File: test_stats.sl

package info (click to toggle)
slang2 2.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 10,588 kB
  • ctags: 10,558
  • sloc: ansic: 95,506; sh: 3,277; makefile: 945; pascal: 143
file content (386 lines) | stat: -rw-r--r-- 11,092 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
() = evalfile("./test.sl");
require ("stats.sl");

private define test_chisqr_test ()
{
   % This example comes from Conover, 1980, section 4.2
   variable x = [6, 14, 17, 9];
   variable y = [30, 32, 17, 3];
   variable t, p;
   p = chisqr_test (x, y, &t);
   if (abs(t - 17.3) > 0.1)
     failed ("chisqr_test: Expected 17.3, got t=%S", t);
   x = [13, 73];
   y = [17, 57];
   p = chisqr_test (x, y, &t);
   if (abs(t - 1.61) > 0.01)
     failed ("chisqr_test: Expected 1.61, got t=%S", t);
   % Conover 1980, example 2, pg 159.  EXCEPT: Conover has 1.55 for the
   % statistic, but an explicit calculation yields 1.524...  Is this a
   % misprint?
   p = chisqr_test ([16,14.], [14,6.], [13,10.], [13,8.], &t);
   if (abs(t - 1.524) > 0.01)
     failed ("chisqr_test: Expected 1.524, got t=%S", t);
}

private define test_f ()
{
   variable x, y, s, p;
   variable s0, p0;
   %variable x = [41, 34, 33, 36, 40, 25, 31, 37, 34, 30, 38];
   %variable y = [52, 57, 62, 55, 64, 57, 56, 55];

   % This test comes from the Gnumeric documentation for the f-test
   x = [68.5, 83, 83, 66.5, 58.1, 82.4];
   y = [81.5, 85.2, 87.1, 69.3, 73.5, 65.5, 73.4, 56.1];

   %vmessage("stddev x/y = %g", stddev(x)/stddev(y));
   p = f_test2 (x, y, &s);
   p0 = 0.920666, s0 = 1.039706;
   ifnot (feqs (p,p0) || feqs (s,s0))
     failed ("f_test2 test 1 failed");

   p = f_test2 (x, y, &s; side=">");
   p0 = 0.53667;
   ifnot (feqs (p,p0))
     failed ("f_test2 size=> failed: expected %g, got %g", p0, p);

   p = f_test2 (x, y, &s; side="<");
   p0 = 0.46333;
   ifnot (feqs (p,p0))
     failed ("f_test2 side=< failed: expected %g, got %g", p0, p);
}

private define test_kendall ()
{
   variable x, y, p, s, cdf;
   variable expected_s, expected_p;

   % Example from Higgins 2004 based upon table 5.3.1
   x = [68, 70, 71, 72];
   y = [153, 155, 140, 180];
   p = kendall_tau (x, y, &s);
   expected_p = 0.375;
   expected_s = 0.33;
   ifnot (feqs (s, expected_s, 0, 0.01))
     failed ("*** kendall_tau statistic: %g, expected %g", s, expected_s);
#iffalse
   % Before this can be used, I need to implement the exact probability.
   ifnot (feqs (p, expected_p))
     failed ("*** kendall_tau pval= %g, expected %g", p, expected_p);
#endif

   % Higgins 2004 example 5.3.1
   % Rabbit data (table 5.2.1)
   x = [6,16,8,18,17,4,3,1,5,7,15,2,13,12,10,11,14,9];
   y = [5,17,6,18,14,8,2,1,7,3,15,4,16,13,12,10,9,11];

   p = kendall_tau (x, y, &s);
   expected_p = 0.0;
   expected_s = 0.73;
   ifnot (feqs (s, expected_s, 0, 0.01))
     failed ("*** kendall_tau statistic: %g, expected %g", s, expected_s);
   ifnot (feqs (p, expected_p, 0, 1e-4))
     failed ("*** kendall_tau pval= %g, expected %g", p, expected_p);
}

private define test_ks ()
{
   variable x, y, p, s, cdf;
   variable expected_s, expected_p;

