1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN" "http://www.w3.org/Math/DTD/mathml2/xhtml-math11-f.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=0.4"/>
<meta name="google" content="notranslate" />
<link rel="canonical" href="https://sleef.org/additional.xhtml" />
<link rel="icon" href="favicon.png" />
<link rel="stylesheet" type="text/css" href="texlike.css"/>
<link rel="stylesheet" type="text/css" href="//fonts.googleapis.com/css?family=Ubuntu" />
<link rel="stylesheet" type="text/css" href="sleef.css"/>
<title>SLEEF - Additional Notes</title>
</head>
<body translate="no" class="notranslate">
<h1>SLEEF - Additional Notes</h1>
<h2>Table of contents</h2>
<ul class="none" style="font-family: arial, sansserif; padding-left: 0.5cm;">
<li><a class="underlined" href="index.xhtml">Introduction</a></li>
<li><a class="underlined" href="compile.xhtml">Compiling and installing the library</a></li>
<li><a class="underlined" href="purec.xhtml">Math library reference</a></li>
<li><a class="underlined" href="quad.xhtml"> Quad-precision math library reference</a></li>
<li><a class="underlined" href="dft.xhtml">DFT library reference</a></li>
<li><a class="underlined" href="misc.xhtml">Other tools included in the package</a></li>
<li><a class="underlined" href="benchmark.xhtml">Benchmark results</a></li>
<li> </li>
<li><a class="underlined" href="additional.xhtml">Additional notes</a></li>
<ul class="disc">
<li><a href="#faq">Frequently asked questions</a></li>
<li><a href="#vectorizing">Vectorizing calls to scalar functions</a></li>
<!-- <li><a href="#gnuabi">About the GNUABI version of the library</a></li>-->
<li><a href="#lto">Using link time optimization</a></li>
<li><a href="#inline">Using header files of inlinable functions</a></li>
<li><a href="#wasm">Utilizing SLEEF for WebAssembly</a></li>
<li><a href="#dispatcher">How the dispatcher works</a></li>
<li><a href="#ulp">ULP, gradual underflow and flush-to-zero mode</a></li>
<li><a href="#paynehanek">Explanatory source code for the modified Payne Hanek reduction method</a></li>
<li><a href="#logo">About the logo</a></li>
</ul>
</ul>
<h2 id="faq">Frequently asked questions</h2>
<p class="noindent">
<b>Q1:</b> Is the scalar functions in SLEEF faster than the
corresponding functions in the standard C library?
</p>
<br/>
<p class="noindent">
<b>A1:</b> No. Todays standard C libraries are very well optimized,
and there is small room for further optimization. The reason why
SLEEF is fast is that it computes directly with SIMD registers and
ALUs. This is not simple as it sounds, because conditional branches
have to be eliminated in order to take full advantage of SIMD
computation. If the algorithm requires conditional branches
according to the argument, it must prepare for the cases where the
elements in the input vector contain both values that would make a
branch happen and not happen. This would spoil the advantage of SIMD
computation, because each element in a vector would require a
different code path.
</p>
<br/>
<br/>
<p class="noindent">
<b>Q2:</b> Do the trigonometric functions (e.g. sin) in SLEEF return
correct values for the whole range of inputs?
</p>
<br/>
<p class="noindent">
<b>A2:</b> Yes. SLEEF does implement a <a class="underlined"
href="#paynehanek">vectorized version of Payne Hanek range
reduction</a>, and all the trigonometric functions return a correct
value with the specified accuracy.
</p>
<br/>
<br/>
<p class="noindent">
<b>Q3:</b> What can I do to make sleef run faster?
</p>
<br/>
<p class="noindent">
<b>A3:</b> The most important thing is to choose the fastest
available vector extension. SLEEF is optimized for computers with
<a class="underlined"
href="https://en.wikipedia.org/wiki/Multiply%E2%80%93accumulate_operation#Fused_multiply%E2%80%93add">FMA</a>
instructions, and it runs slow on Ivy Bridge or older CPUs and Atom,
that do not have FMA instructions. If you are not sure, use the
dispatcher. <a class="underlined" href="#dispatcher">The dispatcher in
SLEEF is not slow</a>. If you want to further speed up computation,
try using <a class="underlined" href="#lto">LTO</a>. By using LTO, the
compiler fuses the code within the library to the code calling the
library functions, and this sometimes results in considerable
performance boost. In this case, you should not use the dispatcher,
and you should use the same compiler with the same version to build
SLEEF and the program against which SLEEF is linked.
