File: test_stats.sl

package info (click to toggle)
slang2 2.3.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,488 kB
  • sloc: ansic: 101,756; sh: 3,435; makefile: 1,046; pascal: 440
file content (880 lines) | stat: -rw-r--r-- 25,762 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
() = evalfile("./test.sl");
require ("stats");
require ("rand");

private define round_to_sigfig (x, n)
{
   if ((x == 0) || (n <= 0)) return x;
   variable s = 1;
   if (x < 0)
     {
	x = -x;
	s = -1;
     }

   % Convert x to exponential form
   % x = a*10^b
   % where 0.1 <= a < 1.0 ==> -1 <= log10(a) < 0
   % ==> log10(x) = log10(a) + b
   % ==> -1 <= log10(x) - b < 0
   % ==> log10(x) < b <= log10(x) + 1
   % Since b is an integer, round log10(x) up to an integer
   variable b = int (ceil(log10(x)));
   % Given b:
   %   log10(x) - b = log10(a)
   % ==> a = x * 10^(-b);
   %
   % Since 0.1 <= a < 1.0, write:
   % x = (a*10^n)*10^(b-n)
   % x = a'*10^(b-n), where a' = a*10^n = x*10^(n-b)
   % Then 0.1*10^n <= a' < 10^n
   % Or: 10^(n-1) <= a' < 10^n
   % Round a' to the nearest integer.
   variable p1, p2, a;
   p1 = 10^b; p2 = 10^n;	       %  to avoid under/overflow don't combine p1/p2
   a = int (0.5 + (x/p1)*p2);
   return s*(a/p2)*p1;
}

% Many of the books with examples used to validate the tests only
% provide values to a given number of significant figures.
private define sigeq (x, y, n)
{
   x = round_to_sigfig (x,n);
   y = round_to_sigfig (y,n);
   return feqs (x,y,1e-4,1e-8);
}

private define generate_data (m, s, n)
{
   variable x = m + rand_gauss (s, n);
   variable m0 = mean(x);
   x = x + (m-m0);
   variable s0 = stddev(x);
   x = m + (x-m)*s/s0;
   return x;
}

private define check_usage (ref)
{
   try
     {
	(@ref)();
	failed ("%S usage", ref);
     }
   catch UsageError;
}

private define test_chisqr_test ()
{
   % This example comes from Conover, 1980, section 4.2
   variable x = [6, 14, 17, 9];
   variable y = [30, 32, 17, 3];
   variable t, p;
   p = chisqr_test (x, y, &t);
   if (abs(t - 17.3) > 0.1)
     failed ("chisqr_test: Expected 17.3, got t=%S", t);
   x = [13, 73];
   y = [17, 57];
   p = chisqr_test (x, y, &t);
   if (abs(t - 1.61) > 0.01)
     failed ("chisqr_test: Expected 1.61, got t=%S", t);
   % Conover 1980, example 2, pg 159.  EXCEPT: Conover has 1.55 for the
   % statistic, but an explicit calculation yields 1.524...  Is this a
   % misprint?
   p = chisqr_test ([16,14.], [14,6.], [13,10.], [13,8.], &t);
   if (abs(t - 1.524) > 0.01)
     failed ("chisqr_test: Expected 1.524, got t=%S", t);

   check_usage (&chisqr_test);
}

private define test_f ()
{
   variable x, y, s, p;
   variable s0, p0;

   % This test comes from the Gnumeric documentation for the f-test
   x = [68.5, 83, 83, 66.5, 58.1, 82.4];
   y = [81.5, 85.2, 87.1, 69.3, 73.5, 65.5, 73.4, 56.1];

   %vmessage("stddev x/y = %g", stddev(x)/stddev(y));
   p = f_test2 (x, y, &s);
   p0 = 0.920666, s0 = 1.039706;
   ifnot (feqs (p,p0) || feqs (s,s0))
     failed ("f_test2 test 1 failed");

   % swap y, x
   p = f_test2 (y, x, &s; side=">");
   p0 = 1-0.53667;
   ifnot (feqs (p,p0))
     failed ("f_test2 size=> failed: expected %g, got %g", p0, p);

   p = f_test2 (x, y, &s; side="<");
   p0 = 0.46333;
   ifnot (feqs (p,p0))
     failed ("f_test2 side=< failed: expected %g, got %g", p0, p);

   check_usage (&f_test2);
}

private define map_cdf_to_pval (cdf)
{
   variable side = qualifier ("side", NULL);

   variable pval = cdf;		       %  side="<"
   if (side == ">")
     pval = 1.0 - cdf;
   else if (side != "<")	       %  double-sided
     pval = 2.0 * _min (1.0-pval, pval);

