1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
|
<!DOCTYPE html>
<html lang="en" data-content_root="../../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Auxiliary Classes — SLEPc 3.24.1 documentation</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../../_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="../../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../../_static/togglebutton.css?v=13237357" />
<link rel="stylesheet" type="text/css" href="../../_static/sphinx-design.min.css?v=95c83b7e" />
<link rel="stylesheet" type="text/css" href="../../_static/css/slepc.css?v=d285b177" />
<!-- So that users can add custom icons -->
<script src="../../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../../_static/documentation_options.js?v=d1c46438"></script>
<script src="../../_static/doctools.js?v=9a2dae69"></script>
<script src="../../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../../_static/copybutton.js?v=a56c686a"></script>
<script>let toggleHintShow = 'Click to show';</script>
<script>let toggleHintHide = 'Click to hide';</script>
<script>let toggleOpenOnPrint = 'true';</script>
<script src="../../_static/togglebutton.js?v=4a39c7ea"></script>
<script src="../../_static/design-tabs.js?v=f930bc37"></script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>window.MathJax = {"options": {"processHtmlClass": "tex2jax_process|mathjax_process|math|output_area"}}</script>
<script defer="defer" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'documentation/manual/aux';</script>
<link rel="icon" href="../../_static/favicon-slepc.ico"/>
<link rel="index" title="Index" href="../../genindex.html" />
<link rel="search" title="Search" href="../../search.html" />
<link rel="next" title="Additional Information" href="extra.html" />
<link rel="prev" title="LME: Linear Matrix Equation" href="lme.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="3.24" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../../index.html">
<img src="../../_static/logo-slepc.gif" class="logo__image only-light" alt="SLEPc Home"/>
<img src="../../_static/logo-slepc.gif" class="logo__image only-dark pst-js-only" alt="SLEPc Home"/>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../about/index.html">
About
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../installation/index.html">
Installation
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../index.html">
Documentation
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../manualpages/index.html">
C/Fortran API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../slepc4py/index.html">
slepc4py API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../material/index.html">
Material
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../contact/index.html">
Contact
</a>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://gitlab.com/slepc/slepc" title="GitLab" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-gitlab fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitLab</span></a>
</li>
<li class="nav-item">
<a href="https://www.upv.es" title="UPV" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><img src="https://www.upv.es/favicon.ico" class="icon-link-image" alt="UPV"/></a>
</li>
<li class="nav-item">
<a href="https://slepc.upv.es/release/_static/rss/slepc-news.xml" title="Feed" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-solid fa-square-rss fa-lg" aria-hidden="true"></i>
<span class="sr-only">Feed</span></a>
</li>
</ul></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../about/index.html">
About
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../installation/index.html">
Installation
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../index.html">
Documentation
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../manualpages/index.html">
C/Fortran API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../slepc4py/index.html">
slepc4py API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../material/index.html">
Material
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../contact/index.html">
Contact
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://gitlab.com/slepc/slepc" title="GitLab" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-gitlab fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitLab</span></a>
</li>
<li class="nav-item">
<a href="https://www.upv.es" title="UPV" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><img src="https://www.upv.es/favicon.ico" class="icon-link-image" alt="UPV"/></a>
</li>
<li class="nav-item">
<a href="https://slepc.upv.es/release/_static/rss/slepc-news.xml" title="Feed" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-solid fa-square-rss fa-lg" aria-hidden="true"></i>