</p>
<h2 id="vectorizing">Vectorizing calls to scalar functions</h2>
<p class="noindent">
Recent x86_64 gcc can <a class="underlined"
href="https://gcc.gnu.org/projects/tree-ssa/vectorization.html">auto-vectorize</a>
calls to functions. In order to utilize this functionality, OpenMP
SIMD pragmas can be added to declarations of scalar functions
like <b class="func">Sleef_sin_u10</b> by defining
<b>SLEEF_ENABLE_OMP_SIMD</b> macro before including <b>sleef.h</b> on
x86_64 computers. With these pragmas, gcc can use its auto-vectorizer
to vectorize calls to these scalar functions. For
example, <a class="underlined" href="sophomore.c">the following
code</a> can be vectorized by gcc-10.
</p>
<pre class="code">
<code>#include <stdio.h></code>
<code></code>
<code>#define SLEEF_ENABLE_OMP_SIMD</code>
<code>#include "sleef.h"</code>
<code></code>
<code>#define N 65536</code>
<code>#define M (N + 3)</code>
<code></code>
<code>static double func(double x) { return Sleef_pow_u10(x, -x); }</code>
<code></code>
<code>double int_simpson(double a, double b) {</code>
<code> double h = (b - a) / M;</code>
<code> double sum_odd = 0.0, sum_even = 0.0;</code>
<code> for(int i = 1;i <= M-3;i += 2) {</code>
<code> sum_odd += func(a + h * i);</code>
<code> sum_even += func(a + h * (i + 1));</code>
<code> }</code>
<code> return h / 3 * (func(a) + 4 * sum_odd + 2 * sum_even + 4 * func(b - h) + func(b));</code>
<code>}</code>
<code></code>
<code>int main() {</code>
<code> double sum = 0;</code>
<code> for(int i=1;i<N;i++) sum += Sleef_pow_u10(i, -i);</code>
<code> printf("%g %g\n", int_simpson(0, 1), sum);</code>
<code>}</code>
</pre>
<pre class="command">$ gcc-10 -fopenmp -ffast-math -mavx2 -O3 sophomore.c -lsleef -S -o- | grep _ZGV
call _ZGVdN4vv_Sleef_pow_u10@PLT
call _ZGVdN4vv_Sleef_pow_u10@PLT
call _ZGVdN4vv_Sleef_pow_u10@PLT
call _ZGVdN4vv_Sleef_pow_u10@PLT
call _ZGVdN4vv_Sleef_pow_u10@PLT
call _ZGVdN4vv_Sleef_pow_u10@PLT
call _ZGVdN4vv_Sleef_pow_u10@PLT
$ █
</pre>
<!--
<h2 id="gnuabi">About the GNUABI version of the library</h2>
<p class="noindent">
The GNUABI version of the library (libsleefgnuabi.so) is built for
x86 and aarch64 architectectures. This library provides an API
compatible with <a class="underlined"
href="https://sourceware.org/glibc/wiki/libmvec">libmvec</a> in
glibc, and the API comforms to the <a class="underlined"
href="https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt">x86
vector ABI</a>, <a class="underlined"
href="https://developer.arm.com/docs/101129/latest">AArch64 vector
ABI</a> and <a class="underlined"
href="https://github.com/power8-abi-doc/vector-function-abi/">Power
Vector ABI</a>. The auto-vectorizer in x86_64 gcc is capable of
vectorizing calls to the standard math functions and generates calls
to <a class="underlined"
href="https://sourceware.org/glibc/wiki/libmvec">libmvec</a>. The
GNUABI version of SLEEF library can be used as a substitute for
libmvec.