   return pval;
}

private define nsqr_kendall_tau (x, y, w_ref)
{
   variable n = length (x);
   if (n != length (y))
     throw InvalidParmError, "Arrays must be the same length for nsqr_kendall_tau";

   variable i;
   variable nx = 0.0, ny = 0.0, diff=0.0;
   _for i (0, n-2, 1)
     {
	variable j = [i+1:n-1];
	variable dx = sign(x[i] - x[j]);
	variable dy = sign(y[i] - y[j]);
	nx += sum(abs(dx));
	ny += sum(abs(dy));
	diff += sum (dx*dy);	       %  concordant - discordant
     }

   variable tau = diff/(sqrt(nx)*sqrt(ny));

   @w_ref = tau;

   variable sigma = sqrt((4.0*n+10.0)/(9.0*n*(n-1)));
   return map_cdf_to_pval (normal_cdf(tau/sigma) ;; __qualifiers);
}

private define run_kendall_test (x, y, ep, es)
{
   variable p, s;

   p = kendall_tau (x, y, &s);
   ifnot (feqs (s, es, 0, 0.01))
     failed ("*** kendall_tau statistic: %g, expected %g", s, es);
   ifnot (feqs (p, ep, 0, 0.02))
     failed ("*** kendall_tau pvalue: %g, expected %g", p, ep);
   %vmessage ("s=%S, expected_s=%S", s, es);
   %vmessage ("p=%S, expected_p=%S", p, ep);
}

private define test_kendall_tau ()
{
   variable x, y, p, s, cdf;
   variable expected_s, expected_p;

   % IDL R_CORRELATE example
   x = [257, 208, 296, 324, 240, 246, 267, 311, 324, 323, 263,
	305, 270, 260, 251, 275, 288, 242, 304, 267];
   y = [201, 56, 185, 221, 165, 161, 182, 239, 278, 243, 197,
	271, 214, 216, 175, 192, 208, 150, 281, 196];
   expected_p = 0.000118729;
   expected_s = 0.624347;
   run_kendall_test (x, y, expected_p, expected_s);

   % From Armitage and Berry (1994, p. 466) via statsdirect.com 
   x = [4,10,3,1,9,2,6,7,8,5];
   y = [5,8,6,2,10,3,9,4,7,1];
   expected_p = 0.0466;
   expected_s = 0.5111;
   run_kendall_test (x, y, expected_p, expected_s);

   % Wine example from Herve Abdi in Encyclopedia of Measurement and
   % Statistics (2007)
   x = [1,3,2,4];
   y = [1,4,2,3];
   expected_p = 2*(1.0/6);
   expected_s = 2.0/3.0;
   run_kendall_test (x, y, expected_p, expected_s);

   % Example from Higgins 2004 based upon table 5.3.1
   x = [68, 70, 71, 72];
   y = [153, 155, 140, 180];
   expected_p = 2 * 0.375;	       %  2-sided
   expected_s = 0.33;
   run_kendall_test (x, y, expected_p, expected_s);

   % Problem 4.3 from Higgins
   x = [3,7,15,24,85,180,360];
   y = [2500,3200,4300,5300,5900,6700,6900];
   expected_p = 2.0/5040.0;
   expected_s = 1;
   run_kendall_test (x, y, expected_p, expected_s);

   % Higgins 2004 example 5.3.1
   % Rabbit data (table 5.2.1)
   x = [6,16,8,18,17,4,3,1,5,7,15,2,13,12,10,11,14,9];
   y = [5,17,6,18,14,8,2,1,7,3,15,4,16,13,12,10,9,11];
   expected_p = 0.0;
   expected_s = 0.73;
   run_kendall_test (x, y, expected_p, expected_s);

   % Example 6.1 Gibbons & Chakraborti, 2003
   x = [1,5,9,7,4,6,8,2,3];
   y = [4,3,6,8,2,7,9,1,5];
   expected_p = 0.022 * 2;	       %  2-tailed
   expected_s = 40.0/72.0;
   run_kendall_test (x, y, expected_p, expected_s);

   % Data tested against www.wessa.net/rwasp_kendall.wasp
   x = [1,1,1,1,2,2,2,2,3,4,5,6,7,7,7,7];
   y = [1,1,1,2,1,2,2,2,3,5,4,7,6,7,7,7];
   expected_p = 4.49419021606445e-05;
   expected_s = 0.8529412150383;
   run_kendall_test (x, y, expected_p, expected_s);