<span class="sr-only">Feed</span></a>
</li>
</ul></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Section Navigation">
<p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
<div class="bd-toc-item navbar-nav"><ul class="current nav bd-sidenav">
<li class="toctree-l1 current active has-children"><a class="reference internal" href="index.html">SLEPc Users Manual</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="intro.html">Getting Started</a></li>
<li class="toctree-l2"><a class="reference internal" href="eps.html">EPS: Eigenvalue Problem Solver</a></li>
<li class="toctree-l2"><a class="reference internal" href="st.html">ST: Spectral Transformation</a></li>
<li class="toctree-l2"><a class="reference internal" href="svd.html">SVD: Singular Value Decomposition</a></li>
<li class="toctree-l2"><a class="reference internal" href="pep.html">PEP: Polynomial Eigenvalue Problems</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep.html">NEP: Nonlinear Eigenvalue Problems</a></li>
<li class="toctree-l2"><a class="reference internal" href="mfn.html">MFN: Matrix Function</a></li>
<li class="toctree-l2"><a class="reference internal" href="lme.html">LME: Linear Matrix Equation</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">Auxiliary Classes</a></li>
<li class="toctree-l2"><a class="reference internal" href="extra.html">Additional Information</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../hands-on/index.html">Hands-on exercises</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on0.html">Exercise 0: Hello World</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on1.html">Exercise 1: Standard Symmetric Eigenvalue Problem</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on2.html">Exercise 2: Standard Non-Symmetric Eigenvalue Problem</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on3.html">Exercise 3: Generalized Eigenvalue Problem Stored in a File</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on4.html">Exercise 4: Singular Value Decomposition</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on5.html">Exercise 5: Problem without Explicit Matrix Storage</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on6.html">Exercise 6: Parallel Execution</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on7.html">Exercise 7: Use of Deflation Subspaces</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on8.html">Exercise 8: Quadratic Eigenvalue Problem</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="../presentations.html">Presentations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../license.html">License</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
<div class="sidebar-primary-item">
<div id="ethical-ad-placement"
class="flat"
data-ea-publisher="readthedocs"
data-ea-type="readthedocs-sidebar"
data-ea-manual="true">
</div></div>
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="../index.html" class="nav-link">Documentation</a></li>
<li class="breadcrumb-item"><a href="index.html" class="nav-link">SLEPc Users Manual</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">Auxiliary Classes</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section class="tex2jax_ignore mathjax_ignore" id="auxiliary-classes">
<span id="ch-aux"></span><h1>Auxiliary Classes<a class="headerlink" href="#auxiliary-classes" title="Link to this heading">#</a></h1>
<p>Apart from the main solver classes listed in table <a class="reference internal" href="index.html#tab-modules"><span class="std std-ref">SLEPc modules</span></a>, SLEPc contains several auxiliary classes:</p>
<ul class="simple">
<li><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/ST/ST.html">ST</a></span></code>: Spectral Transformation, fully described in chapter <a class="reference internal" href="st.html#ch-st"><span class="std std-ref">ST: Spectral Transformation</span></a>.</p></li>
<li><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FN.html">FN</a></span></code>: Mathematical Function, required in application code to represent the constituent functions of the nonlinear operator in split form (chapter <a class="reference internal" href="nep.html#ch-nep"><span class="std std-ref">NEP: Nonlinear Eigenvalue Problems</span></a>), as well as the function to be used when computing the action of a matrix function on a vector (chapter <a class="reference internal" href="mfn.html#ch-mfn"><span class="std std-ref">MFN: Matrix Function</span></a>).</p></li>
<li><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/RG/RG.html">RG</a></span></code>: Region, a way to define a region of the complex plane.</p></li>
