1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
|
\function{abs}
\synopsis{Compute the absolute value of a number}
\usage{y = abs(x)}
\description
The \ifun{abs} function returns the absolute value of an arithmetic
type. If its argument is a complex number (\dtype{Complex_Type}),
then it returns the modulus. If the argument is an array, a new
array will be created whose elements are obtained from the original
array by using the \ifun{abs} function.
\seealso{sign, sqr}
\done
\function{acos}
\synopsis{Compute the arc-cosine of a number}
\usage{y = acos (x)}
\description
The \ifun{acos} function computes the arc-cosine of a number and
returns the result. If its argument is an array, the
\ifun{acos} function will be applied to each element and the result returned
as an array.
\seealso{cos, atan, acosh, cosh}
\done
\function{acosh}
\synopsis{Compute the inverse cosh of a number}
\usage{y = acosh (x)}
\description
The \ifun{acosh} function computes the inverse hyperbolic cosine of a number and
returns the result. If its argument is an array, the
\ifun{acosh} function will be applied to each element and the result returned
as an array.
\seealso{cos, atan, acosh, cosh}
\done
\function{asin}
\synopsis{Compute the arc-sine of a number}
\usage{y = asin (x)}
\description
The \ifun{asin} function computes the arc-sine of a number and
returns the result. If its argument is an array, the
\ifun{asin} function will be applied to each element and the result returned
as an array.
\seealso{cos, atan, acosh, cosh}
\done
\function{asinh}
\synopsis{Compute the inverse-sinh of a number}
\usage{y = asinh (x)}
\description
The \ifun{asinh} function computes the inverse hyperbolic sine of a number and
returns the result. If its argument is an array, the
\ifun{asinh} function will be applied to each element and the result returned
as an array.
\seealso{cos, atan, acosh, cosh}
\done
\function{atan}
\synopsis{Compute the arc-tangent of a number}
\usage{y = atan (x)}
\description
The \ifun{atan} function computes the arc-tangent of a number and
returns the result. If its argument is an array, the
\ifun{atan} function will be applied to each element and the result returned
as an array.
\seealso{atan2, cos, acosh, cosh}
\done
\function{atan2}
\synopsis{Compute the arc-tangent of the ratio of two variables}
\usage{z = atan2 (y, x)}
\description
The \ifun{atan2} function computes the arc-tangent of the ratio
\exmp{y/x} and returns the result as a value that has the
proper sign for the quadrant where the point (x,y) is located. The
returned value \exmp{z} will satisfy (-PI < z <= PI). If either of the
arguments is an array, an array of the corresponding values will be returned.
\seealso{hypot, cos, atan, acosh, cosh}
\done
\function{atanh}
\synopsis{Compute the inverse-tanh of a number}
\usage{y = atanh (x)}
\description
The \ifun{atanh} function computes the inverse hyperbolic tangent of a number and
returns the result. If its argument is an array, the
\ifun{atanh} function will be applied to each element and the result returned
as an array.
\seealso{cos, atan, acosh, cosh}
\done
\function{ceil}
\synopsis{Round x up to the nearest integral value}
\usage{y = ceil (x)}
\description
This function rounds its numeric argument up to the nearest integral
value. If the argument is an array, the corresponding array will be
returned.
\seealso{floor, round}
\done
\function{Conj}
\synopsis{Compute the complex conjugate of a number}
\usage{z1 = Conj (z)}
\description
The \ifun{Conj} function returns the complex conjugate of a number.
If its argument is an array, the \ifun{Conj} function will be applied to each
element and the result returned as an array.
\seealso{Real, Imag, abs}
\done
\function{cos}
\synopsis{Compute the cosine of a number}
\usage{y = cos (x)}
\description
The \ifun{cos} function computes the cosine of a number and
returns the result. If its argument is an array, the
\ifun{cos} function will be applied to each element and the result returned
as an array.
\seealso{sin, atan, acosh, cosh, sincos}
\done
\function{cosh}
\synopsis{Compute the hyperbolic cosine of a number}
\usage{y = cosh (x)}
\description
The \ifun{cosh} function computes the hyperbolic cosine of a number and
returns the result. If its argument is an array, the
\ifun{cosh} function will be applied to each element and the result returned
as an array.