</p>
<pre class="code">
<code>#include <stdio.h></code>
<code>#include <math.h></code>
<code></code>
<code>#define N 65536</code>
<code>#define M (N + 3)</code>
<code></code>
<code>static double func(double x) { return pow(x, -x); }</code>
<code></code>
<code>double int_simpson(double a, double b) {</code>
<code> double h = (b - a) / M;</code>
<code> double sum_odd = 0.0, sum_even = 0.0;</code>
<code> for(int i = 1;i <= M-3;i += 2) {</code>
<code> sum_odd += func(a + h * i);</code>
<code> sum_even += func(a + h * (i + 1));</code>
<code> }</code>
<code> return h / 3 * (func(a) + 4 * sum_odd + 2 * sum_even + 4 * func(b - h) + func(b));</code>
<code>}</code>
<code></code>
<code>int main() {</code>
<code> double sum = 0;</code>
<code> for(int i=1;i<N;i++) sum += pow(i, -i);</code>
<code> printf("%g %g\n", int_simpson(0, 1), sum);</code>
<code>}</code>
</pre>
<p>
For example, <a class="underlined" href="sophomore2.c">the above
code</a> can be linked against libsleefgnuabi as shown below. You
have to specify <b>-lsleefgnuabi</b> compiler option
before <b>-lm</b> option.
</p>
<pre class="command">$ gcc-10 -ffast-math -O3 sophomore2.c -lsleefgnuabi -lm -L./lib
$ ldd a.out
linux-vdso.so.1 (0x00007ffd0c5ff000)
libsleefgnuabi.so.3 => not found
libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f73f5f98000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f73f5da6000)
/lib64/ld-linux-x86-64.so.2 (0x00007f73f60fb000)
$ LD_LIBRARY_PATH=./lib ./a.out
1.29127 1.29129
$ █
</pre>
-->
<h2 id="lto">Using link time optimization</h2>
<p class="noindent">
<a class="underlined"
href="https://en.wikipedia.org/wiki/Interprocedural_optimization">Link
time optimization (LTO)</a> is a functionality implemented in gcc,
clang and other compilers for optimizing across translation units (or
source files.) This can sometimes dramatically improve the
performance of the code, because it is capable of fusing library
functions into the code calling those functions. The build system in
SLEEF supports LTO and thus it can be built with LTO support by just
specifying <b>-DSLEEF_ENABLE_LTO=TRUE</b> cmake option. However, there are a
few things to note in order to get the optimal performance. 1. You
should not use the dispatcher with LTO. Dispatchers prevent the
functions from being fused with LTO. 2. You have to use the same
compiler with the same version to build the library and your
code. 3. You cannot build shared libraries with LTO.
</p>
<h2 id="inline">Using header files of inlinable functions</h2>
<p class="noindent">
Although LTO is considered to be a smart technique for improving the
performance of the library functions, there are difficulties in using
this functionality in real situations. One of the reasons is that
people still need to use old compilers to build their projects. SLEEF
can generate header files in which the library functions are all
defined as inline functions. This can be compiled with old compilers.
In theory, inline functions should give similar performance to LTO,
but in reality, inline functions are better. In order to generate
those header files, specify <b>-DSLEEF_BUILD_INLINE_HEADERS=TRUE</b> cmake
option. Below is an example code utilizing the generated header files
for SSE2 and AVX2. You cannot use a dispatcher with these header
files.
</p>
<pre class="code">
<code>#include <stdio.h></code>
<code>#include <stdint.h></code>
<code>#include <string.h></code>
<code>#include <x86intrin.h></code>
<code></code>
<code>#include <sleefinline_sse2.h></code>
<code>#include <sleefinline_avx2128.h></code>
<code></code>
<code>int main(int argc, char **argv) {</code>
<code> __m128d va = _mm_set_pd(2, 10);</code>
<code> __m128d vb = _mm_set_pd(3, 20);</code>
<code></code>
<code> __m128d vc = Sleef_powd2_u10sse2(va, vb);</code>
<code></code>
<code> double c[2];</code>
<code> _mm_storeu_pd(c, vc);</code>
<code></code>
<code> printf("%g, %gn", c[0], c[1]);</code>
<code></code>
<code> __m128d vd = Sleef_powd2_u10avx2128(va, vb);</code>
<code></code>
<code> double d[2];</code>
<code> _mm_storeu_pd(d, vd);</code>
<code></code>
<code> printf("%g, %gn", d[0], d[1]);</code>
<code>}</code>
</pre>
<pre class="command">$ gcc-10 -ffp-contract=off -O3 -march=native helloinline.c -I./include
$ ./a.out
1e+20, 8
1e+20, 8
$ nm -g a.out
00000000000036a0 R Sleef_rempitabdp
0000000000003020 R Sleef_rempitabsp
0000000000003000 R _IO_stdin_used
w _ITM_deregisterTMCloneTable
w _ITM_registerTMCloneTable
000000000000d010 D __TMC_END__
000000000000d010 B __bss_start
w __cxa_finalize@@GLIBC_2.2.5
000000000000d000 D __data_start
000000000000d008 D __dso_handle
w __gmon_start__
00000000000020a0 T __libc_csu_fini
0000000000002030 T __libc_csu_init
U __libc_start_main@@GLIBC_2.2.5
U __printf_chk@@GLIBC_2.3.4
000000000000d010 D _edata
000000000000d018 B _end
00000000000020a8 T _fini
0000000000001f40 T _start
000000000000d000 W data_start
0000000000001060 T main
$ █
</pre>
<h2 id="wasm">Utilizing SLEEF for WebAssembly</h2>
<p class="noindent">
Since <a class="underlined"
href="https://emscripten.org/">Emscripten</a> supports SSE2
intrinsics, the SSE2 inlinable function header can be used for
<a class="underlined" href="https://webassembly.org/">WebAssembly</a>.