   % scipy example (its p-value is wrong, so
   % www.wessa.net/rwasp_kendall.wasp value is used below)
   x = [12, 2, 1, 12, 2];
   y = [1, 4, 7, 1, 0];
   expected_p = 0.420456647872925; % scipy: 0.24821309157521476;
   expected_s = -0.47140452079103173;
   run_kendall_test (x, y, expected_p, expected_s);

   % Data tested against www.wessa.net/rwasp_kendall.wasp
   x = [12,14,14,17,19,19,19,19,19,20,21,21,21,21,21,22,23,24,24,24,26,26,27];
   y = [11,4,4,2,0,0,0,0,0,0,4,0,4,0,0,0,0,4,0,0,0,0,0];
   expected_p = 0.0389842391014099;
   expected_s = -0.376201540231705;
   run_kendall_test (x, y, expected_p, expected_s);

   check_usage (&kendall_tau);
}

private define test_ks ()
{
   variable x, y, p, s, cdf;
   variable expected_s, expected_p;

   % Example 6.1-1 from Conover 1980
   x = [0.621, 0.503, 0.203, 0.477, 0.710,
	0.581, 0.329, 0.480, 0.554, 0.382];
   cdf = x;			       %  uniform distribtion
   p = ks_test (x, &s);
   expected_s = 0.29;
   ifnot (feqs (s, expected_s))
     failed ("*** ks_test statistic: %g, expected %g", s, expected_s);

   % Example 5.4 in Hollander-Wolfe 1999
   x = [-0.15, 8.6, 5, 3.71, 4.29, 7.74, 2.48, 3.25, -1.15, 8.38];
   y = [2.55, 12.07, 0.46, 0.35, 2.69, -0.94, 1.73, 0.73, -0.35, -0.37];
   expected_p = 0.0524;
   p = ks_test2 (x,y, &s);
   ifnot (feqs (p, expected_p))
     failed ("*** ks_test2 pval=: %g, expected %g", p, expected_p);

   check_usage (&ks_test);
   check_usage (&ks_test2);
}

private define test_mw_cdf (N)
{
   variable n;
   _for n (1, N-1, 1)
     {
	variable m = N-n;
	variable rmin = (n*(n+1))/2, rmax = m*n + rmin;
	variable r, lastp = 0, p;
	_for r (rmin, rmax, 1)
	  {
	     p = mann_whitney_cdf (n, m, r);
	     if (lastp > p)
	       failed ("mann_whitney_cdf(%d,%d,%g) to be increasing", n, m, r);
	  }
	ifnot (feqs (p, 1.0, 0.0001))
	  failed ("mann_whitney_cdf (%d, %d, [%d:%d]) failed: s=%g", n, m, rmin, rmax,p);
     }
}

private define test_mw_test ()
{
   variable w, ew;
   variable x, y, p, ep;

   % Example 4.1 from Hollander and Wolfe (2nd Edition)
   x = [0.8, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46];
   y = [1.15, 0.88, 0.9, 0.74, 1.21];

   p = mw_test (y, x, &w);
   ifnot (feqs(w, 30))
     failed ("mw_test 1 returned %S, expected 30", w);

   % Example 2.4.2 Higgins 2004 (Strawberry plants)
   x = [0.55, 0.67, 0.63, 0.79, 0.81, 0.85, 0.68];   %  treated
   y = [0.65, 0.59, 0.44, 0.60, 0.47, 0.58, 0.66, 0.52, 0.51];    %  untreated
   % H0: E(x)<=E(y)
   ew = 84;
   ep = 0.0039;
   p = mw_test (x, y, &w; side=">");
   if (w != ew)
     failed ("mw_test 2 returned %S, expected %S", w, ew);
   ifnot (feqs (p, ep))
     failed ("mw_test 2 returned pval=%g, expected %g", p, ep);

   % Example 2.4.1 (Higgins 2004)
   x = [37,49,55,57];		       %  new
   y = [23,31,46];		       %  traditional
   % H0: E(x)<=E(y)
   p = mw_test (x,y, &w; side=">");
   ew = 21;
   ep = 0.0571;
   if (w != ew)
     failed ("mw_test 3 returned %S, expected %S", w, ew);
   ifnot (feqs (p, ep))
     failed ("mw_test 3 returned pval=%g, expected %g", p, ep);

   % Example 2.6.1 Higgins
   x = [3.6, 3.9, 4.0, 4.3];	       %  brand1
   y = [3.8, 4.1, 4.5, 4.8];	       %  brand2
   p = mw_test (x, y, &w);
   ew = 1+3+4+6;
   ep = 0.1714*2;
   if (w != ew)
     failed ("mw_test 4 returned %S, expected %S", w, ew);
   ifnot (feqs (p, ep))
     failed ("mw_test 4 returned pval=%g, expected %g", p, ep);