\seealso{cos, atan, acosh, cosh}
\done
\function{_diff}
\synopsis{Compute the absolute difference of two values}
\usage{y = _diff (x, y)}
\description
The \ifun{_diff} function returns a floating point number equal to
the absolute value of the difference of its two arguments.
If either argument is an array, an array of the corresponding values
will be returned.
\seealso{abs}
\done
\function{exp}
\synopsis{Compute the exponential of a number}
\usage{y = exp (x)}
\description
The \ifun{exp} function computes the exponential of a number and
returns the result. If its argument is an array, the
\ifun{exp} function will be applied to each element and the result returned
as an array.
\seealso{expm1, cos, atan, acosh, cosh}
\done
\function{expm1}
\synopsis{Compute exp(x)-1}
\usage{y = expm1(x)}
\description
The \ifun{expm1} function computes \exmp{exp(x)-1} and returns the
result. If its argument is an array, the \ifun{expm1} function will
be applied to each element and the results returned as an array.
This function should be called whenever \exmp{x} is close to 0 to
avoid the numerical error that would arise in a naive computation of
\exmp{exp(x)-1}.
\seealso{expm1, log1p, cos, atan, acosh, cosh}
\done
\function{feqs}
\synopsis{Test the approximate equality of two numbers}
\usage{Char_Type feqs (a, b [,reldiff [,absdiff]])}
\description
This function compares two floating point numbers \exmp{a} and
\exmp{b}, and returns a non-zero value if they are equal to within a
specified tolerance; otherwise 0 will be returned. If either is an
array, a corresponding boolean array will be returned.
The tolerances are specified as relative and absolute differences via
the optional third and fourth arguments. If no optional arguments
are present, the tolerances default to \exmp{reldiff=0.01} and
\exmp{absdiff=1e-6}. If only the relative difference has been
specified, the absolute difference (\exmp{absdiff}) will be taken to
be 0.0.
For the case when \exmp{|b|>=|a|}, \exmp{a} and \exmp{b} are
considered to be equal to within the specified tolerances if either
\exmp{|b-a|<=absdiff} or \exmp{|b-a|/|b|<=reldiff} is true.
\seealso{fneqs, fgteqs, flteqs}
\done
\function{fgteqs}
\synopsis{Compare two numbers using specified tolerances}.
\usage{Char_Type fgteqs (a, b [,reldiff [,absdiff]])}
\description
This function is functionally equivalent to:
#v+
(a >= b) or feqs(a,b,...)
#v-
See the documentation of \ifun{feqs} for more information.
\seealso{feqs, fneqs, flteqs}
\done
\function{floor}
\synopsis{Round x down to the nearest integer}
\usage{y = floor (x)}
\description
This function rounds its numeric argument down to the nearest
integral value. If the argument is an array, the corresponding array
will be returned.
\seealso{ceil, round, nint}
\done
\function{flteqs}
\synopsis{Compare two numbers using specified tolerances}.
\usage{Char_Type flteqs (a, b [,reldiff [,absdiff]])}
\description
This function is functionally equivalent to:
#v+
(a <= b) or feqs(a,b,...)
#v-
See the documentation of \ifun{feqs} for more information.
\seealso{feqs, fneqs, fgteqs}
\done
\function{fneqs}
\synopsis{Test the approximate inequality of two numbers}
\usage{Char_Type fneqs (a, b [,reldiff [,absdiff]])}
\description
This function is functionally equivalent to:
#v+
not fneqs(a,b,...)
#v-
See the documentation of \ifun{feqs} for more information.
\seealso{feqs, fgteqs, flteqs}
\done
\function{get_float_format}
\synopsis{Get the format for printing floating point values.}
\usage{String_Type get_float_format ()}
\description
The \ifun{get_float_format} retrieves the format string used for
printing single and double precision floating point numbers. See the
documentation for the \ifun{set_float_format} function for more
information about the format.