</p>
<pre class="code">
<code>#include <stdio.h></code>
<code>#include <emmintrin.h></code>
<code></code>
<code>#include "sleefinline_sse2.h"</code>
<code></code>
<code>int main(int argc, char **argv) {</code>
<code> double a[] = {2, 10};</code>
<code> double b[] = {3, 20};</code>
<code></code>
<code> __m128d va, vb, vc;</code>
<code></code>
<code> va = _mm_loadu_pd(a);</code>
<code> vb = _mm_loadu_pd(b);</code>
<code></code>
<code> vc = Sleef_powd2_u10sse2(va, vb);</code>
<code></code>
<code> double c[2];</code>
<code></code>
<code> _mm_storeu_pd(c, vc);</code>
<code></code>
<code> printf("pow(%g, %g) = %gn", a[0], b[0], c[0]);</code>
<code> printf("pow(%g, %g) = %gn", a[1], b[1], c[1]);</code>
<code>}</code>
</pre>
<pre class="command">$ emcc -O3 -msimd128 -msse2 hellowasm.c
$ ../node-v15.7.0-linux-x64/bin/node --experimental-wasm-simd ./a.out.js
pow(2, 3) = 8
pow(10, 20) = 1e+20
$ █
</pre>
<h2 id="dispatcher">How the dispatchers work</h2>
<p class="noindent">
SLEEF implements versions of functions that are implemented with
each vector extension of the architecture. A dispatcher is a
function that dynamically selects the fastest implementatation for
the computer it runs. The dispatchers in SLEEF are designed to have
very low overhead.
</p>
<p>
Fig. 7.1 shows a simplified code of our dispatcher. There is only
one exported function <b class="func">mainFunc</b>. When
<b class="func">mainFunc</b> is called for the first
time, <b class="func">dispatcherMain</b> is called internally,
since <i class="var">funcPtr</i> is initialized to the pointer to
<b class="func">dispatcherMain</b> (line 14). It then detects if the
CPU supports SSE 4.1 (line 7), and
rewrites <i class="var">funcPtr</i> to a pointer to the function
that utilizes SSE 4.1 or SSE 2, depending on the result of CPU
feature detection (line 10). When
<b class="func">mainFunc</b> is called for the second time, it does
not execute the
<b class="func">dispatcherMain</b>. It just executes the function
pointed by the pointer stored in <i class="var">funcPtr</i> during
the execution of
<b class="func">dispatcherMain</b>.
</p>
<p>
There are advantages in our dispatcher. The first advantage is that
it does not require any compiler-specific extension. The second
advantage is simplicity. There are only 18 lines of simple
code. Since the dispatchers are completely separated for each
function, there is not much room for bugs to get in.
</p>
<p>
The third advantage is low overhead. You might think that the
overhead is one function call including execution of the prologue
and the epilogue. However, modern compilers are smart enough to
eliminate redundant execution of the prologue, epilogue and return
instruction. The actual overhead is just one jmp instruction, which
has very small overhead since it is not conditional. This overhead
is likely hidden by out-of-order execution.
</p>
<p>
The fourth advantage is thread safety. There is only one variable
shared among threads, which is <i class="var">funcPtr</i>. There are
only two possible values for this pointer variable. The first value
is the pointer to the <b class="func">dispatcherMain</b>, and the
second value is the pointer to either <b class="func">funcSSE2</b>
or <b class="func">funcSSE4</b>, depending on the availability of
extensions. Once <i class="var">funcPtr</i> is substituted with the
pointer to <b class="func">funcSSE2</b>
or <b class="func">funcSSE4</b>, it will not be changed in the
future. It should be easy to confirm that the code works in all the
cases.