   % Example 6.1-1 from Conover 1980
   x = [0.621, 0.503, 0.203, 0.477, 0.710,
	0.581, 0.329, 0.480, 0.554, 0.382];
   cdf = x;			       %  uniform distribtion
   p = ks_test (x, &s);
   expected_s = 0.29;
   ifnot (feqs (s, expected_s))
     failed ("*** ks_test statistic: %g, expected %g", s, expected_s);

   % Example 5.4 in Hollander-Wolfe 1999
   x = [-0.15, 8.6, 5, 3.71, 4.29, 7.74, 2.48, 3.25, -1.15, 8.38];
   y = [2.55, 12.07, 0.46, 0.35, 2.69, -0.94, 1.73, 0.73, -0.35, -0.37];
   expected_p = 0.0524;
   p = ks_test2 (x,y, &s);
   ifnot (feqs (p, expected_p))
     failed ("*** ks_test2 pval=: %g, expected %g", p, expected_p);
}

private define test_mw_cdf (N)
{
   variable n;
   _for n (1, N-1, 1)
     {
	variable m = N-n;
	variable rmin = (n*(n+1))/2, rmax = m*n + rmin;
	variable r, lastp = 0, p;
	_for r (rmin, rmax, 1)
	  {
	     p = mann_whitney_cdf (n, m, r);
	     if (lastp > p)
	       failed ("mann_whitney_cdf(%d,%d,%g) to be increasing", n, m, r);
	  }
	ifnot (feqs (p, 1.0, 0.0001))
	  failed ("mann_whitney_cdf (%d, %d, [%d:%d]) failed: s=%g", n, m, rmin, rmax,p);
     }
}

private define test_mw_test ()
{
   variable w, ew;
   variable x, y, p, ep;

   % Example 4.1 from Hollander and Wolfe (2nd Edition)
   x = [0.8, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46];
   y = [1.15, 0.88, 0.9, 0.74, 1.21];

   p = mw_test (y, x, &w);
   ifnot (feqs(w, 30))
     failed ("mw_test 1 returned %S, expected 30", w);

   % Example 2.4.2 Higgins 2004 (Strawberry plants)
   x = [0.55, 0.67, 0.63, 0.79, 0.81, 0.85, 0.68];   %  treated
   y = [0.65, 0.59, 0.44, 0.60, 0.47, 0.58, 0.66, 0.52, 0.51];    %  untreated
   % H0: E(x)<=E(y)
   ew = 84;
   ep = 0.0039;
   p = mw_test (x, y, &w; side=">");
   if (w != ew)
     failed ("mw_test 2 returned %S, expected %S", w, ew);
   ifnot (feqs (p, ep))
     failed ("mw_test 2 returned pval=%g, expected %g", p, ep);

   % Example 2.4.1 (Higgins 2004)
   x = [37,49,55,57];		       %  new
   y = [23,31,46];		       %  traditional
   % H0: E(x)<=E(y)
   p = mw_test (x,y, &w; side=">");
   ew = 21;
   ep = 0.0571;
   if (w != ew)
     failed ("mw_test 3 returned %S, expected %S", w, ew);
   ifnot (feqs (p, ep))
     failed ("mw_test 3 returned pval=%g, expected %g", p, ep);

   % Example 2.6.1 Higgins
   x = [3.6, 3.9, 4.0, 4.3];	       %  brand1
   y = [3.8, 4.1, 4.5, 4.8];	       %  brand2
   p = mw_test (x, y, &w);
   ew = 1+3+4+6;
   ep = 0.1714*2;
   if (w != ew)
     failed ("mw_test 4 returned %S, expected %S", w, ew);
   ifnot (feqs (p, ep))
     failed ("mw_test 4 returned pval=%g, expected %g", p, ep);

