File: stats_kendall.c

package info (click to toggle)
slang2 2.3.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,488 kB
  • sloc: ansic: 101,756; sh: 3,435; makefile: 1,046; pascal: 440
file content (383 lines) | stat: -rw-r--r-- 9,280 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
/*
Copyright (C) 2020-2021,2022 John E. Davis

This file is part of the S-Lang Library.

The S-Lang Library is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

The S-Lang Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA.
*/
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <slang.h>

#include "_slint.h"
#include "stats-module.h"

static double alnorm (double x, int use_upper)
{
   double cdf;
   cdf = 0.5 * (1.0 + erf (x/sqrt(2.0)));
   if (use_upper) return 1.0 - cdf;
   return cdf;
}

static int prtaus_large_n (_pSLint64_Type is, _pSLint64_Type n, double *probp)
{
   double h[15];
   double x, r, sc, p;
   int i;

   /* PROBABILITIES CALCULATED BY MODIFIED EDGEWORTH SERIES FOR N GREATER THAN 8 */
   /* CALCULATION OF TCHEBYCHEFF-HERMITE POLYNOMIALS */
   x = (is-1.0) / sqrt((6.0 + n*(5.0-n*(3.0+2*n)))/(-18.0));
   h[0] = x;
   h[1] = x*x - 1.0;
   for (i = 2; i < 15; i++)
     {
	h[i] = x * h[i-1] - (i-1.0)*h[i-2];
     }

   r = 1.0 / n;
   sc = r*(h[2]*(r*(r*(r*0.506f - 0.5325f) + 0.045f) - 0.09f)
	   + r*(h[4]*(r*(r*0.3214f - 0.036735f) + 0.036735f)
		+ h[6]*(r*(r*0.07787f - 0.023336f) + 0.00405f)
		+ r*(h[8]*(-.0033061f - r*0.0065166f)
		     + h[10]*(r*0.0025927f - 1.215e-4f)
		     + r*(h[12]*1.4878e-4f + h[14]*2.7338e-6f))));

   p = alnorm (x,1) + sc*0.398942*exp(-0.5*x*x);
   if (p < 0.0) p = 0.0;
   if (p > 1.0) p = 1.0;
   *probp = p;

   return 0;
}


/*
 * ALGORITHM AS 71  APPL. STATIST. (1974) VOL.23, NO.1
 *
 * GIVEN A VALUE OF IS CALCULATED FROM TWO RANKINGS (WITHOUT TIES)
 * OF N OBJECTS, THE FUNCTION COMPUTES THE PROBABILITY OF
 * OBTAINING A VALUE GREATER THAN, OR EQUAL TO, IS.
 *
 */
static int prtaus (_pSLint64_Type is, _pSLint64_Type n, double *probp)
{
#define MAX_N_EXACT 30
#define MAX_L_COLS ((MAX_N_EXACT)*(MAX_N_EXACT-1)/4 + 2)
   _pSLint64_Type row0[MAX_L_COLS];  /* allow 1-based indexing */
   _pSLint64_Type row1[MAX_L_COLS];  /* allow 1-based indexing */
   _pSLint64_Type *curr, *prev;
   _pSLint64_Type i, il, k, m, im;

   if (n > MAX_N_EXACT)
     return prtaus_large_n (is, n, probp);

   /* Use recurrence relation for n <= MAX_N_EXACT */

   *probp = 1.0;

   m = n*(n-1)/2;
   if (is >= 0) m -= is; else m += is;
   if ((m == 0) && (is <= 0)) return 0;

   if (is < 0) m = m - 2;
   im = m/2;

   memset (row0, 0, (im+1)*sizeof(_pSLint64_Type));
   memset (row1, 0, (im+1)*sizeof(_pSLint64_Type));
   prev = row0; prev[0] = 1;
   curr = row1; curr[0] = 1;

   il = 0;
   i = 1;
   m = 1;
   while (i < n)
     {
	_pSLint64_Type *tmp;
	_pSLint64_Type in, io;

	tmp = curr; curr = prev; prev = tmp;
        il += i;
        i++;
        m = m*i;
	k = (im < il) ? im : il;

	k++;
	in = 1;
	io = (i <= k) ? i : k;
	while (in < io)
	  {
	     curr[in] = curr[in-1] + prev[in];
	     in++;
	  }
	io = 0;
	while (in < k)
	  {
	     curr[in] = curr[in-1] + prev[in] - prev[io];
	     io++;
	     in++;
	  }
     }

   k = 0;
   for (i = 0; i <= im; i++)
     k += curr[i];

