PlugInFilter slice number. */
public int getSliceNumber() {
if (sliceNumber<1)
return 1;
else
return sliceNumber;
}
/** PlugInFilterRunner uses this method to set the slice number. */
public void setSliceNumber(int slice) {
sliceNumber = slice;
}
/** Returns a shallow copy of this ImageProcessor, where this
* image and the copy share pixel data. Use the duplicate() method
* to create a copy that does not share the pixel data.
* @see ImageProcessor#duplicate
*/
public Object clone() {
try {
return super.clone();
} catch (CloneNotSupportedException e) {
return null;
}
}
/** This method is used to display virtual stack overlays. */
public void setOverlay(Overlay overlay) {
this.overlay = overlay;
}
public Overlay getOverlay() {
return overlay;
}
}
|