File: ad_test.sl

package info (click to toggle)
slang2 2.3.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,488 kB
  • sloc: ansic: 101,756; sh: 3,435; makefile: 1,046; pascal: 440
file content (374 lines) | stat: -rw-r--r-- 9,467 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
% Anderson-Darling Tests
% 
% The k-sample test was implemented from the equations found in
% Scholz F.W. and Stephens M.A., "K-Sample Anderson-Darling Tests",
% Journal of the American Statistical Association, Vol 82, 399 (1987)
%
private define get_unique_and_tied (a)
{
   variable n = length (a);
   variable i = array_sort (a);
   variable z = a[__tmp(i)];

   if (z[0] == z[-1])
     return [z[0]], [n];

   variable j, k;
   % Algorithm examples:
   % z =           [1, 2, 2, 3, 4, 4, 4];      [1,2]
   % shift(z,-1) = [4, 1, 2, 2, 3, 4, 4];      [2,1]
   % z!=sh(z)    = [1, 1, 0, 1, 1, 0, 0];      [1,1]
   % j=where(&k) = [0,1,3,4];                  [0,1]
   % k           = [2,5,6];                    []
   % k-1         = [1,4,5];                    []
   j = where (shift (z,-1) != z, &k);

   variable multiplicity = Int_Type[n] + 1;
   variable nk = length(k);
   i = 0;
   while (i < nk)
     {
	variable count = 0;
	variable k0 = k[i], k1 = k0;
	while ((i < nk) && (k[i] == k1))
	  {
	     k1++;
	     i++;
	  }
	multiplicity[k0-1] += k1-k0;
     }
   return z[j], multiplicity[j];
}

define ad_ktest_pval (t, m)
{
   variable alphas = [0.25, 0.1, 0.05, 0.025, 0.01];
   % S&S suggests the parametrization
   %   t_m(alpha) = b0(alpha) + b1(alpha)/sqrt(m) + b2(alpha)/m
   variable b0_alpha = [0.675, 1.281, 1.645, 1.960, 2.326];
   variable b1_alpha = [-0.245, 0.250, 0.678, 1.149, 1.822];
   variable b2_alpha = [-0.105, -0.305, -0.362, -0.391, -0.396];

   % The algorithm:
   %  1.  Use bk_alpha to compute tm_alpha for given m.
   %  2.  Use linear interpolation of log(alpha/(1-alpha) vs tm_alpha.
   %  3.  ==> exp(v) = alpha/(1-alpha)
   %      ==> alpha = exp(v)/(1+exp(v)), where v is interpolated value.

   variable i, n = length (alphas);
   variable logodd = log (alphas/(1-alphas));
   variable tm_alpha = b0_alpha + b1_alpha/sqrt(m) + b2_alpha/m;
   i = wherelast (t >= tm_alpha);
   if (i == NULL)
     i = 0;
   else if (i == n - 1)
     i = n - 2;

   % v = p0*(1-s) + s*p1 ==> v = p0 + s*(p1-p0)
   % v0 = p0 + (t-t0)/(t1-t0)*(p1-p0)
   variable v0 = logodd[i], v1 = logodd[i+1], t0 = tm_alpha[i], t1 = tm_alpha[i+1];
   variable v = v0 + (v1-v0)*((t-t0)/(t1-t0));

   variable alpha = exp(v)/(1+exp(v));
   if (alpha < 0) alpha = 0.0;
   else if (alpha > 1.0) alpha = 1.0;
   return alpha;
}

define ad_ktest ()
{
   variable tref = NULL;
   variable arg, nargs = _NARGS;
   if (nargs > 1)
     {
	arg = ();
	if (_typeof (arg) == Ref_Type)
	  {
	     tref = arg;
	     nargs--;
	  }
	else arg;		       %  leave it on stack
     }

   if (nargs == 0)
     usage ("\
pval = ad_ktest ({X1,X2,...Xn} [,&statistic]; qualifiers);\n\
Qualifiers:\n\
  pval2=&pval2    P-value corresponding to continuous case (no ties)\n\
  stat2=&stat2    Statistic for the continuous case\n\
"
	   );

   variable datasets;
   if (nargs == 1)
     datasets = ();
   else
     datasets = __pop_list (nargs);

   if ((_typeof (datasets) != Array_Type)
       && (typeof (datasets) != List_Type))
     throw InvalidParmError, "Expecting a list of arrays or an array of arrays";

   variable i, j, k;
   variable z_i, zstar, n;

   k = length (datasets);
   if (k < 2)
     throw InvalidParmError, "ad_ktest requires at least 2 datasets";

   zstar = datasets[0];