   % Conover 1980, section 5.1 example 1
   x = [14.8,7.3,5.6,6.3,9.0,4.2,10.6,12.5,12.9,16.1,11.4,2.7];
   y = [12.7,14.2,12.6,2.1,17.7,11.8,16.9,7.9,16.0,10.6,5.6,5.6,7.6,11.3,8.3,
	6.7,3.6,1.0,2.4,6.4,9.1,6.7,18.6,3.2,6.2,6.1,15.3,10.6,1.8,5.9,9.9,
	10.6,14.8,5.0,2.6,4.0];
   ew = 321; ep = 0.26;
   p = mw_test (x, y, &w; side=">");
   if (w != ew)
     failed ("mw_test 5 returned %S, expected %S", w, ew);
   ifnot (feqs (p, ep))
     failed ("mw_test 5 returned pval=%g, expected %g", p, ep);

   check_usage (&mw_test);
}

private define test_spearman ()
{
   variable x, y, p, s, cdf;
   variable expected_s, expected_p;

   % Higgins 2004 example 5.2.1
   % Rabbit data (table 5.2.1)
   x = [6,16,8,18,17,4,3,1,5,7,15,2,13,12,10,11,14,9];
   y = [5,17,6,18,14,8,2,1,7,3,15,4,16,13,12,10,9,11];

   p = spearman_r (x, y, &s);
   expected_p = 0;
   expected_s = 0.897;
   ifnot (feqs (s, expected_s))
     failed ("*** spearman_r statistic: %g, expected %g", s, expected_s);
   ifnot (feqs (p, expected_p))
     failed ("*** spearman_r pval= %g, expected %g", p, expected_p);

   % Higgins 2004 example 5.2.3
   x = [8,8,7,8,5,6,6,9,8,7];
   y = [7,8,8,5,6,4,5,8,6,9];
   p = spearman_r (x, y, &s);
   expected_p = 0.2832;
   expected_s = 0.375;
   ifnot (feqs (s, expected_s))
     failed ("*** spearman_r statistic: %g, expected %g", s, expected_s);
   ifnot (feqs (p, expected_p))
     failed ("*** spearman_r pval= %g, expected %g", p, expected_p);

   check_usage (&spearman_r);
}

private define check_pval_and_t (name, pv, t, pv_exp, t_exp)
{
   if (feqs (pv, pv_exp) && feqs (t, t_exp))
     return;

   failed ("%s: pv=%S!=%S, t=%S!=%S", name, pv, pv_exp, t, t_exp);
}

private define test_ad_ktest ()
{
   % This test is from Scholz & Stephens
   variable datasets =
     {
	[38.7, 41.5, 43.8, 44.5, 45.5, 46.0, 47.7, 58.0],
	[39.2, 39.3, 39.7, 41.4, 41.8, 42.9, 43.3, 45.8],
	[34.0, 35.0, 39.0, 40.0, 43.0, 43.0, 44.0, 45.0],
	[34.0, 34.8, 34.8, 35.4, 37.2, 37.8, 41.2, 42.8],
     };

   variable pval, t, pval2, t2;
   pval = ad_ktest (datasets, &t; pval2=&pval2, stat2=&t2);
   check_pval_and_t ("ad_ktest1", pval, t, 0.00219, 4.480);
   check_pval_and_t ("ad_ktest1", pval2, t2, 0.00227, 4.449);

   % This examples comes from
   % <http://tools.ietf.org/html/draft-ietf-ippm-testplan-rfc2680-02>
   datasets =
     {
	[114, 175, 138, 142, 181, 105],
	[115, 128, 136, 127, 139, 138],
     };
   pval = ad_ktest (datasets, &t; pval2=&pval2, stat2=&t2);
   check_pval_and_t ("ad_ktest2", pval, t, 0.18607, 0.62679);
   check_pval_and_t ("ad_ktest2", pval2, t2, 0.20604, 0.52043);

   % This example comes from kSamples.R package
   datasets =
     {
	[0.824, 0.216, 0.538, 0.685],
	[0.448, 0.348, 0.443, 0.722],
	[0.403, 0.268, 0.440, 0.087],
     };
   pval = ad_ktest (__push_list(datasets), &t; pval2=&pval2, stat2=&t2);
   check_pval_and_t ("ad_ktest3", pval, t, 0.193, 0.70807);
   check_pval_and_t ("ad_ktest3", pval2, t2, 0.190135, 0.72238);