<li><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DS.html">DS</a></span></code>: Direct Solver (or Dense System), can be seen as a wrapper to LAPACK functions used within SLEPc.</p></li>
<li><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BV.html">BV</a></span></code>: Basis Vectors, provides the concept of a block of vectors that represent the basis of a subspace.</p></li>
</ul>
<p>The first three classes, <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/ST/ST.html">ST</a></span></code>, <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FN.html">FN</a></span></code> and <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/RG/RG.html">RG</a></span></code>, are relevant for end users, while <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DS.html">DS</a></span></code> and <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BV.html">BV</a></span></code> are intended mainly for SLEPc developers. Below we provide a brief description of <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FN.html">FN</a></span></code>, <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/RG/RG.html">RG</a></span></code>, <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DS.html">DS</a></span></code> and <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BV.html">BV</a></span></code>.</p>
<section id="sec-fn">
<h2>FN: Mathematical Functions<a class="headerlink" href="#sec-fn" title="Link to this heading">#</a></h2>
<p>The <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FN.html">FN</a></span></code> class provides a few predefined mathematical functions, including rational functions (of which polynomials are a particular case) and exponentials. Objects of this class are instantiated by providing the values of the relevant parameters. <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FN.html">FN</a></span></code> objects are created with <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FNCreate.html">FNCreate</a>()</span></code> and it is necessary to select the type of function (rational, exponential, etc.) with <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FNSetType.html">FNSetType</a>()</span></code>. Table <a class="reference internal" href="#tab-fn"><span class="std std-ref">Mathematical functions available as FN objects</span></a> lists available functions.</p>
<div class="pst-scrollable-table-container"><table class="table" id="tab-fn">
<caption><span class="caption-text">Mathematical functions available as <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FN.html">FN</a></span></code> objects</span><a class="headerlink" href="#tab-fn" title="Link to this table">#</a></caption>
<thead>
<tr class="row-odd"><th class="head"><p>Function</p></th>
<th class="head"><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FNType.html">FNType</a></span></code></p></th>
<th class="head"><p>Expression</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>Polynomial and rational</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FNRATIONAL.html">FNRATIONAL</a></span></code></p></td>
<td><p><span class="math notranslate nohighlight">\(p(x)/q(x)\)</span></p></td>
</tr>
<tr class="row-odd"><td><p>Exponential</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FNEXP.html">FNEXP</a></span></code></p></td>
<td><p><span class="math notranslate nohighlight">\(e^x\)</span></p></td>
</tr>
<tr class="row-even"><td><p>Logarithm</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FNLOG.html">FNLOG</a></span></code></p></td>
<td><p><span class="math notranslate nohighlight">\(\log x\)</span></p></td>
</tr>
<tr class="row-odd"><td><p><span class="math notranslate nohighlight">\(\varphi\)</span>-functions</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FNPHI.html">FNPHI</a></span></code></p></td>
<td><p><span class="math notranslate nohighlight">\(\varphi_0(x)\)</span>, <span class="math notranslate nohighlight">\(\varphi_1(x)\)</span>, …</p></td>
</tr>
<tr class="row-even"><td><p>Square root</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FNSQRT.html">FNSQRT</a></span></code></p></td>
<td><p><span class="math notranslate nohighlight">\(\sqrt{x}\)</span></p></td>
</tr>
<tr class="row-odd"><td><p>Inverse square root</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FNINVSQRT.html">FNINVSQRT</a></span></code></p></td>
<td><p><span class="math notranslate nohighlight">\(x^{-\frac{1}{2}}\)</span></p></td>
</tr>
<tr class="row-even"><td><p>Combine two functions</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FNCOMBINE.html">FNCOMBINE</a></span></code></p></td>
<td><p>See text</p></td>
</tr>
</tbody>
</table>
</div>
