1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN" "http://www.w3.org/Math/DTD/mathml2/xhtml-math11-f.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=0.4"/>
<meta name="google" content="notranslate" />
<link rel="canonical" href="https://sleef.org/additional.xhtml" />
<link rel="icon" href="favicon.png" />
<link rel="stylesheet" type="text/css" href="texlike.css"/>
<link rel="stylesheet" type="text/css" href="//fonts.googleapis.com/css?family=Ubuntu" />
<link rel="stylesheet" type="text/css" href="sleef.css"/>
<title>SLEEF - Additional Notes</title>
</head>
<body translate="no" class="notranslate">
<h1>SLEEF Documentation - Additional Notes</h1>
<h2>Table of contents</h2>
<ul class="none" style="font-family: arial, sansserif; padding-left: 0.5cm;">
<li><a class="underlined" href="index.xhtml">Introduction</a></li>
<li><a class="underlined" href="compile.xhtml">Compiling and installing the library</a></li>
<li><a class="underlined" href="purec.xhtml">Math library reference</a></li>
<li><a class="underlined" href="dft.xhtml">DFT library reference</a></li>
<li><a class="underlined" href="misc.xhtml">Other tools included in the package</a></li>
<li><a class="underlined" href="benchmark.xhtml">Benchmark results</a></li>
<li> </li>
<li><a class="underlined" href="additional.xhtml">Additional notes</a></li>
<ul class="disc">
<li><a href="additional.xhtml#faq">Frequently asked questions</a></li>
<li><a href="additional.xhtml#gnuabi">About the GNUABI version of the library</a></li>
<li><a href="additional.xhtml#dispatcher">How the dispatcher works</a></li>
<li><a href="additional.xhtml#ulp">ULP, gradual underflow and flush-to-zero mode</a></li>
<li><a href="additional.xhtml#paynehanek">Explanatory source code for the modified Payne Hanek reduction method</a></li>
<li><a href="additional.xhtml#logo">About the logo</a></li>
</ul>
</ul>
<h2 id="faq">Frequently asked questions</h2>
<p class="noindent">
<b>Q1:</b> Is the scalar functions in SLEEF faster than the
corresponding functions in the standard C library?
</p>
<br/>
<p class="noindent">
<b>A1:</b> No. Todays standard C libraries are very well optimized,
and there is small room for further optimization. The reason why
SLEEF is fast is that it carries out computation directly on SIMD
registers and ALUs. This is not simple as it sounds, because
conditional branches have to be eliminated in order to take full
advantage of SIMD computation. If the algorithm requires conditional
branches according to the argument, it must prepare for the case
where the elements in the input vector contain both values that
would make a branch happen and not happen. This would spoil the
advantage of SIMD computation, because each element in a vector
would require a different code path.
</p>
<br/>
<br/>
<p class="noindent">
<b>Q2:</b> Do the trigonometric functions (e.g. sin) in SLEEF return
correct values for the whole range of inputs?
</p>
<br/>
<p class="noindent">
<b>A2:</b> Yes. SLEEF does implement a vectorized version of Payne
Hanek range reduction, and all the trigonometric functions return
a correct value with the specified accuracy.
</p>
<h2 id="gnuabi">About the GNUABI version of the library</h2>
<p class="noindent">
The GNUABI version of the library (libsleefgnuabi.so) is built for
x86 and aarch64 architectectures. This library provides an API
compatible with <a class="underlined"
href="https://sourceware.org/glibc/wiki/libmvec">libmvec</a> in
glibc, and the API comforms to the <a class="underlined"
href="https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt">x86
vector ABI</a>, <a class="underlined"
href="https://developer.arm.com/docs/101129/latest">AArch64 vector
ABI</a> and <a class="underlined"
href="https://github.com/power8-abi-doc/vector-function-abi/">Power
Vector ABI</a>. This library is built and installed by default, and
certain compilers call the functions in this library.
</p>
<h2 id="dispatcher">How the dispatchers work</h2>
<p class="noindent">
The dispatchers in SLEEF are designed to have very low overhead. This
overhead is so small and cannot be observed by microbenchmarking.
</p>
<p>
Fig. 7.1 shows a simplified code of our dispatcher. There is only
one exported function <b class="func">mainFunc</b>. When
<b class="func">mainFunc</b> is called for the first
time, <b class="func">dispatcherMain</b> is called internally,
since <i class="var">funcPtr</i> is initialized to the pointer to
<b class="func">dispatcherMain</b> (line 14). It then detects if the
CPU supports SSE 4.1 (line 7), and
rewrites <i class="var">funcPtr</i> to a pointer to the function
that utilizes SSE 4.1 or SSE 2, depending on the result of CPU
feature detection (line 10). When
<b class="func">mainFunc</b> is called for the second time, it does
not execute the
<b class="func">dispatcherMain</b>. It just executes the function
pointed by the pointer stored in <i class="var">funcPtr</i> during
the execution of
<b class="func">dispatcherMain</b>.