</p>
<pre class="code">
<code>static double (*funcPtr)(double arg);</code>
<code></code>
<code>static double dispatcherMain(double arg) {</code>
<code> double (*p)(double arg) = funcSSE2;</code>
<code></code>
<code>#if the compiler supports SSE4.1</code>
<code> if (SSE4.1 is available on the CPU) p = funcSSE4;</code>
<code>#endif</code>
<code></code>
<code> funcPtr = p;</code>
<code> return (*funcPtr)(arg);</code>
<code>}</code>
<code></code>
<code>static double (*funcPtr)(double arg) = dispatcherMain;</code>
<code></code>
<code>double mainFunc(double arg) {</code>
<code> return (*funcPtr)(arg);</code>
<code>}</code>
</pre>
<p style="text-align:center; margin-bottom: 1.0cm;">
Fig. 7.1: Simplified code of our dispatcher
</p>
<h2 id="ulp">ULP, gradual underflow and flush-to-zero mode</h2>
<p class="noindent">
ULP stands for "unit in the last place", which is sometimes used for
representing accuracy of calculation. 1 ULP is the distance between
the two closest floating point number, which depends on the exponent
of the FP number. The accuracy of calculation by reputable math
libraries is usually between 0.5 and 1 ULP. Here, the accuracy means
the largest error of calculation. SLEEF math library provides
multiple accuracy choices for most of the math functions. Many
functions have 3.5-ULP and 1-ULP versions, and 3.5-ULP versions are
faster than 1-ULP versions. If you care more about execution speed
than accuracy, it is advised to use the 3.5-ULP versions along with
-ffast-math or "unsafe math optimization" options for the compiler.
</p>
<p>
Note that 3.5 ULPs of error is small enough in many applications. If
you do not manage the error of computation by carefully ordering
floating point operations in your code, you would easily have that
amount of error in the computation results.
</p>
<p>
In IEEE 754 standard, underflow does not happen abruptly when the
exponent becomes zero. Instead, when a number to be represented is
smaller than a certain value, a denormal number is produced which
has less precision. This is sometimes called gradual underflow. On
some processor implementation, a flush-to-zero mode is used since it
is easier to implement by hardware. In flush-to-zero mode, numbers
smaller than the smallest normalized number are replaced with
zero. FP operations are not IEEE-754 conformant if a flush-to-zero
mode is used. A flush-to-zero mode influences the accuracy of
calculation in some cases. The smallest normalized precision number
can be referred with DBL_MIN for double precision, and FLT_MIN for
single precision. The naming of these macros is a little bit
confusing because DBL_MIN is not the smallest double precision
number.
</p>
<p>
You can see known maximum errors in math functions in glibc
at <a class="underlined"
href="http://www.gnu.org/software/libc/manual/html_node/Errors-in-Math-Functions.html">
this page.</a>
</p>
<h2 id="paynehanek">Explanatory source code for our modified Payne Hanek reduction method</h2>
<p class="noindent">
In order to evaluate a trigonometric function with a large argument,
an argument reduction method is used to find an FP remainder of
dividing the argument <i class="var">x</i> by π. We devised a
variation of the Payne-Hanek argument reduction method which is
suitable for vector computation. Fig. 7.2
shows <a class="underlined" href="ph.c">an explanatory source
code</a> for this method. See <a class="underlined"
href="http://dx.doi.org/10.1109/TPDS.2019.2960333">our paper</a> for
the details.
