1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
% Anderson-Darling Tests
%
% The k-sample test was implemented from the equations found in
% Scholz F.W. and Stephens M.A., "K-Sample Anderson-Darling Tests",
% Journal of the American Statistical Association, Vol 82, 399 (1987)
%
private define get_unique_and_tied (a)
{
variable n = length (a);
variable i = array_sort (a);
variable z = a[__tmp(i)];
if (z[0] == z[-1])
return [z[0]], [n];
variable j, k;
% Algorithm examples:
% z = [1, 2, 2, 3, 4, 4, 4]; [1,2]
% shift(z,-1) = [4, 1, 2, 2, 3, 4, 4]; [2,1]
% z!=sh(z) = [1, 1, 0, 1, 1, 0, 0]; [1,1]
% j=where(&k) = [0,1,3,4]; [0,1]
% k = [2,5,6]; []
% k-1 = [1,4,5]; []
j = where (shift (z,-1) != z, &k);
variable multiplicity = Int_Type[n] + 1;
variable nk = length(k);
i = 0;
while (i < nk)
{
variable count = 0;
variable k0 = k[i], k1 = k0;
while ((i < nk) && (k[i] == k1))
{
k1++;
i++;
}
multiplicity[k0-1] += k1-k0;
}
return z[j], multiplicity[j];
}
define ad_ktest_pval (t, m)
{
variable alphas = [0.25, 0.1, 0.05, 0.025, 0.01];
% S&S suggests the parametrization
% t_m(alpha) = b0(alpha) + b1(alpha)/sqrt(m) + b2(alpha)/m
variable b0_alpha = [0.675, 1.281, 1.645, 1.960, 2.326];
variable b1_alpha = [-0.245, 0.250, 0.678, 1.149, 1.822];
variable b2_alpha = [-0.105, -0.305, -0.362, -0.391, -0.396];
% The algorithm:
% 1. Use bk_alpha to compute tm_alpha for given m.
% 2. Use linear interpolation of log(alpha/(1-alpha) vs tm_alpha.
% 3. ==> exp(v) = alpha/(1-alpha)
% ==> alpha = exp(v)/(1+exp(v)), where v is interpolated value.
variable i, n = length (alphas);
variable logodd = log (alphas/(1-alphas));
variable tm_alpha = b0_alpha + b1_alpha/sqrt(m) + b2_alpha/m;
i = wherelast (t >= tm_alpha);
if (i == NULL)
i = 0;
else if (i == n - 1)
i = n - 2;
% v = p0*(1-s) + s*p1 ==> v = p0 + s*(p1-p0)
% v0 = p0 + (t-t0)/(t1-t0)*(p1-p0)
variable v0 = logodd[i], v1 = logodd[i+1], t0 = tm_alpha[i], t1 = tm_alpha[i+1];
variable v = v0 + (v1-v0)*((t-t0)/(t1-t0));
variable alpha = exp(v)/(1+exp(v));
if (alpha < 0) alpha = 0.0;
else if (alpha > 1.0) alpha = 1.0;
return alpha;
}
define ad_ktest ()
{
variable tref = NULL;
variable arg, nargs = _NARGS;
if (nargs > 1)
{
arg = ();
if (_typeof (arg) == Ref_Type)
{
tref = arg;
nargs--;
}
else arg; % leave it on stack
}
if (nargs == 0)
usage ("\
pval = ad_ktest ({X1,X2,...Xn} [,&statistic]; qualifiers);\n\
Qualifiers:\n\
pval2=&pval2 P-value corresponding to continuous case (no ties)\n\
stat2=&stat2 Statistic for the continuous case\n\
"
);
variable datasets;
if (nargs == 1)
datasets = ();
else
datasets = __pop_list (nargs);
if ((_typeof (datasets) != Array_Type)
&& (typeof (datasets) != List_Type))
throw InvalidParmError, "Expecting a list of arrays or an array of arrays";
variable i, j, k;
variable z_i, zstar, n;
k = length (datasets);
if (k < 2)
throw InvalidParmError, "ad_ktest requires at least 2 datasets";
zstar = datasets[0];
_for i (1, k-1, 1)
zstar = [zstar, datasets[i]];
n = length (zstar);
variable multiplicity;
(zstar, multiplicity) = get_unique_and_tied (zstar);
variable cap_l = length(zstar);
variable s = 0.0, s_a = 0.0;
variable mj = Double_Type[k];
variable cap_Bj = 0.0, cap_Bj_a = 0.0;
variable kmult = Int_Type[cap_l, k];
variable zstar_j;
cap_l--;
#ifexists wherefirst_ge
_for i (0, k-1, 1)
{
z_i = datasets[i];
z_i = z_i[array_sort (z_i)];
% exploit the fact that both z_i and zstar are sorted.