   check_usage (&ad_ktest);
}

private define test_ad_test ()
{
   % Example from R (via statology.org) using iris data set.  Check to
   % see if the petal.width data are normally distributed
   variable x, pval, t;
   x = [0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2,
	0.2, 0.1, 0.2, 0.2, 0.1, 0.1, 0.2, 0.4, 0.4, 0.3, 0.3, 0.3, 0.2, 0.4, 0.2,
	0.5, 0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 0.2, 0.4, 0.1, 0.2, 0.2, 0.2, 0.2, 0.1,
	0.2, 0.2, 0.3, 0.3, 0.2, 0.6, 0.4, 0.3, 0.2, 0.2, 0.2, 0.2, 1.4, 1.5, 1.5,
	1.3, 1.5, 1.3, 1.6, 1, 1.3, 1.4, 1, 1.5, 1, 1.4, 1.3, 1.4, 1.5, 1, 1.5, 1.1,
	1.8, 1.3, 1.5, 1.2, 1.3, 1.4, 1.4, 1.7, 1.5, 1, 1.1, 1, 1.2, 1.6, 1.5, 1.6,
	1.5, 1.3, 1.3, 1.3, 1.2, 1.4, 1.2, 1, 1.3, 1.2, 1.3, 1.3, 1.1, 1.3, 2.5,
	1.9, 2.1, 1.8, 2.2, 2.1, 1.7, 1.8, 1.8, 2.5, 2, 1.9, 2.1, 2, 2.4, 2.3, 1.8,
	2.2, 2.3, 1.5, 2.3, 2, 2, 1.8, 2.1, 1.8, 1.8, 1.8, 2.1, 1.6, 1.9, 2, 2.2,
	1.5, 1.4, 2.3, 2.4, 1.8, 1.8, 2.1, 2.4, 2.3, 1.9, 2.3, 2.5, 2.3, 1.9, 2,
	2.3, 1.8];
   variable t_exp = 5.1057, pval_exp = 1.125e-12;
   pval = ad_test (x, &t);
   ifnot (sigeq (t, t_exp, 5) && sigeq(pval, pval_exp, 4))
     {
	failed ("ad_test: t=%S, texp=%S, p=%S, pexp=%S",
		t, t_exp, pval, pval_exp);
     }

   % Try with Marsaglia CDF
   x =  [.0392,.0884,.260,.310,.454,.644,.797,.813,.921,.960];
   t_exp = 0.36320; pval_exp = 0.11816;
   pval = 1-ad_test (x, &t; cdf);
   ifnot (sigeq (t, t_exp, 4) && sigeq(pval, pval_exp, 4))
     {
	failed ("ad_test: t=%S, texp=%S, p=%S, pexp=%S",
		t, t_exp, pval, pval_exp);
     }

   x = [.0015,.0078,.0676,.0961,.106,.107,.835,.861,.948,.992];
   t_exp = 4.23161; pval_exp = 0.99293;
   pval = 1-ad_test (x, &t; cdf);
   ifnot (sigeq (t, t_exp, 4) && sigeq(pval, pval_exp, 4))
     {
	failed ("ad_test: t=%S, texp=%S, p=%S, pexp=%S",
		t, t_exp, pval, pval_exp);
     }

   check_usage (&ad_test);
}

private variable XData = [
-0.15, %1
 8.60, %9
 5.00, %6
 3.71, %4
 4.29, %5
 7.74, %7
 2.48, %2
 3.25, %3
-1.15, %0
 8.38  %8
];
private variable YData = [
 2.55,
12.07,
 0.46,
 0.35,
 2.69,
-0.94,
 1.73,
 0.73,
-0.35,
-0.37
];

private define test_mean_stddev (xdata)
{
   variable m0 = sum(1.0*xdata)/length(xdata);
   variable m1 = mean(xdata);
   ifnot (feqs (m0, m1, 1e-6, 1e-7))
     failed ("test_mean_stddev: mean failed: got %S, expected %S", m0, m1);
   if (any(m1 != sample_mean (xdata)))
     failed ("test_mean_stddev: sample_mean failed");

   variable n = length(xdata);
   if (0 == (n & 0x1))
     n--;

   variable x1 = xdata[array_sort(xdata)][n/2];
   variable x2 = median (xdata);
   if (x1 != x2)
     failed ("median %S: found %g, expected %g", xdata, x2, x1);
   x2 = median_nc (xdata);
   if (x1 != x2)
     failed ("median_nc %S: found %g, expected %g", xdata, x2, x1);

   x1 = stddev (xdata);
   x2 = sqrt(sum((xdata-mean(xdata))^2)/(length(xdata)-1));
   ifnot (feqs (x1, x2, 1e-6, 1e-7))
     failed ("stddev, found %g, expected %g", x1, x2);