   _for i (1, k-1, 1)
     zstar = [zstar, datasets[i]];

   n = length (zstar);

   variable multiplicity;
   (zstar, multiplicity) = get_unique_and_tied (zstar);

   variable cap_l = length(zstar);

   variable s = 0.0, s_a = 0.0;
   variable mj = Double_Type[k];
   variable cap_Bj = 0.0, cap_Bj_a = 0.0;

   variable kmult = Int_Type[cap_l, k];
   variable zstar_j;
   cap_l--;
#ifexists wherefirst_ge
   _for i (0, k-1, 1)
     {
	z_i = datasets[i];
	z_i = z_i[array_sort (z_i)];
	% exploit the fact that both z_i and zstar are sorted.
	variable i0 = 0;
	_for j (0, cap_l, 1)
	  {
	     variable i1;
	     i1 = wherefirst_ge (z_i, zstar[j], i0);
	     if (i1 == NULL)
	       continue;
	     % This point is reached about a quarter of the time.
	     i0 = i1;
	     i1 = wherefirst_ne (z_i, zstar[j], i0);
	     if (i1 == NULL)
	       {
		  % end of array
		  if (zstar[j] == z_i[i0])
		    kmult[j,i] = length(z_i)-i0;
		  break;
	       }

	     kmult[j,i] = i1-i0;
	     i0 = i1;
	  }
     }
#endif
   _for j (0, cap_l, 1)
     {
	zstar_j = zstar[j];
	variable l_j = multiplicity[j];
	cap_Bj += l_j;
	cap_Bj_a += 0.5*l_j;
	variable ds = 0.0, ds_a = 0.0;
	_for i (0, k-1, 1)
	  {
	     z_i = datasets[i];
	     variable n_i = length (z_i);
#ifexists wherefirst_ne
	     variable dmij = 0.5*kmult[j,i];
#else
	     variable dmij = 0.5*length (where (z_i == zstar_j));
#endif
	     variable mij = mj[i] + dmij;
	     variable top = (n*mij - n_i*cap_Bj_a);
	     ds_a += top*top/n_i;

	     mij += dmij;
	     top = (n*mij - n_i*cap_Bj);
	     ds += top*top/n_i;
	     mj[i] = mij;
	  }
	s_a += l_j*ds_a/(cap_Bj_a*(n-cap_Bj_a) - 0.25*l_j*n)/n;
	if (j != cap_l)
	  s += l_j*ds/(cap_Bj * (n-cap_Bj))/n;
	cap_Bj_a = cap_Bj;
     }
   s_a *= (n-1.0)/n;

   variable h = sum (1.0/[1:n-1]);
   variable g = sum (cumsum (1.0/([n-1:2:-1]))/[2:n-1]);
   variable cap_h = 0.0;

   _for i (0, k-1, 1)
     cap_h += 1.0/length(datasets[i]);

   variable
     k2 = k*k, hk = h*k, g4m6 = 4*g-6,
     a = g4m6*(k-1)+(10-6*g)*cap_h,
     b = (2*g-4)*k2 + 8*hk + (2*g-14*h-4)*cap_h - 8*h + g4m6,
     c = (6*h+2*g-2)*k2 + (4*h-g4m6)*k + (2*h-6)*cap_h + 4*h,
     d = (2*h+6)*k2 - 4*hk;

   variable sig = d + n*(c + n*(b + n*a));
   sig = sqrt(sig/(n-1)/(n-2)/(n-3));
   variable t = (s - (k-1))/sig;
   variable t_a = (s_a - (k-1))/sig;
   %vmessage ("s = %g, s_a = %g", s, s_a);

   variable pval = ad_ktest_pval (t_a, k-1);
   if (tref != NULL) @tref = t_a;

   variable pval2_ref = qualifier ("pval2");
   variable stat2_ref = qualifier ("stat2");

   if (typeof (pval2_ref) == Ref_Type) @pval2_ref = ad_ktest_pval (t, k-1);
   if (typeof (stat2_ref) == Ref_Type) @stat2_ref = t;

   return pval;
}

% This function was derived from
%  Marsaglia and Marsaglia, Evaluating the Anderson-Darling
%  Distribution, Journal of Statistical Software, Vol. 9, Issue 2, Feb
%  2004.
define anderson_darling_cdf ()
{
   if (_NARGS != 2)
     {
	usage ("\
cdf = anderson_darling_cdf (A2, nsamp)\n\
%% Computes the Anderson-Darling CDF at the points A2 for sample-sizes nsamp.\n\
"
	      );
     }
   variable z, ndata; (z, ndata) = ();
   variable nz = length (z);

   if (typeof (ndata) != Array_Type)
     ndata = ndata + Int_Type[nz];

   if (length (ndata) != nz)
     throw InvalidParmError, "the length of A2 and nsamp do not match";

   variable x = Double_Type[nz];

   variable i, j, a, zz;

