1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
/*
Copyright (C) 2020-2021,2022 John E. Davis
This file is part of the S-Lang Library.
The S-Lang Library is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The S-Lang Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA.
*/
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <slang.h>
#include "_slint.h"
#include "stats-module.h"
static double alnorm (double x, int use_upper)
{
double cdf;
cdf = 0.5 * (1.0 + erf (x/sqrt(2.0)));
if (use_upper) return 1.0 - cdf;
return cdf;
}
static int prtaus_large_n (_pSLint64_Type is, _pSLint64_Type n, double *probp)
{
double h[15];
double x, r, sc, p;
int i;
/* PROBABILITIES CALCULATED BY MODIFIED EDGEWORTH SERIES FOR N GREATER THAN 8 */
/* CALCULATION OF TCHEBYCHEFF-HERMITE POLYNOMIALS */
x = (is-1.0) / sqrt((6.0 + n*(5.0-n*(3.0+2*n)))/(-18.0));
h[0] = x;
h[1] = x*x - 1.0;
for (i = 2; i < 15; i++)
{
h[i] = x * h[i-1] - (i-1.0)*h[i-2];
}
r = 1.0 / n;
sc = r*(h[2]*(r*(r*(r*0.506f - 0.5325f) + 0.045f) - 0.09f)
+ r*(h[4]*(r*(r*0.3214f - 0.036735f) + 0.036735f)
+ h[6]*(r*(r*0.07787f - 0.023336f) + 0.00405f)
+ r*(h[8]*(-.0033061f - r*0.0065166f)
+ h[10]*(r*0.0025927f - 1.215e-4f)
+ r*(h[12]*1.4878e-4f + h[14]*2.7338e-6f))));
p = alnorm (x,1) + sc*0.398942*exp(-0.5*x*x);
if (p < 0.0) p = 0.0;
if (p > 1.0) p = 1.0;
*probp = p;
return 0;
}
/*
* ALGORITHM AS 71 APPL. STATIST. (1974) VOL.23, NO.1
*
* GIVEN A VALUE OF IS CALCULATED FROM TWO RANKINGS (WITHOUT TIES)
* OF N OBJECTS, THE FUNCTION COMPUTES THE PROBABILITY OF
* OBTAINING A VALUE GREATER THAN, OR EQUAL TO, IS.
*
*/
static int prtaus (_pSLint64_Type is, _pSLint64_Type n, double *probp)
{
#define MAX_N_EXACT 30
#define MAX_L_COLS ((MAX_N_EXACT)*(MAX_N_EXACT-1)/4 + 2)
_pSLint64_Type row0[MAX_L_COLS]; /* allow 1-based indexing */
_pSLint64_Type row1[MAX_L_COLS]; /* allow 1-based indexing */
_pSLint64_Type *curr, *prev;
_pSLint64_Type i, il, k, m, im;
if (n > MAX_N_EXACT)
return prtaus_large_n (is, n, probp);
/* Use recurrence relation for n <= MAX_N_EXACT */
*probp = 1.0;
m = n*(n-1)/2;
if (is >= 0) m -= is; else m += is;
if ((m == 0) && (is <= 0)) return 0;
if (is < 0) m = m - 2;
im = m/2;
memset (row0, 0, (im+1)*sizeof(_pSLint64_Type));
memset (row1, 0, (im+1)*sizeof(_pSLint64_Type));
prev = row0; prev[0] = 1;
curr = row1; curr[0] = 1;
il = 0;
i = 1;
m = 1;
while (i < n)
{
_pSLint64_Type *tmp;
_pSLint64_Type in, io;
tmp = curr; curr = prev; prev = tmp;
il += i;
i++;
m = m*i;
k = (im < il) ? im : il;
k++;
in = 1;
io = (i <= k) ? i : k;
while (in < io)
{
curr[in] = curr[in-1] + prev[in];
in++;
}
io = 0;
while (in < k)
{
curr[in] = curr[in-1] + prev[in] - prev[io];
io++;
in++;
}
}
k = 0;
for (i = 0; i <= im; i++)
k += curr[i];
*probp = ((double) k)/m;
if (is < 0) *probp = 1.0 - *probp;
return 0;
}
static _pSLuint64_Type kendall_insertion_sort (SLindex_Type *arr, size_t num)
{
size_t maxj, i;
_pSLuint64_Type nexch;
if (num < 2) return 0;
nexch = 0;
i = maxj = num - 1;
while (i--)
{
size_t j = i;
SLindex_Type val = arr[i];
while ((j < maxj) && (arr[j+1] < val))
{
arr[j] = arr[j+1];
j++;
}
arr[j] = val;
nexch += (j - i);
}
return nexch;
}
static _pSLuint64_Type kendall_merge (SLindex_Type *left, size_t left_num,
SLindex_Type *right, size_t right_num,
SLindex_Type *work)
{
_pSLuint64_Type nexch = 0;
while (left_num && right_num)
{
if (*right < *left)
{
*work++ = *right++;
right_num--;
nexch += left_num;
continue;
}
*work++ = *left++;
left_num--;
}
if (left_num)
memcpy(work, left, left_num * sizeof(SLindex_Type));
else if (right_num)
memcpy(work, right, right_num * sizeof(SLindex_Type));
return nexch;
}
static _pSLuint64_Type kendall_merge_sort(SLindex_Type *a, size_t num, SLindex_Type *work)
{
_pSLuint64_Type nexch;
size_t left_num, right_num;
SLindex_Type *left, *right;
if (num < 8)
return kendall_insertion_sort (a, num);
left = a;
left_num = num/2;
right = a + left_num;
right_num = num - left_num;
nexch = kendall_merge_sort(left, left_num, work);
nexch += kendall_merge_sort(right, right_num, work);
nexch += kendall_merge(left, left_num, right, right_num, work);
memcpy(a, work, num * sizeof(SLindex_Type));
return nexch;
}
/* This also computes the quantities needed for the p-value. From wikipedia:
* v = sum(x*(x-1)*(2*x+5))
* v1 = sum (x*(x-1))
* v2 = sum(x*(x-1)*(x-2))
* where x is the number of tied values in a group.
