1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML3.2 EN">
<HTML>
<HEAD> <link rel="canonical" href="https://slepc.upv.es/documentation/current//Users/jroman/tmp/slepc-3.23.1/docs/manualpages/FN/FNRationalSetDenominator.html" />
<META NAME="GENERATOR" CONTENT="DOCTEXT">
<link rel="stylesheet" href="/slepc.css" type="text/css">
<TITLE>FNRationalSetDenominator</TITLE>
</HEAD>
<BODY BGCOLOR="FFFFFF">
<div id="version" align=right><b>slepc-3.23.1 2025-05-01</b></div>
<div id="bugreport" align=right><a href="mailto:slepc-maint@upv.es?subject=Typo or Error in Documentation &body=Please describe the typo or error in the documentation: slepc-3.23.1 v3.23.1 /Users/jroman/tmp/slepc-3.23.1/docs/manualpages/FN/FNRationalSetDenominator.html "><small>Report Typos and Errors</small></a></div>
<H1>FNRationalSetDenominator</H1>
Sets the parameters defining the denominator of the rational function.
<H3><FONT COLOR="#883300">Synopsis</FONT></H3>
<PRE>
#include "slepcfn.h"
<A HREF="https://petsc.org/release/manualpages/Sys/PetscErrorCode.html#PetscErrorCode">PetscErrorCode</A> <A HREF="../FN/FNRationalSetDenominator.html#FNRationalSetDenominator">FNRationalSetDenominator</A>(<A HREF="../FN/FN.html#FN">FN</A> fn,<A HREF="https://petsc.org/release/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</A> nq,<A HREF="https://petsc.org/release/manualpages/Sys/PetscScalar.html#PetscScalar">PetscScalar</A> qcoeff[])
</PRE>
Logically Collective
<P>
<H3><FONT COLOR="#883300">Input Parameters</FONT></H3>
<TABLE border="0" cellpadding="0" cellspacing="0">
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>fn </B></TD><TD> - the math function context
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>nq </B></TD><TD> - number of coefficients
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>qcoeff </B></TD><TD> - coefficients (array of scalar values)
</TD></TR></TABLE>
<P>
<H3><FONT COLOR="#883300">Notes</FONT></H3>
Let the rational function r(x) = p(x)/q(x), where p(x) and q(x) are polynomials.
This function provides the coefficients of the denominator q(x).
Hence, q(x) is of degree nq-1.
If nq is zero, then the function is assumed to be polynomial, r(x) = p(x).
<P>
In polynomials, high order coefficients are stored in the first positions
of the array, e.g. to represent x^2-3 use {1,0,-3}.
<P>
<P>
<H3><FONT COLOR="#883300">See Also</FONT></H3>
<A HREF="../FN/FNRationalSetNumerator.html#FNRationalSetNumerator">FNRationalSetNumerator</A>(), <A HREF="../FN/FNRationalGetDenominator.html#FNRationalGetDenominator">FNRationalGetDenominator</A>()
<BR><P><B></B><H3><FONT COLOR="#883300">Level</FONT></H3>intermediate<BR>
<H3><FONT COLOR="#883300">Location</FONT></H3>
</B><A HREF="../../../src/sys/classes/fn/impls/rational/fnrational.c.html#FNRationalSetDenominator">src/sys/classes/fn/impls/rational/fnrational.c</A>
<P><H3><FONT COLOR="#883300">Examples</FONT></H3>
<A HREF="../../../src/nep/tutorials/ex42.c.html">src/nep/tutorials/ex42.c</A><BR>
<A HREF="../../../src/nep/tutorials/nlevp/loaded_string.c.html">src/nep/tutorials/nlevp/loaded_string.c</A><BR>
<BR><BR><A HREF="./index.html">Index of all FN routines</A>
<BR><A HREF="../../../docs/manual.html">Table of Contents for all manual pages</A>
<BR><A HREF="../singleindex.html">Index of all manual pages</A>
</BODY></HTML>
|