\seealso{set_float_format}
\done
\function{hypot}
\synopsis{Compute sqrt(x1^2+x2^2+...+xN^2)}
\usage{r = hypot (x1 [,x2,..,xN])}
\description
If given two or more arguments, \exmp{x1,...,xN}, the \ifun{hypot}
function computes the quantity \exmp{sqrt(x1^2+...+xN^2)} using an
algorithm that tries to avoid arithmetic overflow. If any of the
arguments is an array, an array of the corresponding values will be
returned.
If given a single array argument \exmp{x}, the \ifun{hypot} function
computes \exmp{sqrt(sumsq(x))}, where \exmp{sumsq(x)} computes
the sum of the squares of the elements of \exmp{x}.
\example
A vector in Euclidean 3 dimensional space may be represented by an
array of three values representing the components of the vector in
some orthogonal cartesian coordinate system. Then the length of the
vector may be computed using the \ifun{hypot} function, e.g.,
#v+
A = [2,3,4];
len_A = hypot (A);
#v-
The dot-product or scalar-product between two such vectors \exmp{A}
and \exmp{B} may be computed using the \exmp{sum(A*B)}. It is well
known that this is also equal to the product of the lengths of the
two vectors and the cosine of the angle between them. Hence, the
angle between the vectors \exmp{A} and \exmp{B} may be computed using
#v+
ahat = A/hypot(A);
bhat = B/hypot(B);
theta = acos(\sum(ahat*bhat));
#v-
Here, \exmp{ahat} and \exmp{bhat} are the unit vectors associated
with the vectors \exmp{A} and \exmp{B}, respectively.
Unfortunately, the above method for computing the angle between the
vectors is numerically unstable when \exmp{A} and \exmp{B} are
nearly parallel. An alternative method is to use:
#v+
ahat = A/hypot(A);
bhat = B/hypot(B);
ab = sum(ahat*bhat);
theta = atan2 (hypot(bhat - ab*ahat), ab);
#v-
\seealso{atan2, cos, atan, acosh, cosh, sum, sumsq}
\done
\function{Imag}
\synopsis{Compute the imaginary part of a number}
\usage{i = Imag (z)}
\description
The \ifun{Imag} function returns the imaginary part of a number.
If its argument is an array, the \ifun{Imag} function will be applied to each
element and the result returned as an array.
\seealso{Real, Conj, abs}
\done
\function{isinf}
\synopsis{Test for infinity}
\usage{y = isinf (x)}
\description
This function returns 1 if x corresponds to an IEEE infinity, or 0
otherwise. If the argument is an array, an array of the
corresponding values will be returned.
\seealso{isnan, _Inf}
\done
\function{isnan}
\synopsis{isnan}
\usage{y = isnan (x)}
\description
This function returns 1 if x corresponds to an IEEE NaN (Not a Number),
or 0 otherwise. If the argument is an array, an array of
the corresponding values will be returned.
\seealso{isinf, _NaN}
\done
\function{_isneg}
\synopsis{Test if a number is less than 0}
\usage{Char_Type _isneg(x)}
\description
This function returns 1 if a number is less than 0, and zero
otherwise. If the argument is an array, then the corresponding
array of boolean (\dtype{Char_Type}) values will be returned.
\seealso{_ispos, _isnonneg}
\done
\function{_isnonneg}
\synopsis{Test if a number is greater than or equal to 0}
\usage{Char_Type _isnonneg(x)}
\description
This function returns 1 if a number is greater than or equal to 0,
and zero otherwise. If the argument is an array, then the
corresponding array of boolean (\dtype{Char_Type}) values will be
returned.
\seealso{_isneg, _ispos}
\done
\function{_ispos}
\synopsis{Test if a number is greater than 0}
\usage{Char_Type _ispos(x)}
\description
This function returns 1 if a number is greater than 0, and zero
otherwise. If the argument is an array, then the corresponding
array of boolean (\dtype{Char_Type}) values will be returned.
\seealso{_isneg, _isnonneg}
\done
\function{log}
\synopsis{Compute the logarithm of a number}
\usage{y = log (x)}
\description
The \ifun{log} function computes the natural logarithm of a number and
returns the result. If its argument is an array, the
\ifun{log} function will be applied to each element and the result returned
as an array.