</p>
<p>
There are advantages in our dispatcher. The first advantage is that
it does not require any compiler-specific extension. The second
advantage is simplicity. There are only 18 lines of simple
code. Since the dispatchers are completely separated for each
function, there is not much room for bugs to get in.
</p>
<p>
The third advantage is low overhead. You might think that the
overhead is one function call including execution of the prologue
and the epilogue. However, modern compilers are smart enough to
eliminate redundant execution of the prologue, epilogue and return
instruction. The actual overhead is just one jmp instruction, which
has very small overhead since it is not conditional. This overhead
is likely hidden by out-of-order execution.
</p>
<p>
The fourth advantage is thread safety. There is only one variable
shared among threads, which is <i class="var">funcPtr</i>. There are
only two possible values for this pointer variable. The first value
is the pointer to the <b class="func">dispatcherMain</b>, and the
second value is the pointer to either <b class="func">funcSSE2</b>
or <b class="func">funcSSE4</b>, depending on the availability of
extensions. Once <i class="var">funcPtr</i> is substituted with the
pointer to <b class="func">funcSSE2</b>
or <b class="func">funcSSE4</b>, it will not be changed in the
future. It should be easy to confirm that the code works in all the
cases.
</p>
<pre class="code">
<code>static double (*funcPtr)(double arg);</code>
<code></code>
<code>static double dispatcherMain(double arg) {</code>
<code> double (*p)(double arg) = funcSSE2;</code>
<code></code>
<code>#if the compiler supports SSE4.1</code>
<code> if (SSE4.1 is available on the CPU) p = funcSSE4;</code>
<code>#endif</code>
<code></code>
<code> funcPtr = p;</code>
<code> return (*funcPtr)(arg);</code>
<code>}</code>
<code></code>
<code>static double (*funcPtr)(double arg) = dispatcherMain;</code>
<code></code>
<code>double mainFunc(double arg) {</code>
<code> return (*funcPtr)(arg);</code>
<code>}</code>
</pre>
<p style="text-align:center; margin-bottom: 1.0cm;">
Fig. 7.1: Simplified code of our dispatcher
</p>
<h2 id="ulp">ULP, gradual underflow and flush-to-zero mode</h2>
<p class="noindent">
ULP stands for "unit in the last place", which is sometimes used for
representing accuracy of calculation. 1 ULP is the distance between
the two closest floating point number, which depends on the exponent
of the FP number. The accuracy of calculation by reputable math
libraries is usually between 0.5 and 1 ULP. Here, the accuracy means
the largest error of calculation. SLEEF math library provides
multiple accuracy choices for most of the math functions. Many
functions have 3.5-ULP and 1-ULP versions, and 3.5-ULP versions are
faster than 1-ULP versions. If you care more about execution speed
than accuracy, it is advised to use the 3.5-ULP versions along with
-ffast-math or "unsafe math optimization" options for the compiler.
</p>
<p>
Note that 3.5 ULPs of error is small enough in many applications. If
you do not manage the error of computation by carefully ordering
floating point operations in your code, you would easily have that
amount of error in the computation results.
</p>
<p>
In IEEE 754 standard, underflow does not happen abruptly when the
exponent becomes zero. Instead, when a number to be represented is
smaller than a certain value, a denormal number is produced which
has less precision. This is sometimes called gradual underflow. On
some processor implementation, a flush-to-zero mode is used since it
is easier to implement by hardware. In flush-to-zero mode, numbers
smaller than the smallest normalized number are replaced with
zero. FP operations are not IEEE-754 conformant if a flush-to-zero
mode is used. A flush-to-zero mode influences the accuracy of
calculation in some cases. The smallest normalized precision number
can be referred with DBL_MIN for double precision, and FLT_MIN for
single precision. The naming of these macros is a little bit
confusing because DBL_MIN is not the smallest double precision
number.
</p>
<p>
You can see known maximum errors in math functions in glibc
at <a class="underlined"
href="http://www.gnu.org/software/libc/manual/html_node/Errors-in-Math-Functions.html">
this page.</a>
</p>
<h2 id="paynehanek">Explanatory source code for our modified Payne Hanek reduction method</h2>
<p class="noindent">
In order to evaluate a trigonometric function with a large argument,
an argument reduction method is used to find an FP remainder of
dividing the argument <i class="var">x</i> by π. We devised a
variation of the Payne-Hanek argument reduction method which is
suitable for vector computation. Fig. 7.2
shows <a class="underlined" href="ph.c">an explanatory source
code</a> for this method. See <a class="underlined"
href="http://dx.doi.org/10.1109/TPDS.2019.2960333">our paper</a> for
the details.