<p>Parameters common to all <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FN.html">FN</a></span></code> types are the scaling factors, which are set with:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/FN/FNSetScale.html">FNSetScale</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/FN/FN.html">FN</a></span><span class="w"> </span><span class="n">fn</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscScalar/">PetscScalar</a></span><span class="w"> </span><span class="n">alpha</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscScalar/">PetscScalar</a></span><span class="w"> </span><span class="n">beta</span><span class="p">);</span>
</pre></div>
</div>
<p>where <code class="docutils notranslate"><span class="pre">alpha</span></code> multiplies the argument and <code class="docutils notranslate"><span class="pre">beta</span></code> multiplies the result. With this, the actual function is <span class="math notranslate nohighlight">\(\beta\cdot f(\alpha\cdot x)\)</span> for a given function <span class="math notranslate nohighlight">\(f(\cdot)\)</span>. For instance, an exponential function <span class="math notranslate nohighlight">\(f(x)=e^x\)</span> will turn into</p>
<div class="math notranslate nohighlight" id="equation-eq-exp-function">
<span class="eqno">(1)<a class="headerlink" href="#equation-eq-exp-function" title="Link to this equation">#</a></span>\[g(x)=\beta e^{\alpha x}.\]</div>
<p>In a rational function there are specific parameters, namely the coefficients of the numerator and denominator,</p>
<div class="math notranslate nohighlight" id="equation-eq-num-denum-coefficients">
<span class="eqno">(2)<a class="headerlink" href="#equation-eq-num-denum-coefficients" title="Link to this equation">#</a></span>\[r(x)=\frac{p(x)}{q(x)}
=\frac{\nu_{n-1}x^{n-1}+\cdots+\nu_1x+\nu_0}{\delta_{m-1}x^{m-1}+\cdots+\delta_1x+\delta_0}.\]</div>
<p>These parameters are specified with:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/FN/FNRationalSetNumerator.html">FNRationalSetNumerator</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/FN/FN.html">FN</a></span><span class="w"> </span><span class="n">fn</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscInt/">PetscInt</a></span><span class="w"> </span><span class="n">np</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscScalar/">PetscScalar</a></span><span class="w"> </span><span class="n">pcoeff</span><span class="p">[]);</span>
<span class="n"><a href="../../manualpages/FN/FNRationalSetDenominator.html">FNRationalSetDenominator</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/FN/FN.html">FN</a></span><span class="w"> </span><span class="n">fn</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscInt/">PetscInt</a></span><span class="w"> </span><span class="n">nq</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscScalar/">PetscScalar</a></span><span class="w"> </span><span class="n">qcoeff</span><span class="p">[]);</span>
</pre></div>
</div>
<p>Here, polynomials are passed as an array with high order coefficients appearing in low indices.</p>
<p>The <span class="math notranslate nohighlight">\(\varphi\)</span>-functions are given by</p>
<div class="math notranslate nohighlight" id="equation-eq-phi-functions">
<span class="eqno">(3)<a class="headerlink" href="#equation-eq-phi-functions" title="Link to this equation">#</a></span>\[\varphi_0(x)=e^x,\qquad \varphi_1(x)=\frac{e^x-1}{x},\qquad \varphi_k(x)=\frac{\varphi_{k-1}(x)-1/(k-1)!}{x},\]</div>
<p>where the index <span class="math notranslate nohighlight">\(k\)</span> must be specified with <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FNPhiSetIndex.html">FNPhiSetIndex</a>()</span></code>.</p>
<p>Whenever the solvers need to compute <span class="math notranslate nohighlight">\(f(x)\)</span> or <span class="math notranslate nohighlight">\(f'(x)\)</span> on a given scalar <span class="math notranslate nohighlight">\(x\)</span>, the following functions are invoked:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/FN/FNEvaluateFunction.html">FNEvaluateFunction</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/FN/FN.html">FN</a></span><span class="w"> </span><span class="n">fn</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscScalar/">PetscScalar</a></span><span class="w"> </span><span class="n">x</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscScalar/">PetscScalar</a></span><span class="w"> </span><span class="o">*</span><span class="n">y</span><span class="p">)</span>
<span class="n"><a href="../../manualpages/FN/FNEvaluateDerivative.html">FNEvaluateDerivative</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/FN/FN.html">FN</a></span><span class="w"> </span><span class="n">fn</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscScalar/">PetscScalar</a></span><span class="w"> </span><span class="n">x</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscScalar/">PetscScalar</a></span><span class="w"> </span><span class="o">*</span><span class="n">y</span><span class="p">)</span>