</p>
<pre class="code">
<code>#include <stdio.h></code>
<code>#include <stdlib.h></code>
<code>#include <math.h></code>
<code>#include <mpfr.h></code>
<code></code>
<code>typedef struct { double x, y; } double2;</code>
<code>double2 dd(double d) { double2 r = { d, 0 }; return r; }</code>
<code>int64_t d2i(double d) { union { double f; int64_t i; } tmp = {.f = d }; return tmp.i; }</code>
<code>double i2d(int64_t i) { union { double f; int64_t i; } tmp = {.i = i }; return tmp.f; }</code>
<code>double upper(double d) { return i2d(d2i(d) & 0xfffffffff8000000LL); }</code>
<code>double clearlsb(double d) { return i2d(d2i(d) & 0xfffffffffffffffeLL); }</code>
<code></code>
<code>double2 ddrenormalize(double2 t) {</code>
<code> double2 s = dd(t.x + t.y);</code>
<code> s.y = t.x - s.x + t.y;</code>
<code> return s;</code>
<code>}</code>
<code></code>
<code>double2 ddadd(double2 x, double2 y) {</code>
<code> double2 r = dd(x.x + y.x);</code>
<code> double v = r.x - x.x;</code>
<code> r.y = (x.x - (r.x - v)) + (y.x - v) + (x.y + y.y);</code>
<code> return r;</code>
<code>}</code>
<code></code>
<code>double2 ddmul(double x, double y) {</code>
<code> double2 r = dd(x * y);</code>
<code> r.y = fma(x, y, -r.x);</code>
<code> return r;</code>
<code>}</code>
<code></code>
<code>double2 ddmul2(double2 x, double2 y) {</code>
<code> double2 r = ddmul(x.x, y.x);</code>
<code> r.y += x.x * y.y + x.y * y.x;</code>
<code> return r;</code>
<code>}</code>
<code></code>
<code>// This function computes remainder(a, PI/2)</code>
<code>double2 modifiedPayneHanek(double a) {</code>
<code> double table[4];</code>
<code> int scale = fabs(a) > 1e+200 ? -128 : 0;</code>
<code> a = ldexp(a, scale);</code>
<code></code>
<code> // Table genration</code>
<code></code>
<code> mpfr_set_default_prec(2048);</code>
<code> mpfr_t pi, m;</code>
<code> mpfr_inits(pi, m, NULL);</code>
<code> mpfr_const_pi(pi, GMP_RNDN);</code>
<code></code>
<code> mpfr_d_div(m, 2, pi, GMP_RNDN);</code>
<code> mpfr_set_exp(m, mpfr_get_exp(m) + (ilogb(a) - 53 - scale));</code>
<code> mpfr_frac(m, m, GMP_RNDN);</code>
<code> mpfr_set_exp(m, mpfr_get_exp(m) - (ilogb(a) - 53));</code>
<code></code>
<code> for(int i=0;i<4;i++) {</code>
<code> table[i] = clearlsb(mpfr_get_d(m, GMP_RNDN));</code>
<code> mpfr_sub_d(m, m, table[i], GMP_RNDN);</code>
<code> }</code>
<code></code>
<code> mpfr_clears(pi, m, NULL);</code>
<code></code>
<code> // Main computation</code>
<code></code>
<code> double2 x = dd(0);</code>
<code> for(int i=0;i<4;i++) {</code>
<code> x = ddadd(x, ddmul(a, table[i]));</code>
<code> x.x = x.x - round(x.x);</code>
<code> x = ddrenormalize(x);</code>
<code> }</code>
<code></code>
<code> double2 pio2 = { 3.141592653589793*0.5, 1.2246467991473532e-16*0.5 };</code>
<code> x = ddmul2(x, pio2);</code>
<code> return fabs(a) < 0.785398163397448279 ? dd(a) : x;</code>
<code>}</code>
</pre>
<p style="text-align:center; margin-bottom: 1.0cm;">
<a href="ph.c">Fig. 7.2: Explanatory source code for our modified Payne Hanek reduction method</a>
</p>
<h2 id="logo">About the logo</h2>
<p>
It is a soup ladle. A sleef means a soup ladle in Dutch.
</p>
<br/>
<p style="text-align:center; margin-top:1cm;">
<a class="nothing" href="sleeflogo3.svg">
<img src="sleeflogo3.png" alt="logo" width="40%" height="40%" />
</a>
<br />
Fig. 7.2: SLEEF logo
</p>
<p class="footer">
Copyright © 2010-2025 SLEEF Project, Naoki Shibata and contributors.<br/>
SLEEF is open-source software and is distributed under the Boost Software License, Version 1.0.
</p>
<script type="text/javascript">
var sc_project=13098265;
var sc_invisible=1;
var sc_security="518de45e";
</script>
<script type="text/javascript"
src="https://www.statcounter.com/counter/counter.js"
async="async"></script>
<noscript><div class="statcounter"><a title="Web Analytics"
href="https://statcounter.com/" target="_blank"><img
class="statcounter"
src="https://c.statcounter.com/13098265/0/518de45e/1/"
alt="Web Analytics"
referrerPolicy="no-referrer-when-downgrade"></img></a></div></noscript>
</body>
</html>
|