   *probp = ((double) k)/m;
   if (is < 0) *probp = 1.0 - *probp;

   return 0;
}

static _pSLuint64_Type kendall_insertion_sort (SLindex_Type *arr, size_t num)
{
   size_t maxj, i;
   _pSLuint64_Type nexch;

   if (num < 2) return 0;

   nexch = 0;
   i = maxj = num - 1;
   while (i--)
     {
        size_t j = i;
        SLindex_Type val = arr[i];

	while ((j < maxj) && (arr[j+1] < val))
	  {
	     arr[j] = arr[j+1];
	     j++;
	  }
        arr[j] = val;
	nexch += (j - i);
    }
   return nexch;
}

static _pSLuint64_Type kendall_merge (SLindex_Type *left, size_t left_num,
			    SLindex_Type *right, size_t right_num,
			    SLindex_Type *work)
{
   _pSLuint64_Type nexch = 0;

   while (left_num && right_num)
     {
        if (*right < *left)
	  {
	     *work++ = *right++;
	     right_num--;
	     nexch += left_num;
	     continue;
	  }

	*work++ = *left++;
	left_num--;
     }

   if (left_num)
     memcpy(work, left, left_num * sizeof(SLindex_Type));
   else if (right_num)
     memcpy(work, right, right_num * sizeof(SLindex_Type));

   return nexch;
}

static _pSLuint64_Type kendall_merge_sort(SLindex_Type *a, size_t num, SLindex_Type *work)
{
   _pSLuint64_Type nexch;
   size_t left_num, right_num;
   SLindex_Type *left, *right;

   if (num < 8)
     return kendall_insertion_sort (a, num);

   left = a;
   left_num = num/2;
   right = a + left_num;
   right_num = num - left_num;

   nexch = kendall_merge_sort(left, left_num, work);
   nexch += kendall_merge_sort(right, right_num, work);
   nexch += kendall_merge(left, left_num, right, right_num, work);

   memcpy(a, work, num * sizeof(SLindex_Type));
   return nexch;
}

/* This also computes the quantities needed for the p-value.  From wikipedia:
 *   v = sum(x*(x-1)*(2*x+5))
 *   v1 = sum (x*(x-1))
 *   v2 = sum(x*(x-1)*(x-2))
 * where x is the number of tied values in a group.
 */
static _pSLuint64_Type
kendall_count_tied_pairs (SLindex_Type *a, size_t num,
			  _pSLuint64_Type *v, _pSLuint64_Type *v1, _pSLuint64_Type *v2)
{
   _pSLuint64_Type n = 0;
   size_t i;

   i = 1;
   while (i < num)
     {
	_pSLuint64_Type di, dn;
	size_t i0;

	if (a[i] != a[i-1])
	  {
	     i++;
	     continue;
	  }

	/* In a group with ties */
	i0 = i-1;
	i++;
	while ((i < num) && (a[i] == a[i-1]))
	  i++;

	di = i-i0;
	dn = di*(di-1);
	*v1 += dn;
	*v2 += dn*(di-2);
	*v += dn * (2*di+5);
	n += dn/2;