variable i0 = 0;
_for j (0, cap_l, 1)
{
variable i1;
i1 = wherefirst_ge (z_i, zstar[j], i0);
if (i1 == NULL)
continue;
% This point is reached about a quarter of the time.
i0 = i1;
i1 = wherefirst_ne (z_i, zstar[j], i0);
if (i1 == NULL)
{
% end of array
if (zstar[j] == z_i[i0])
kmult[j,i] = length(z_i)-i0;
break;
}
kmult[j,i] = i1-i0;
i0 = i1;
}
}
#endif
_for j (0, cap_l, 1)
{
zstar_j = zstar[j];
variable l_j = multiplicity[j];
cap_Bj += l_j;
cap_Bj_a += 0.5*l_j;
variable ds = 0.0, ds_a = 0.0;
_for i (0, k-1, 1)
{
z_i = datasets[i];
variable n_i = length (z_i);
#ifexists wherefirst_ne
variable dmij = 0.5*kmult[j,i];
#else
variable dmij = 0.5*length (where (z_i == zstar_j));
#endif
variable mij = mj[i] + dmij;
variable top = (n*mij - n_i*cap_Bj_a);
ds_a += top*top/n_i;
mij += dmij;
top = (n*mij - n_i*cap_Bj);
ds += top*top/n_i;
mj[i] = mij;
}
s_a += l_j*ds_a/(cap_Bj_a*(n-cap_Bj_a) - 0.25*l_j*n)/n;
if (j != cap_l)
s += l_j*ds/(cap_Bj * (n-cap_Bj))/n;
cap_Bj_a = cap_Bj;
}
s_a *= (n-1.0)/n;
variable h = sum (1.0/[1:n-1]);
variable g = sum (cumsum (1.0/([n-1:2:-1]))/[2:n-1]);
variable cap_h = 0.0;
_for i (0, k-1, 1)
cap_h += 1.0/length(datasets[i]);
variable
k2 = k*k, hk = h*k, g4m6 = 4*g-6,
a = g4m6*(k-1)+(10-6*g)*cap_h,
b = (2*g-4)*k2 + 8*hk + (2*g-14*h-4)*cap_h - 8*h + g4m6,
c = (6*h+2*g-2)*k2 + (4*h-g4m6)*k + (2*h-6)*cap_h + 4*h,
d = (2*h+6)*k2 - 4*hk;
variable sig = d + n*(c + n*(b + n*a));
sig = sqrt(sig/(n-1)/(n-2)/(n-3));
variable t = (s - (k-1))/sig;
variable t_a = (s_a - (k-1))/sig;
%vmessage ("s = %g, s_a = %g", s, s_a);
variable pval = ad_ktest_pval (t_a, k-1);
if (tref != NULL) @tref = t_a;
variable pval2_ref = qualifier ("pval2");
variable stat2_ref = qualifier ("stat2");
if (typeof (pval2_ref) == Ref_Type) @pval2_ref = ad_ktest_pval (t, k-1);
if (typeof (stat2_ref) == Ref_Type) @stat2_ref = t;
return pval;
}
% This function was derived from
% Marsaglia and Marsaglia, Evaluating the Anderson-Darling
% Distribution, Journal of Statistical Software, Vol. 9, Issue 2, Feb
% 2004.