</pre></div>
</div>
<p>The function can also be evaluated as a matrix function, <span class="math notranslate nohighlight">\(B=f(A)\)</span>, where <span class="math notranslate nohighlight">\(A,B\)</span> are small, dense, square matrices. This is done with <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FNEvaluateFunctionMat.html">FNEvaluateFunctionMat</a>()</span></code>. Note that for a rational function, the corresponding expression would be <span class="math notranslate nohighlight">\(q(A)^{-1}p(A)\)</span>. For computing functions such as the exponential of a small matrix <span class="math notranslate nohighlight">\(A\)</span>, several methods are available. When the matrix <span class="math notranslate nohighlight">\(A\)</span> is symmetric, the default is to compute <span class="math notranslate nohighlight">\(f(A)\)</span> using the eigendecomposition <span class="math notranslate nohighlight">\(A=Q\Lambda Q^*\)</span>, for instance the exponential would be computed as <span class="math notranslate nohighlight">\(\exp(A)=Q\,\mathrm{diag}(e^{\lambda_i})Q^*\)</span>. In the general case, it is necessary to have recourse to one of the methods discussed in, e.g., <span id="id1">[<a class="reference internal" href="mfn.html#id36" title="N. J. Higham and A. H. Al-Mohy. Computing matrix functions. Acta Numerica, 19:159–208, 2010. doi:10.1017/S0962492910000036.">Higham and Al-Mohy, 2010</a>]</span>.</p>
<p>Finally, there is a mechanism to combine simple functions in order to create more complicated functions. For instance, the function</p>
<div class="math notranslate nohighlight" id="equation-eq-combined-funct">
<span class="eqno">(4)<a class="headerlink" href="#equation-eq-combined-funct" title="Link to this equation">#</a></span>\[f(x) = (1-x^2) \exp\left( \frac{-x}{1+x^2} \right)\]</div>
<p>can be represented with an expression tree with three leaves (one exponential function and two rational functions) and two interior nodes (one of them is the root, <span class="math notranslate nohighlight">\(f(x)\)</span>). Interior nodes are simply <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FN.html">FN</a></span></code> objects of type <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FNCOMBINE.html">FNCOMBINE</a></span></code> that specify how the two children must be combined (with either addition, multiplication, division or function composition):</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/FN/FNCombineSetChildren.html">FNCombineSetChildren</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/FN/FN.html">FN</a></span><span class="w"> </span><span class="n">fn</span><span class="p">,</span><span class="n"><a href="../../manualpages/FN/FNCombineType.html">FNCombineType</a></span><span class="w"> </span><span class="n">comb</span><span class="p">,</span><span class="n"><a href="../../manualpages/FN/FN.html">FN</a></span><span class="w"> </span><span class="n">f1</span><span class="p">,</span><span class="n"><a href="../../manualpages/FN/FN.html">FN</a></span><span class="w"> </span><span class="n">f2</span><span class="p">)</span>
</pre></div>
</div>
<p>The combination of <span class="math notranslate nohighlight">\(f_1\)</span> and <span class="math notranslate nohighlight">\(f_2\)</span> with division will result in <span class="math notranslate nohighlight">\(f_1(x)/f_2(x)\)</span> and <span class="math notranslate nohighlight">\(f_2(A)^{-1}f_1(A)\)</span> in the case of matrices.</p>
</section>
<section id="sec-rg">
<h2>RG: Region<a class="headerlink" href="#sec-rg" title="Link to this heading">#</a></h2>
<p>The <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/RG/RG.html">RG</a></span></code> object defines a region of the complex plane, that can be used to specify where eigenvalues must be sought. Currently, the following types of regions are available:</p>
<ul class="simple">
<li><p>A (generalized) interval, defined as <span class="math notranslate nohighlight">\([a,b]\times[c,d]\)</span>, where the four parameters can be set with <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/RG/RGIntervalSetEndpoints.html">RGIntervalSetEndpoints</a>()</span></code>. This covers the particular cases of an interval on the real axis (setting <span class="math notranslate nohighlight">\(c=d=0\)</span>), the left halfplane <span class="math notranslate nohighlight">\([-\infty,0]\times[-\infty,+\infty]\)</span>, a quadrant, etc. See figure <a class="reference internal" href="#fig-rg-interval"><span class="std std-ref">Interval region defined via de RG class</span></a>.</p></li>