	i++;
     }

   return n;
}

/*
 * This function assumes that the input arrays are sorted on the first array.
 * That is, the slang code that wraps this will have to do:
 *
 *    i = array_sort (a);
 *    a = a[i]; b = [i];
 *
 * The basic idea is the following:
 * 
 * The total number of pairs formed from an array of size N is
 * n0 = N*(N-1)/2.  Consider 2 such arrays A and B.  Then consider the ith and
 * jth elemnts of the arrays, where j>i.  One of the following will be true:
 *
 *     A[i]>A[j] and B[i]>B[j]     "concordent"
 *     A[i]<A[j] and B[i]<B[j]     "concordent"
 *     A[i]>A[j] and B[i]<B[j]     "disconcordent"
 *     A[i]<A[j] and B[i]>B[j]     "disconcordent"
 *     A[i]=A[j] and B[i]!=B[j]    "A is tied"
 *     A[i]!=A[j] and B[i]=B[j]    "B is tied"
 *     A[i]=A[j] and B[i]=B[j]     "joint tie"
 *
 * Then: n0 = nc + nd + (t + v) + u
 *       n0 = nc + nd + (u + v) + t
 * where nc=num concordent, nd = num disconcordent, t=A ties, u=B ties, v=joint ties
 *
 * Let t+v = nA = total number of ties in A (includes joint)
 *     u+v = nB = total number of ties in B (includes joint)
 * Then: n0 = nc + nd + nA + u
 * 
 *   nc + nd = n0 - nA - u
 *           = n0 - nA - (nB - v)
 *           = n0 + v - (nA + nB)
 * Knight indicates that nd is equal to the number of exchanges (ne) in sorting B.
 * Hence:
 *
 *   nc - nd = (nc + nd) - 2*ne
 *           = (n0 + v) - (nA + nB + 2*ne)
 */
double _pSLstats_kendall_tau (SLindex_Type *a, SLindex_Type *b, size_t num, double *taup)
{
   double tau, sigma, prob;
   _pSLuint64_Type n0, na, nb, ne, v;
   _pSLuint64_Type va, va1, va2, vb, vb1, vb2;
   size_t i;

   n0 = num;
   n0 = n0*(n0-1)/2;

   na = v = 0;
   va = va1 = va2 = 0;
   vb = vb1 = vb2 = 0;

   i = 1;
   while (i < num)
     {
	_pSLuint64_Type di;
	size_t i0;

	if (a[i-1] != a[i])
	  {
	     i++;
	     continue;
	  }

	i0 = i - 1;
	i++;
	while ((i < num) && (a[i-1] == a[i]))
	  i++;

	di = i-i0;
	na += di*(di-1)/2;

	(void) kendall_insertion_sort (b+i0, di);
	v += kendall_count_tied_pairs(b+i0, di, &va, &va1, &va2);
	i++;			       /* ok to do since if i<num, the a[i-1]!=a[i] */
     }

   /* Sort b, using a as workspace */
   ne = kendall_merge_sort (b, num, a);
   nb = kendall_count_tied_pairs (b, num, &vb, &vb1, &vb2);

   /* Of no ties, use exact probability distribution */
   if ((na == 0) && (nb == 0))
     {
	_pSLint64_Type is;

	if (n0 < 2*ne)
	  is = -(_pSLint64_Type)(2*ne - n0);
	else
	  is = (_pSLint64_Type)(n0 - 2*ne);

	*taup = ((double)is)/n0;

	/* prob is probability of getting a statistic >= is. */
	(void) prtaus (is, num, &prob);
	prob = 1.0 - prob;	       /* prob of statistic < is */
	/* fprintf (stdout, "prtaus: num=%lu, is=%lu, prob=%g\n", num, is, prob); */
	return prob;
     }

   /* Otherwise, use normal distributuon */
   tau = (n0 + v - na - nb - ne);      /* This should be >= 0 */
   tau -= ne;			       /* may be < 0 */

   /* From wikipedia */
   sigma = (n0*(4.0*num+10.0) - va - vb)/18.0;
   sigma += va1*(double)vb1/(4.0*n0);
   sigma += va2*(double)vb2/(18.0*n0*(num-2));
   sigma = sqrt (sigma);

   *taup = tau/sqrt(n0-na)/sqrt(n0-nb);  /* avoid overflow */

   /* To compute the probability use the continuity correction recommended by Kendall */
   if (tau > 0) tau -= 1; else if (tau < 0) tau += 1;
   return 0.5 * (1.0 + erf (tau/sigma/sqrt(2.0)));
}