define anderson_darling_cdf ()
{
if (_NARGS != 2)
{
usage ("\
cdf = anderson_darling_cdf (A2, nsamp)\n\
%% Computes the Anderson-Darling CDF at the points A2 for sample-sizes nsamp.\n\
"
);
}
variable z, ndata; (z, ndata) = ();
variable nz = length (z);
if (typeof (ndata) != Array_Type)
ndata = ndata + Int_Type[nz];
if (length (ndata) != nz)
throw InvalidParmError, "the length of A2 and nsamp do not match";
variable x = Double_Type[nz];
variable i, j, a, zz;
% Evaluate adinf(z)
i = where (0.0 < z < 2.0, &j);
if (length (i))
{
zz = z[i];
a = [2.00012, 0.247105, -0.0649821, 0.0347962, -0.0116720, 0.00168691];
x[i] = exp(-1.2337141/zz)*polynom(a, zz)/sqrt(zz);
}
if (length (j))
{
zz = z[j];
a = [1.0776, -2.30695, 0.43424, -0.082433, 0.008056, -0.0003146];
x[j] = exp(-exp(polynom (a, zz)));
}
% Now compute the correction for finite n (sec 3 of Marsaglia's paper)
variable ndatainv = 1.0/ndata;
variable c = 0.01265 + 0.1757*ndatainv;
variable dx = Double_Type[nz];
i = where (x < c);
if (length (i))
{
zz = x[i]/c[i];
dx[i] = ((0.0037*ndatainv + 0.00078)*ndatainv + 0.00006)*ndatainv
* sqrt(zz)*(1.0-zz)*(49.0*zz-102.0);
}
i = where (c <= x < 0.8);
if (length (i))
{
variable ci = c[i];
zz = x[i];
a = [-.00022633, 6.54034, -14.6538, 14.458, -8.259, 1.91864];
dx[i] = ndatainv*(0.04213 + ndatainv*0.01365)
* polynom (a, (zz-ci)/(0.8-ci));
}
i = where (x >= 0.8);
if (length (i))
{
a = [-130.2137, 745.2337, -1705.091, 1950.646, -1116.360, 255.7844];
dx[i] = polynom (a, x[i])*ndatainv;
}
x = __tmp(x) + dx;
ifnot (Array_Type == typeof(z))
x = x[0];
return x;
}
define ad_test ()
{
variable s_ref = NULL;
if (_NARGS == 2)
s_ref = ();
else if (_NARGS != 1)
usage ("\
p = ad_test (X [,&Asquared]);\n\ %% 1-sample Anderson-Darling test\n\
Qualifiers:\n\
;cdf %% The X values are the CDFs of the underlying distribution\n\
%% and 0 <= X <= 1\n\
;mean=val %% The mean of the assumed normal distribution\n\
;stddev=val %% The stddev of the assumed normal distribution\n\
"
);
variable cdf = ();
variable is_cdf = qualifier_exists ("cdf");
variable n = length (cdf);
variable factor = 1.0;
ifnot (is_cdf)
{
variable mu = qualifier ("mean");
variable sd = qualifier ("stddev");
if (sd == NULL)
{
if (mu == NULL)
{
factor = (1.0 + (0.75 + 2.25/n)/n);
sd = stddev (cdf);
}
else sd = sample_stddev (cdf);
}
if (mu == NULL) mu = mean (cdf);
%vmessage ("mean=%g, stddev=%g, factor=%g", mu, sd, factor);
cdf = normal_cdf (cdf, mu, sd);
}
cdf = __tmp(cdf)[array_sort(cdf)];
variable ii = [1:2*n:2];
variable a2 = -n - (sum(ii*log(cdf) + (2*n-ii)*log(1.0-cdf)))/n;
if (s_ref != NULL)
@s_ref = a2;
if (is_cdf)
{
return 1.0 - anderson_darling_cdf (a2, n);
}
a2 = factor * a2;
% Augostino & Stephens, 1986
if (a2 >= 0.6)
return exp(1.2937 + (-5.709 + 0.0186*a2)*a2);
if (a2 >= 0.34)
return exp(0.9177 + (-4.279 - 1.38*a2)*a2);
if (a2 >= 0.2)
return 1.0 - exp(-8.318 + (42.796 - 59.938*a2)*a2);
return 1.0 - exp(-13.436 + (101.14 - 223.73*a2)*a2);
}
|