</ul>
<figure class="align-default" id="fig-rg-interval">
<img alt="Interval region defined via de RG class" src="../../_images/fig-rg-interval.svg" /><figcaption>
<p><span class="caption-text">Interval region defined via de RG class</span><a class="headerlink" href="#fig-rg-interval" title="Link to this image">#</a></p>
</figcaption>
</figure>
<ul class="simple">
<li><p>A polygon defined by its vertices, given via <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/RG/RGPolygonSetVertices.html">RGPolygonSetVertices</a>()</span></code>. See figure <a class="reference internal" href="#fig-rg-polygon"><span class="std std-ref">Polygon region defined via de RG class</span></a>.</p></li>
</ul>
<figure class="align-default" id="fig-rg-polygon">
<img alt="Polygon region defined via de RG class" src="../../_images/fig-rg-polygon.svg" /><figcaption>
<p><span class="caption-text">Polygon region defined via de RG class</span><a class="headerlink" href="#fig-rg-polygon" title="Link to this image">#</a></p>
</figcaption>
</figure>
<ul class="simple">
<li><p>An ellipse defined by its center, radius and vertical scale (1 by default), specified with <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/RG/RGEllipseSetParameters.html">RGEllipseSetParameters</a>()</span></code>. See figure <a class="reference internal" href="#fig-rg-ellipse"><span class="std std-ref">Ellipse region defined via de RG class</span></a>.</p></li>
</ul>
<figure class="align-default" id="fig-rg-ellipse">
<img alt="Ellipse region defined via de RG class" src="../../_images/fig-rg-ellipse.svg" /><figcaption>
<p><span class="caption-text">Ellipse region defined via de RG class</span><a class="headerlink" href="#fig-rg-ellipse" title="Link to this image">#</a></p>
</figcaption>
</figure>
<ul class="simple">
<li><p>A ring region similar to an ellipse but consisting of a thin stripe along the ellipse with optional start and end angles. See figure <a class="reference internal" href="#fig-rg-ring"><span class="std std-ref">Ring region defined via de RG class</span></a>. The parameters are set with <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/RG/RGRingSetParameters.html">RGRingSetParameters</a>()</span></code>.</p></li>
</ul>
<figure class="align-default" id="fig-rg-ring">
<img alt="Ring region defined via de RG class" src="../../_images/fig-rg-ring.svg" /><figcaption>
<p><span class="caption-text">Ring region defined via de RG class</span><a class="headerlink" href="#fig-rg-ring" title="Link to this image">#</a></p>
</figcaption>
</figure>
<p>Check table <a class="reference internal" href="#tab-rg"><span class="std std-ref">Regions available as RG objects</span></a> for the names that should be used in each case.</p>
<div class="pst-scrollable-table-container"><table class="table" id="tab-rg">
<caption><span class="caption-text">Regions available as <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/RG/RG.html">RG</a></span></code> objects</span><a class="headerlink" href="#tab-rg" title="Link to this table">#</a></caption>
<thead>
<tr class="row-odd"><th class="head"><p>Region Type</p></th>
<th class="head"><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/RG/RGType.html">RGType</a></span></code></p></th>
<th class="head"><p>Options Database</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>(Generalized) Interval</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/RG/RGINTERVAL.html">RGINTERVAL</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">interval</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Polygon</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/RG/RGPOLYGON.html">RGPOLYGON</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">polygon</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Ellipse</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/RG/RGELLIPSE.html">RGELLIPSE</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">ellipse</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Ring</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/RG/RGRING.html">RGRING</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">ring</span></code></p></td>
</tr>
</tbody>
</table>
</div>
<p>Sometimes it is useful to specify the complement of a certain region, e.g., the part of the complex plane outside an ellipse. This can be achieved with:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/RG/RGSetComplement.html">RGSetComplement</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/RG/RG.html">RG</a></span><span class="w"> </span><span class="n">rg</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscBool/">PetscBool</a></span><span class="w"> </span><span class="n">flg</span><span class="p">)</span>