   variable a = Double_Type [length(xdata), 3];
   a[*,0] = xdata; a[*,1] = xdata; a[*,2] = xdata;
   x2 = stddev (a, 0);
   if (length (x2) != 3)
     failed ("stddev(a,0): expected an array of 3, got %d", length (x2));
   ifnot (all (feqs(x2, x1, 1e-6, 1e-7)))
     {
	failed ("stddev(%S,0) produced incorrect values", a);
     }
   if (any(sample_stddev (a,0) != x2))
     failed ("sample_stddev(%S,0) failed", a);
}

private define wikipedia_skewness_g1 (x)
{
   variable n = length(x)*1.0;
   variable xbar = sum(x)/n;
   variable dx = x-xbar;
   return sqrt(n)*sum(dx*dx*dx)/sum(dx*dx)^1.5;
}

private define wikipedia_kurtosis_g2 (x)
{
   variable n = length(x)*1.0;
   variable xbar = sum(x)/n;
   variable dx = x-xbar;
   return (n*sum(dx^4))/sum(dx*dx)^2 - 3.0;
}

define test_skewness_kurtosis ()
{
   variable w = wikipedia_skewness_g1 (XData);
   variable s = skewness (XData);
   ifnot (feqs (w,s,1e-6, 1e-7))
     failed ("Expected skewness = %g, found %g", w, s);

   w = wikipedia_kurtosis_g2 (XData);
   s = kurtosis (XData);
   ifnot (feqs (w,s,1e-6, 1e-7))
     failed ("Expected kurtosis = %g, found %g", w, s);

   check_usage (&skewness);
   check_usage (&kurtosis);
}

private define test_binomial ()
{
   variable expected = [1, 4, 6, 4, 1];
   variable m, n = 4;
   variable ans = binomial (n);
   ifnot (_eqs (expected, ans))
     failed ("binomial(4) produced an incorrect result");
   _for m (0, n, 1)
     {
	if (binomial(n,m) != expected[m])
	  failed ("Incorrect value for binomial(%d,%d)", n, m);
     }
}

private define test_student_t ()
{
   variable x, y, p, t, p0, t0;

   x = [35,40,12,15,21,14,46,10,28,48,
	16,30,32,48,31,22,12,39,19,25];
   y = [ 2,27,38,31, 1,19, 1,34, 3, 1,
	 2, 3, 2, 1, 2, 1, 3,29,37, 2];
   t0 = 3.54;
   p0 = 0.0011;	  %  computed by http://www.graphpad.com/quickcalcs/ttest2.cfm

   p = t_test2 (x, y, &t);
   ifnot ((feqs (p,p0)) || feqs (t,t0))
     failed ("t_test2 failed:\n p = %S, p0 = %S, t = %g, t0 = %g", p, p0, t, t0);

   x = [10,20,50,57,32,12,6,17,9,11];
   t0 = 1.3328;
   p0 = 0.2153;	  %  computed by http://www.graphpad.com/quickcalcs/
   p = t_test (x, 30, &t);
   ifnot ((feqs (p,p0)) || feqs (t,t0))
     failed ("t_test 1 failed:\n p = %S, p0 = %S, t = %g, t0 = %g", p, p0, t, t0);

   t0 = 1.3328;
   p0 = 0.0033;	  %  computed by http://www.graphpad.com/quickcalcs/
   p = t_test (x, 45, &t);
   ifnot ((feqs (p,p0)) || feqs (t,t0))
     failed ("t_test 2 failed:\n p = %S, p0 = %S, t = %g, t0 = %g", p, p0, t, t0);

   check_usage (&t_test);
   check_usage (&t_test2);
}

private define test_welch_t_test ()
{
   % These examples come from wikipedia
   variable x1, x2, pval, t, t_exp, pval_exp;

   x1 = [27.5,21.0,19.0,23.6,17.0,17.9,16.9,20.1,21.9,22.6,23.1,19.6,19.0,21.7,21.4];
   x2 = [27.1,22.0,20.8,23.4,23.4,23.5,25.8,22.0,24.8,20.2,21.9,22.1,22.9,20.5,24.4];
   t_exp = -2.46;
   pval_exp = 0.021;
   pval = welch_t_test (x1, x2, &t);
   ifnot (sigeq (t, t_exp, 3))
     failed ("welch_t_test 1: t=%S, t_exp=%S", t, t_exp);
   ifnot (sigeq (pval, pval_exp, 2))
     failed ("welch_t_test 1; pval=%S, pval_exp=%S", pval, pval_exp);