   % Conover 1980, section 5.1 example 1
   x = [14.8,7.3,5.6,6.3,9.0,4.2,10.6,12.5,12.9,16.1,11.4,2.7];
   y = [12.7,14.2,12.6,2.1,17.7,11.8,16.9,7.9,16.0,10.6,5.6,5.6,7.6,11.3,8.3,
	6.7,3.6,1.0,2.4,6.4,9.1,6.7,18.6,3.2,6.2,6.1,15.3,10.6,1.8,5.9,9.9,
	10.6,14.8,5.0,2.6,4.0];
   ew = 321; ep = 0.26;
   p = mw_test (x, y, &w; side=">");
   if (w != ew)
     failed ("mw_test 5 returned %S, expected %S", w, ew);
   ifnot (feqs (p, ep))
     failed ("mw_test 5 returned pval=%g, expected %g", p, ep);
}

private define test_spearman ()
{
   variable x, y, p, s, cdf;
   variable expected_s, expected_p;

   % Higgins 2004 example 5.2.1
   % Rabbit data (table 5.2.1)
   x = [6,16,8,18,17,4,3,1,5,7,15,2,13,12,10,11,14,9];
   y = [5,17,6,18,14,8,2,1,7,3,15,4,16,13,12,10,9,11];

   p = spearman_r (x, y, &s);
   expected_p = 0;
   expected_s = 0.897;
   ifnot (feqs (s, expected_s))
     failed ("*** spearman_r statistic: %g, expected %g", s, expected_s);
   ifnot (feqs (p, expected_p))
     failed ("*** spearman_r pval= %g, expected %g", p, expected_p);

   % Higgins 2004 example 5.2.3
   x = [8,8,7,8,5,6,6,9,8,7];
   y = [7,8,8,5,6,4,5,8,6,9];
   p = spearman_r (x, y, &s);
   expected_p = 0.2832;
   expected_s = 0.375;
   ifnot (feqs (s, expected_s))
     failed ("*** spearman_r statistic: %g, expected %g", s, expected_s);
   ifnot (feqs (p, expected_p))
     failed ("*** spearman_r pval= %g, expected %g", p, expected_p);
}

private variable XData = [
-0.15, %1
 8.60, %9
 5.00, %6
 3.71, %4
 4.29, %5
 7.74, %7
 2.48, %2
 3.25, %3
-1.15, %0
 8.38  %8
];
private variable YData = [
 2.55,
12.07,
 0.46,
 0.35,
 2.69,
-0.94,
 1.73,
 0.73,
-0.35,
-0.37
];

private define test_mean_stddev ()
{
   ifnot (feqs (sum(XData)/length(XData), mean(XData), 1e-6))
     failed ("test_mean_stddev: mean failed");

   variable n = length(XData);
   if (0 == (n & 0x1))
     n--;

   variable x1 = XData[array_sort(XData)][n/2];
   variable x2 = median (XData);
   if (x1 != x2)
     failed ("median, found %g, expected %g", x2, x1);

   x1 = stddev (XData);
   x2 = sqrt(sum((XData-mean(XData))^2)/(length(XData)-1));
   ifnot (feqs (x1, x2, 1e-6))
     failed ("stddev, found %g, expected %g", x1, x2);

   variable a = Double_Type [length(XData), 3];
   a[*,0] = XData; a[*,1] = XData; a[*,2] = XData;
   x2 = stddev (a, 0);
   if (length (x2) != 3)
     failed ("stddev(a,0): expected an array of 3, got %d", length (x2));
   if ((x2[0] != x1) || (x2[1] != x1) || (x2[2] != x1))
     failed ("stddev(a,0) produced incorrect values");
}

private define wikipedia_sample_skewness (x)
{
   variable n = length(x)*1.0;
   variable xbar = sum(x)/n;
   variable dx = x-xbar;
   return sqrt(n)*sum(dx*dx*dx)/sum(dx*dx)^1.5;
}

private define wikipedia_sample_kurtosis (x)
{
   variable n = length(x)*1.0;
   variable xbar = sum(x)/n;
   variable dx = x-xbar;
   return (n*sum(dx^4))/sum(dx*dx)^2 - 3;
}