</p>
<pre class="code">
<code>#include <stdio.h></code>
<code>#include <stdlib.h></code>
<code>#include <math.h></code>
<code>#include <mpfr.h></code>
<code></code>
<code>typedef struct { double x, y; } double2;</code>
<code>double2 dd(double d) { double2 r = { d, 0 }; return r; }</code>
<code>int64_t d2i(double d) { union { double f; int64_t i; } tmp = {.f = d }; return tmp.i; }</code>
<code>double i2d(int64_t i) { union { double f; int64_t i; } tmp = {.i = i }; return tmp.f; }</code>
<code>double upper(double d) { return i2d(d2i(d) & 0xfffffffff8000000LL); }</code>
<code>double clearlsb(double d) { return i2d(d2i(d) & 0xfffffffffffffffeLL); }</code>
<code></code>
<code>double2 ddrenormalize(double2 t) {</code>
<code> double2 s = dd(t.x + t.y);</code>
<code> s.y = t.x - s.x + t.y;</code>
<code> return s;</code>
<code>}</code>
<code></code>
<code>double2 ddadd(double2 x, double2 y) {</code>
<code> double2 r = dd(x.x + y.x);</code>
<code> double v = r.x - x.x;</code>
<code> r.y = (x.x - (r.x - v)) + (y.x - v) + (x.y + y.y);</code>
<code> return r;</code>
<code>}</code>
<code></code>
<code>double2 ddmul(double x, double y) {</code>
<code> double2 r = dd(x * y);</code>
<code> r.y = fma(x, y, -r.x);</code>
<code> return r;</code>
<code>}</code>
<code></code>
<code>double2 ddmul2(double2 x, double2 y) {</code>
<code> double2 r = ddmul(x.x, y.x);</code>
<code> r.y += x.x * y.y + x.y * y.x;</code>
<code> return r;</code>
<code>}</code>
<code></code>
<code>// This function computes remainder(a, PI/2)</code>
<code>double2 modifiedPayneHanek(double a) {</code>
<code> double table[4];</code>
<code> int scale = fabs(a) > 1e+200 ? -128 : 0;</code>
<code> a = ldexp(a, scale);</code>
<code></code>
<code> // Table genration</code>
<code></code>
<code> mpfr_set_default_prec(2048);</code>
<code> mpfr_t pi, m;</code>
<code> mpfr_inits(pi, m, NULL);</code>
<code> mpfr_const_pi(pi, GMP_RNDN);</code>
<code></code>
<code> mpfr_d_div(m, 2, pi, GMP_RNDN);</code>
<code> mpfr_set_exp(m, mpfr_get_exp(m) + (ilogb(a) - 53 - scale));</code>
<code> mpfr_frac(m, m, GMP_RNDN);</code>
<code> mpfr_set_exp(m, mpfr_get_exp(m) - (ilogb(a) - 53));</code>
<code></code>
<code> for(int i=0;i<4;i++) {</code>
<code> table[i] = clearlsb(mpfr_get_d(m, GMP_RNDN));</code>
<code> mpfr_sub_d(m, m, table[i], GMP_RNDN);</code>
<code> }</code>
<code></code>
<code> mpfr_clears(pi, m, NULL);</code>
<code></code>
<code> // Main computation</code>
<code></code>
<code> double2 x = dd(0);</code>
<code> for(int i=0;i<4;i++) {</code>
<code> x = ddadd(x, ddmul(a, table[i]));</code>
<code> x.x = x.x - round(x.x);</code>
<code> x = ddrenormalize(x);</code>
<code> }</code>
<code></code>
<code> double2 pio2 = { 3.141592653589793*0.5, 1.2246467991473532e-16*0.5 };</code>
<code> x = ddmul2(x, pio2);</code>
<code> return fabs(a) < 0.785398163397448279 ? dd(a) : x;</code>
<code>}</code>
</pre>
<p style="text-align:center; margin-bottom: 1.0cm;">
<a href="ph.c">Fig. 7.2: Explanatory source code for our modified Payne Hanek reduction method</a>
</p>
<h2 id="logo">About the logo</h2>
<p>
It is a soup ladle. A sleef means a soup ladle in Dutch.
</p>
<br/>
<p style="text-align:center; margin-top:1cm;">
<a class="nothing" href="sleeflogo3.svg">
<img src="sleeflogo3.png" alt="logo" width="40%" height="40%" />
</a>
<br />
Fig. 7.2: SLEEF logo
</p>
<p class="footer">
Copyright © <!--YEAR--> SLEEF Project.<br/>
SLEEF is open-source software and is distributed under the Boost Software License, Version 1.0.
</p>
<!--TEST-->
</body>
</html>
|