   x1 = [17.2,20.9,22.6,18.1,21.7,21.4,23.5,24.2,14.7,21.8];
   x2 = [21.5,22.8,21.0,23.0,21.6,23.6,22.5,20.7,23.4,21.8,20.7,
	 21.7,21.5,22.5,23.6,21.5,22.5,23.5,21.5,21.8];
   t_exp = -1.57;
   pval_exp = 0.149;
   pval = welch_t_test (x1, x2, &t);
   ifnot (sigeq (t, t_exp, 3))
     failed ("welch_t_test 2: t=%S, t_exp=%S", t, t_exp);
   ifnot (sigeq (pval, pval_exp, 3))
     failed ("welch_t_test 2; pval=%S, pval_exp=%S", pval, pval_exp);

   check_usage (&welch_t_test);
}

private define check_poisson_cdf (m, k, p)
{
   variable p1 = poisson_cdf (m, k);
   if (fneqs (p, p1, 1e-6))
     failed ("poisson_cdf(%S,%S) returned %S, expected %S, diff=%S", m, k, p1, p, abs(p-p1));
}

private define test_poisson_cdf ()
{
   % The CDFs were computed from http://www.xuru.org/
   check_poisson_cdf (6, 12, 0.991172516482);
   check_poisson_cdf (245, 300, 0.999702001313651);
   check_poisson_cdf (245, 345, 0.9999999993);
   check_poisson_cdf (345, 245, 8.407230482e-9);
   check_poisson_cdf (500.0, 500, 0.5118911217);
   check_poisson_cdf (500.0, 450, 0.01240835055);
   check_poisson_cdf (50000.0, 50000, 0.501189413);
   check_poisson_cdf (50000.0, 49900, 0.3283840695);
   check_poisson_cdf (50000.0, 50500, 0.9873021349);

   variable lambda = 0.1, k, s = 1.0, xk = 1.0, f = 1.0, norm = exp(-lambda);
   variable n = 10;
   variable ss = Double_Type[n];
   ss[0] = 1.0;
   _for k (1, n-1, 1)
     {
	xk = (xk*lambda);
	f = f*k;
	s += xk/f;
	check_poisson_cdf (lambda, k, norm*s);
	ss[k] = s;
     }
   k = [0:n-1];
   ifnot (all(feqs(ss*norm, poisson_cdf(lambda, k))))
     {
	failed ("poisson_cdf k-array");
     }
   check_usage (&poisson_cdf);
}

private define test_normal_cdf ()
{
   variable m = 2.0, s = 1.0;
   variable x = [-3, -2, -1, 0, 1, 2, 3, 4];
   % These numbers derived from onlinestatbook.com, which only
   % prints results using ar most 4 digits of the CDF.
   % 
   variable c = [0, 0, 0.0013, 0.0228, 0.1587, 0.5, 0.8413, 0.9772];

   variable cdf = normal_cdf (x, m, s);
   ifnot (all (feqs (cdf, c, 1e-4, 1e-4)))
     {
	failed ("normal_cdf");
     }
   check_usage (&normal_cdf);
}

private define test_mean_stddev_with_datatypes (xdata)
{
   variable type;

   foreach type ([Char_Type, UChar_Type, Int16_Type, UInt16_Type,
		  Int_Type, UInt_Type, Long_Type, ULong_Type,
		  Float_Type, Double_Type,
		 ])
     {
	test_mean_stddev (typecast (xdata, type));
     }
}

private define test_cumulant ()
{
   variable x = [16.34, 10.76, 11.84, 13.55, 15.85, 18.20, 7.51,
		 10.22, 12.52, 14.68, 16.08, 19.43,8.12, 11.20,
		 12.95, 14.77, 16.83, 19.80, 8.55, 11.58, 12.10,
		 15.02, 16.83, 16.98, 19.92, 9.47, 11.68, 13.41,
		 15.35, 19.11];
   variable n = length(x);

   variable k = cumulant (x, 4);
   variable G1 = k[2]/k[1]^1.5;
   variable s = sqrt(n*(n-1))/(n-2)*skewness (x);
   ifnot (feqs (s, G1, 1e-12, 1e-12))
     failed ("cumulant k3");

   variable G2 = k[3]/(k[1]*k[1]);
   variable g2 = kurtosis (x);
   s = (n-1.0)/(n-2)/(n-3)*((n+1)*g2 + 6);
   ifnot (feqs (s, G2, 1e-12, 1e-12))
     failed ("cumulant k4");

   check_usage (&cumulant);
}

private define test_ztest ()
{
   % From Langley (Practical Statistics Explained, pg 155, ex 2)
   variable x = generate_data (73, 9, 40);
   variable z, pval;
   pval = z_test (x, 70.0, 5.0, &z);
   variable z_exp = 3.0/5*sqrt(40);
   variable p_exp = 0.0001478;

   ifnot (feqs (z, z_exp, 1e-6, 1e-8))
     {
	failed ("z_test z");
     }
   ifnot (feqs (pval, p_exp, 1e-6, 1e-6))
     {
	failed ("z_test pval: %S vs %S", pval, p_exp);
     }
   check_usage (&z_test);
}

private define test_pearson_r ()
{
   variable x1, x2, t, pval;