\seealso{cos, atan, acosh, cosh, log1p}
\done
\function{log10}
\synopsis{Compute the base-10 logarithm of a number}
\usage{y = log10 (x)}
\description
The \ifun{log10} function computes the base-10 logarithm of a number and
returns the result. If its argument is an array, the
\ifun{log10} function will be applied to each element and the result returned
as an array.
\seealso{cos, atan, acosh, cosh}
\done
\function{log1p}
\synopsis{Compute the logarithm of 1 plus a number}
\usage{y = log1p (x)}
\description
The \ifun{log1p} function computes the natural logarithm of 1.0 plus
\exmp{x} returns the result. If its argument is an array, the
\ifun{log1p} function will be applied to each element and the results
returned as an array.
This function should be used instead of \exmp{log(1+x)} to avoid
numerical errors whenever \exmp{x} is close to 0.
\seealso{log, expm1, cos, atan, acosh, cosh}
\done
\function{_max}
\synopsis{Compute the maximum of two or more numeric values}
\usage{z = _max (x1,...,xN)}
\description
The \ifun{_max} function returns a floating point number equal to
the maximum value of its arguments. If any of the argiments are
arrays (of equal length), an array of the corresponding values will
be returned.
\notes
This function returns a floating point result even when the
arguments are integers.
\seealso{_min, min, max}
\done
\function{_min}
\synopsis{Compute the minimum of two or more numeric values}
\usage{z = _min (x1,...,xN)}
\description
The \ifun{_min} function returns a floating point number equal to
the minimum value of its arguments. If any of the argiments are
arrays (of equal length), an array of the corresponding values will
be returned.
\notes
This function returns a floating point result even when the
arguments are integers.
\seealso{min, _max, max}
\done
\function{mul2}
\synopsis{Multiply a number by 2}
\usage{y = mul2(x)}
\description
The \ifun{mul2} function multiplies an arithmetic type by two and
returns the result. If its argument is an array, a new array will
be created whose elements are obtained from the original array by
using the \ifun{mul2} function.
\seealso{sqr, abs}
\done
\function{nint}
\synopsis{Round to the nearest integer}
\usage{i = nint(x)}
\description
The \ifun{nint} rounds its argument to the nearest integer and
returns the result. If its argument is an array, a new array will
be created whose elements are obtained from the original array
elements by using the \ifun{nint} function.
\seealso{round, floor, ceil}
\done
\function{polynom}
\synopsis{Evaluate a polynomial}
\usage{Double_Type polynom([a0,a1,...aN], x [,use_factorial])}
\description
The \ifun{polynom} function returns the value of the polynomial expression
#v+
a0 + a1*x + a2*x^2 + ... + aN*x^N
#v-
where the coefficients are given by an array of values
\exmp{[a0,...,aN]}. If \exmp{x} is an array, the function will
return a corresponding array. If the value of the optional
\exmp{use_factorial} parameter is non-zero, then each term in the sum
will be normalized by the corresponding factorial, i.e.,
#v+
a0/0! + a1*x/1! + a2*x^2/2! + ... + aN*x^N/N!
#v-
\notes
Prior to version 2.2, this function had a different calling syntax
and and was less useful.
The \ifun{polynom} function does not yet support complex-valued
coefficients.
For the case of a scalar value of \exmp{x} and a small degree
polynomial, it is more efficient to use an explicit expression.
\seealso{exp}
\done
\function{Real}
\synopsis{Compute the real part of a number}
\usage{r = Real (z)}
\description
The \ifun{Real} function returns the real part of a number. If its
argument is an array, the \ifun{Real} function will be applied to
each element and the result returned as an array.
\seealso{Imag, Conj, abs}
\done
\function{round}
\synopsis{Round to the nearest integral value}
\usage{y = round (x)}
\description
This function rounds its argument to the nearest integral value and
returns it as a floating point result. If the argument is an array,
an array of the corresponding values will be returned.
