1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML3.2 EN">
<HTML>
<HEAD>
<META NAME="GENERATOR" CONTENT="DOCTEXT">
<link rel="stylesheet" href="/slepc/slepc.css" type="text/css">
<TITLE>IPSetType</TITLE>
</HEAD>
<BODY BGCOLOR="FFFFFF">
<H1>IPSetType</H1>
Selects the type for the <A HREF="../IP/IP.html#IP">IP</A> object.
<H3><FONT COLOR="#883300">Synopsis</FONT></H3>
<PRE>
#include "slepcip.h"
PetscErrorCode IPSetType(IP ip,const IPType type)
</PRE>
Logically Collective on <A HREF="../IP/IP.html#IP">IP</A>
<P>
<H3><FONT COLOR="#883300">Input Parameter</FONT></H3>
<TABLE border="0" cellpadding="0" cellspacing="0">
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>ip </B></TD><TD> - the inner product context.
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>type </B></TD><TD> - a known type
</TD></TR></TABLE>
<P>
<H3><FONT COLOR="#883300">Notes</FONT></H3>
Two types are available: IPBILINEAR and IPSESQUILINEAR.
<P>
For complex scalars, the default is a sesquilinear form (x,y)=x^H*M*y and it is
also possible to choose a bilinear form (x,y)=x^T*M*y (without complex conjugation).
The latter could be useful e.g. in complex-symmetric eigensolvers.
<P>
In the case of real scalars, only the bilinear form (x,y)=x^T*M*y is available.
<P>
<P>
<H3><FONT COLOR="#883300">See Also</FONT></H3>
<A HREF="../IP/IPGetType.html#IPGetType">IPGetType</A>()
<BR>
<P>
<P><B><FONT COLOR="#883300">Location: </FONT></B><A HREF="../../../src/ip/ipbasic.c.html#IPSetType">src/ip/ipbasic.c</A>
<BR><A HREF="./index.html">Index of all IP routines</A>
<BR><A HREF="../../index.html">Table of Contents for all manual pages</A>
<BR><A HREF="../singleindex.html">Index of all manual pages</A>
</BODY></HTML>
|