   % This example comes from R using the mtcars dataset
   x1 = [21, 21, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8,
	 19.2, 17.8, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 32.4, 30.4, 33.9, 21.5,
	 15.5, 15.2, 13.3, 19.2, 27.3, 26, 30.4, 15.8, 19.7, 15, 21.4];
   x2 = [2.62, 2.875, 2.32, 3.215, 3.44, 3.46, 3.57, 3.19, 3.15, 3.44, 3.44, 4.07,
	 3.73, 3.78, 5.25, 5.424, 5.345, 2.2, 1.615, 1.835, 2.465, 3.52, 3.435, 3.84,
	 3.845, 1.935, 2.14, 1.513, 3.17, 2.77, 3.57, 2.78];
   variable t_exp = -9.559, pval_exp = 1.294e-10;

   pval = pearson_r (x1, x2, &t);
   % The correlation function is equivalent to  pearson_r
   ifnot (feqs (t, correlation (x1, x2), 1e-9, 1e-12))
     failed ("correlation vs pearson_r");

   % Note: t_exp in the R example is the t-test statistic, and not the
   % pearson r value.  So convert the r value to the t-test one.
   variable n = length(x1);
   t = t/sqrt(1-t*t)*sqrt(n-2);

   ifnot ((sigeq(t_exp, t, 4)) && sigeq (pval_exp, pval, 4))
     {
	failed ("pearson_r: t=%S, texp=%S, p=%S, pexp=%S",
		t, t_exp, pval, pval_exp);
     }

   % pearson_r uses the covariance function
   check_usage (&covariance);
   check_usage (&pearson_r);
   check_usage (&correlation);
}

private define test_mann_kendall ()
{
   % R example using Nile dataset
   variable y =
     [1120, 1160, 963, 1210, 1160, 1160, 813, 1230, 1370, 1140,
      995, 935, 1110, 994, 1020, 960, 1180, 799, 958, 1140, 1100, 1210,
      1150, 1250, 1260, 1220, 1030, 1100, 774, 840, 874, 694, 940, 833, 701,
      916, 692, 1020, 1050, 969, 831, 726, 456, 824, 702, 1120, 1100, 832,
      764, 821, 768, 845, 864, 862, 698, 845, 744, 796, 1040, 759, 781, 865,
      845, 944, 984, 897, 822, 1010, 771, 676, 649, 846, 812, 742, 801,
      1040, 860, 874, 848, 890, 744, 749, 838, 1050, 918, 986, 797, 923,
      975, 815, 1020, 906, 901, 1170, 912, 746, 919, 718, 714, 740],
     pval, t;

   variable pval_exp = 3.658e-05, t_exp = -2.807413e-01;
   pval = mann_kendall (y, &t);
   ifnot ((sigeq(t_exp, t, 7)) && sigeq (pval_exp, pval, 4))
     {
	failed ("mann_kendall: t=%S, texp=%S, p=%S, pexp=%S",
		t, t_exp, pval, pval_exp);
     }
   check_usage (&mann_kendall);
}

define slsh_main ()
{
   testing_module ("stats");

   test_ad_test ();
   test_normal_cdf();
   test_poisson_cdf ();

   variable xdata = 256*urand(10);
   test_mean_stddev_with_datatypes (xdata);
   xdata = 256*urand(11);
   test_mean_stddev_with_datatypes (xdata);

   % The following array caused problems for median_nc in the previous
   % implmentation
   xdata = [221, 125, 163, 230, 13, 67, 125, 215, 122, 108];
   test_mean_stddev_with_datatypes (xdata);

   xdata = [1,1,1];
   test_mean_stddev_with_datatypes (xdata);
   xdata = [1,1];
   test_mean_stddev_with_datatypes (xdata);

   test_chisqr_test ();
   test_f ();
   test_kendall_tau ();
   test_ks ();
   test_mw_cdf (2);
   test_mw_cdf (3);
   test_mw_cdf (10);
   test_mw_cdf (21);
   test_mw_test ();
   test_ztest ();
   test_welch_t_test ();
   test_ad_ktest ();
   test_spearman ();
   test_binomial ();
   test_student_t ();
   test_mann_kendall ();
   test_pearson_r ();

   test_skewness_kurtosis ();
   test_cumulant ();

   end_test ();
}