   % Evaluate adinf(z)
   i = where (0.0 < z < 2.0, &j);
   if (length (i))
     {
	zz = z[i];
	a = [2.00012, 0.247105, -0.0649821, 0.0347962, -0.0116720, 0.00168691];
	x[i] = exp(-1.2337141/zz)*polynom(a, zz)/sqrt(zz);
     }
   if (length (j))
     {
	zz = z[j];
	a = [1.0776, -2.30695, 0.43424, -0.082433, 0.008056, -0.0003146];
	x[j] = exp(-exp(polynom (a, zz)));
     }

   % Now compute the correction for finite n (sec 3 of Marsaglia's paper)
   variable ndatainv = 1.0/ndata;
   variable c = 0.01265 + 0.1757*ndatainv;
   variable dx = Double_Type[nz];

   i = where (x < c);
   if (length (i))
     {
	zz = x[i]/c[i];
	dx[i] = ((0.0037*ndatainv + 0.00078)*ndatainv + 0.00006)*ndatainv
	  * sqrt(zz)*(1.0-zz)*(49.0*zz-102.0);
     }

   i = where (c <= x < 0.8);
   if (length (i))
     {
	variable ci = c[i];
	zz = x[i];
	a = [-.00022633, 6.54034, -14.6538, 14.458, -8.259, 1.91864];
	dx[i] = ndatainv*(0.04213 + ndatainv*0.01365)
	  * polynom (a, (zz-ci)/(0.8-ci));
     }

   i = where (x >= 0.8);
   if (length (i))
     {
	a = [-130.2137, 745.2337, -1705.091, 1950.646, -1116.360, 255.7844];
	dx[i] = polynom (a, x[i])*ndatainv;
     }

   x = __tmp(x) + dx;
   ifnot (Array_Type == typeof(z))
     x = x[0];

   return x;
}

define ad_test ()
{
   variable s_ref = NULL;
   if (_NARGS == 2)
     s_ref = ();
   else if (_NARGS != 1)
     usage ("\
p = ad_test (X [,&Asquared]);\n\ %% 1-sample Anderson-Darling test\n\
Qualifiers:\n\
  ;cdf        %% The X values are the CDFs of the underlying distribution\n\
              %%   and 0 <= X <= 1\n\
  ;mean=val   %% The mean of the assumed normal distribution\n\
  ;stddev=val %% The stddev of the assumed normal distribution\n\
"
	   );

   variable cdf = ();
   variable is_cdf = qualifier_exists ("cdf");

   variable n = length (cdf);
   variable factor = 1.0;

   ifnot (is_cdf)
     {
	variable mu = qualifier ("mean");
	variable sd = qualifier ("stddev");

	if (sd == NULL)
	  {
	     if (mu == NULL)
	       {
		  factor = (1.0 + (0.75 + 2.25/n)/n);
		  sd = stddev (cdf);
	       }
	     else sd = sample_stddev (cdf);
	  }
	if (mu == NULL) mu = mean (cdf);
	%vmessage ("mean=%g, stddev=%g, factor=%g", mu, sd, factor);
	cdf = normal_cdf (cdf, mu, sd);
     }

   cdf = __tmp(cdf)[array_sort(cdf)];

   variable ii = [1:2*n:2];
   variable a2 = -n - (sum(ii*log(cdf) + (2*n-ii)*log(1.0-cdf)))/n;

   if (s_ref != NULL)
     @s_ref = a2;

   if (is_cdf)
     {
	return 1.0 - anderson_darling_cdf (a2, n);
     }
   a2 = factor * a2;

   % Augostino & Stephens, 1986
   if (a2 >= 0.6)
     return exp(1.2937 + (-5.709 + 0.0186*a2)*a2);
   if (a2 >= 0.34)
     return exp(0.9177 + (-4.279 - 1.38*a2)*a2);
   if (a2 >= 0.2)
     return 1.0 - exp(-8.318 + (42.796 - 59.938*a2)*a2);
   return 1.0 - exp(-13.436 + (101.14 - 223.73*a2)*a2);
}