*/
static _pSLuint64_Type
kendall_count_tied_pairs (SLindex_Type *a, size_t num,
_pSLuint64_Type *v, _pSLuint64_Type *v1, _pSLuint64_Type *v2)
{
_pSLuint64_Type n = 0;
size_t i;
i = 1;
while (i < num)
{
_pSLuint64_Type di, dn;
size_t i0;
if (a[i] != a[i-1])
{
i++;
continue;
}
/* In a group with ties */
i0 = i-1;
i++;
while ((i < num) && (a[i] == a[i-1]))
i++;
di = i-i0;
dn = di*(di-1);
*v1 += dn;
*v2 += dn*(di-2);
*v += dn * (2*di+5);
n += dn/2;
i++;
}
return n;
}
/*
* This function assumes that the input arrays are sorted on the first array.
* That is, the slang code that wraps this will have to do:
*
* i = array_sort (a);
* a = a[i]; b = [i];
*
* The basic idea is the following:
*
* The total number of pairs formed from an array of size N is
* n0 = N*(N-1)/2. Consider 2 such arrays A and B. Then consider the ith and
* jth elemnts of the arrays, where j>i. One of the following will be true:
*
* A[i]>A[j] and B[i]>B[j] "concordent"
* A[i]<A[j] and B[i]<B[j] "concordent"
* A[i]>A[j] and B[i]<B[j] "disconcordent"
* A[i]<A[j] and B[i]>B[j] "disconcordent"
* A[i]=A[j] and B[i]!=B[j] "A is tied"
* A[i]!=A[j] and B[i]=B[j] "B is tied"
* A[i]=A[j] and B[i]=B[j] "joint tie"
*
* Then: n0 = nc + nd + (t + v) + u
* n0 = nc + nd + (u + v) + t
* where nc=num concordent, nd = num disconcordent, t=A ties, u=B ties, v=joint ties
*
* Let t+v = nA = total number of ties in A (includes joint)
* u+v = nB = total number of ties in B (includes joint)
* Then: n0 = nc + nd + nA + u
*
* nc + nd = n0 - nA - u
* = n0 - nA - (nB - v)
* = n0 + v - (nA + nB)
* Knight indicates that nd is equal to the number of exchanges (ne) in sorting B.
* Hence:
*
* nc - nd = (nc + nd) - 2*ne
* = (n0 + v) - (nA + nB + 2*ne)
*/
double _pSLstats_kendall_tau (SLindex_Type *a, SLindex_Type *b, size_t num, double *taup)
{
double tau, sigma, prob;
_pSLuint64_Type n0, na, nb, ne, v;
_pSLuint64_Type va, va1, va2, vb, vb1, vb2;
size_t i;
n0 = num;
n0 = n0*(n0-1)/2;
na = v = 0;
va = va1 = va2 = 0;
vb = vb1 = vb2 = 0;
i = 1;
while (i < num)
{
_pSLuint64_Type di;
size_t i0;
if (a[i-1] != a[i])
{
i++;
continue;
}
i0 = i - 1;
i++;
while ((i < num) && (a[i-1] == a[i]))
i++;
di = i-i0;
na += di*(di-1)/2;
(void) kendall_insertion_sort (b+i0, di);
v += kendall_count_tied_pairs(b+i0, di, &va, &va1, &va2);
i++; /* ok to do since if i<num, the a[i-1]!=a[i] */
}
/* Sort b, using a as workspace */
ne = kendall_merge_sort (b, num, a);
nb = kendall_count_tied_pairs (b, num, &vb, &vb1, &vb2);
/* Of no ties, use exact probability distribution */
if ((na == 0) && (nb == 0))
{
_pSLint64_Type is;
if (n0 < 2*ne)
is = -(_pSLint64_Type)(2*ne - n0);
else
is = (_pSLint64_Type)(n0 - 2*ne);
*taup = ((double)is)/n0;
/* prob is probability of getting a statistic >= is. */
(void) prtaus (is, num, &prob);
prob = 1.0 - prob; /* prob of statistic < is */
/* fprintf (stdout, "prtaus: num=%lu, is=%lu, prob=%g\n", num, is, prob); */
return prob;
}
/* Otherwise, use normal distributuon */
tau = (n0 + v - na - nb - ne); /* This should be >= 0 */
tau -= ne; /* may be < 0 */
/* From wikipedia */
sigma = (n0*(4.0*num+10.0) - va - vb)/18.0;
sigma += va1*(double)vb1/(4.0*n0);
sigma += va2*(double)vb2/(18.0*n0*(num-2));
sigma = sqrt (sigma);
*taup = tau/sqrt(n0-na)/sqrt(n0-nb); /* avoid overflow */
/* To compute the probability use the continuity correction recommended by Kendall */
if (tau > 0) tau -= 1; else if (tau < 0) tau += 1;
return 0.5 * (1.0 + erf (tau/sigma/sqrt(2.0)));
}
|