\seealso{floor, ceil, nint}
\done
\function{set_float_format}
\synopsis{Set the format for printing floating point values.}
\usage{set_float_format (String_Type fmt)}
\description
The \ifun{set_float_format} function is used to set the floating
point format to be used when floating point numbers are printed.
The routines that use this are the traceback routines and the
\ifun{string} function, any anything based upon the \ifun{string}
function. The default value is \exmp{"%S"}, which causes the number
to be displayed with enough significant digits such that
\exmp{x==atof(string(x))}.
\example
#v+
set_float_format ("%S"); % default
s = string (PI); % --> s = "3.141592653589793"
set_float_format ("%16.10f");
s = string (PI); % --> s = "3.1415926536"
set_float_format ("%10.6e");
s = string (PI); % --> s = "3.141593e+00"
#v-
\seealso{get_float_format, string, sprintf, atof, double}
\done
\function{sign}
\synopsis{Compute the sign of a number}
\usage{y = sign(x)}
\description
The \ifun{sign} function returns the sign of an arithmetic type. If
its argument is a complex number (\dtype{Complex_Type}), the
\ifun{sign} will be applied to the imaginary part of the number. If
the argument is an array, a new array will be created whose elements
are obtained from the original array by using the \ifun{sign}
function.
When applied to a real number or an integer, the \ifun{sign} function
returns \-1, \0, or \exmp{+1} according to whether the number is
less than zero, equal to zero, or greater than zero, respectively.
\seealso{abs}
\done
\function{sin}
\synopsis{Compute the sine of a number}
\usage{y = sin (x)}
\description
The \ifun{sin} function computes the sine of a number and
returns the result. If its argument is an array, the
\ifun{sin} function will be applied to each element and the result returned
as an array.
\seealso{cos, atan, acosh, cosh, sincos}
\done
\function{sincos}
\synopsis{Compute the sine and cosine of a number}
\usage{(s, c) = sincos (x)}
\description
The \ifun{sincos} function computes the sine and cosine of a
number and returns the result. If its argument is an array,
the \ifun{sincos} function will be applied to each element
and the result returned as an array.
\seealso{sin, cos}
\done
\function{sinh}
\synopsis{Compute the hyperbolic sine of a number}
\usage{y = sinh (x)}
\description
The \ifun{sinh} function computes the hyperbolic sine of a number and
returns the result. If its argument is an array, the
\ifun{sinh} function will be applied to each element and the result returned
as an array.
\seealso{cos, atan, acosh, cosh}
\done
\function{sqr}
\synopsis{Compute the square of a number}
\usage{y = sqr(x)}
\description
The \ifun{sqr} function returns the square of an arithmetic type. If its
argument is a complex number (\dtype{Complex_Type}), then it returns
the square of the modulus. If the argument is an array, a new array
will be created whose elements are obtained from the original array
by using the \ifun{sqr} function.
\notes
For real scalar numbers, using \exmp{x*x} instead of \exmp{sqr(x)}
will result in faster executing code. However, if \exmp{x} is an
array, then \exmp{sqr(x)} will execute faster.
\seealso{abs, mul2}
\done
\function{sqrt}
\synopsis{Compute the square root of a number}
\usage{y = sqrt (x)}
\description
The \ifun{sqrt} function computes the square root of a number and
returns the result. If its argument is an array, the
\ifun{sqrt} function will be applied to each element and the result returned
as an array.
\seealso{sqr, cos, atan, acosh, cosh}
\done
\function{tan}
\synopsis{Compute the tangent of a number}
\usage{y = tan (x)}
\description
The \ifun{tan} function computes the tangent of a number and
returns the result. If its argument is an array, the
\ifun{tan} function will be applied to each element and the result returned
as an array.
\seealso{cos, atan, acosh, cosh}
\done
\function{tanh}
\synopsis{Compute the hyperbolic tangent of a number}
\usage{y = tanh (x)}
\description
The \ifun{tanh} function computes the hyperbolic tangent of a number and
returns the result. If its argument is an array, the
\ifun{tanh} function will be applied to each element and the result returned
as an array.
\seealso{cos, atan, acosh, cosh}
\done
|