define test_skewness_kurtosis ()
{
   variable w = wikipedia_sample_skewness (XData);
   variable s = skewness (XData);
   ifnot (feqs (w,s,1e-6))
     failed ("Expected skewness = %g, found %g", w, s);

   w = wikipedia_sample_kurtosis (XData);
   s = kurtosis (XData);
   ifnot (feqs (w,s,1e-6))
     failed ("Expected kurtosis = %g, found %g", w, s);
}

private define test_binomial ()
{
   variable expected = [1, 4, 6, 4, 1];
   variable m, n = 4;
   variable ans = binomial (n);
   ifnot (_eqs (expected, ans))
     failed ("binomial(4) produced an incorrect result");
   _for m (0, n, 1)
     {
	if (binomial(n,m) != expected[m])
	  failed ("Incorrect value for binomial(%d,%d)", n, m);
     }
}

private define test_student_t ()
{
   variable x, y, p, t, p0, t0;

   x = [35,40,12,15,21,14,46,10,28,48,
	16,30,32,48,31,22,12,39,19,25];
   y = [ 2,27,38,31, 1,19, 1,34, 3, 1,
	 2, 3, 2, 1, 2, 1, 3,29,37, 2];
   t0 = 3.54;
   p0 = 0.0011;	  %  computed by http://www.graphpad.com/quickcalcs/ttest2.cfm

   p = t_test2 (x, y, &t);
   ifnot ((feqs (p,p0)) || feqs (t,t0))
     failed ("t_test2 failed:\n p = %S, p0 = %S, t = %g, t0 = %g", p, p0, t, t0);

   x = [10,20,50,57,32,12,6,17,9,11];
   t0 = 1.3328;
   p0 = 0.2153;	  %  computed by http://www.graphpad.com/quickcalcs/
   p = t_test (x, 30, &t);
   ifnot ((feqs (p,p0)) || feqs (t,t0))
     failed ("t_test 1 failed:\n p = %S, p0 = %S, t = %g, t0 = %g", p, p0, t, t0);

   t0 = 1.3328;
   p0 = 0.0033;	  %  computed by http://www.graphpad.com/quickcalcs/
   p = t_test (x, 45, &t);
   ifnot ((feqs (p,p0)) || feqs (t,t0))
     failed ("t_test 2 failed:\n p = %S, p0 = %S, t = %g, t0 = %g", p, p0, t, t0);
}

private define check_poisson_cdf (m, k, p)
{
   variable p1 = poisson_cdf (m, k);
   if (fneqs (p, p1, 1e-6))
     failed ("poisson_cdf(%S,%S) returned %S, expected %S, diff=%S", m, k, p1, p, abs(p-p1));
}

private define test_poisson_cdf ()
{
   % The CDFs were computed from http://www.xuru.org/
   check_poisson_cdf (6, 12, 0.991172516482);
   check_poisson_cdf (245, 300, 0.999702001313651);
   check_poisson_cdf (245, 345, 0.9999999993);
   check_poisson_cdf (345, 245, 8.407230482e-9);
   check_poisson_cdf (500.0, 500, 0.5118911217);
   check_poisson_cdf (500.0, 450, 0.01240835055);
   check_poisson_cdf (50000.0, 50000, 0.501189413);
   check_poisson_cdf (50000.0, 49900, 0.3283840695);
   check_poisson_cdf (50000.0, 50500, 0.9873021349);
}

define slsh_main ()
{
   testing_module ("stats");

   test_mean_stddev ();
   test_chisqr_test ();
   test_f ();
   test_kendall ();
   test_ks ();
   test_mw_cdf (2);
   test_mw_cdf (3);
   test_mw_cdf (10);
   test_mw_cdf (21);
   test_mw_test ();
   test_spearman ();
   test_binomial ();
   test_student_t ();
   test_poisson_cdf ();

   end_test ();
}