</pre></div>
</div>
<p>or in the command line with <code class="docutils notranslate"><span class="pre">-rg_complement</span></code>.</p>
<p>By default, a newly created <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/RG/RG.html">RG</a></span></code> object that is not set a type nor parameters must represent the whole complex plane (the same as <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/RG/RGINTERVAL.html">RGINTERVAL</a></span></code> with values <span class="math notranslate nohighlight">\([-\infty,+\infty]\times[-\infty,+\infty]\)</span>). We call this the <em>trivial</em> region, and provide a function to test this situation:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/RG/RGIsTrivial.html">RGIsTrivial</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/RG/RG.html">RG</a></span><span class="w"> </span><span class="n">rg</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscBool/">PetscBool</a></span><span class="w"> </span><span class="o">*</span><span class="n">trivial</span><span class="p">)</span>
</pre></div>
</div>
<p>Another useful operation is to check whether a given point of the complex plane is inside the region or not:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/RG/RGCheckInside.html">RGCheckInside</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/RG/RG.html">RG</a></span><span class="w"> </span><span class="n">rg</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscInt/">PetscInt</a></span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscScalar/">PetscScalar</a></span><span class="w"> </span><span class="n">ar</span><span class="p">[],</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscScalar/">PetscScalar</a></span><span class="w"> </span><span class="n">ai</span><span class="p">[],</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscInt/">PetscInt</a></span><span class="w"> </span><span class="o">*</span><span class="n">inside</span><span class="p">)</span>
</pre></div>
</div>
<p>Note that the point is represented as two <a class="reference external" href="https://petsc.org/release/manualpages/Sys/PetscScalar/" title="(in PETSc v3.24)"><span class="xref std std-doc">PetscScalar</span></a>’s, similarly to eigenvalues in SLEPc.</p>
</section>
<section id="sec-ds">
<h2>DS: Direct Solver (or Dense System)<a class="headerlink" href="#sec-ds" title="Link to this heading">#</a></h2>
<p>The <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DS.html">DS</a></span></code> class can be seen as a wrapper to LAPACK functions <span id="id2">[<a class="reference internal" href="../../manualpages/EPS/EPSLAPACK.html#id3" title="E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users' Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999.">Anderson <em>et al.</em>, 1999</a>]</span> used within SLEPc. It is mostly an internal object that need not be called by end users.</p>
<p>Many of the iterative eigensolvers implemented in SLEPc, such as Krylov-Schur or LOBPCG, perform a projection onto a low-dimensional subspace, e.g., <span class="math notranslate nohighlight">\(M=V^*AV\)</span>, where <span class="math notranslate nohighlight">\(M\)</span> is a dense matrix of small dimension (compared to the size of the original problem) and may or may not have a special structure such as Hessenberg or tridiagonal. Computing the full solution of an eigenproblem associated with matrix <span class="math notranslate nohighlight">\(M\)</span> is necessary to continue the outer iterative eigensolver, and this is typically done by calling a LAPACK function.</p>
<p>In case of parallel runs with several MPI processes, the result of the projection, <span class="math notranslate nohighlight">\(M\)</span>, is available in all processes and all of them solve the dense eigenproblem redundantly. Although this behavior can be changed slightly (see <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DSSetParallel.html">DSSetParallel</a>()</span></code>), the computation done in <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DS.html">DS</a></span></code> should be considered a sequential step of the overall algorithm, because we assume the size of <span class="math notranslate nohighlight">\(M\)</span> is small. That is why it is relevant for parallel efficiency to keep the size of <span class="math notranslate nohighlight">\(M\)</span> bounded, see discussion in <a class="reference internal" href="eps.html#sec-large-nev"><span class="std std-ref">Computing a Large Portion of the Spectrum</span></a>.</p>
<p>Due to the wide range of eigenproblems covered by SLEPc, the projected eigenproblem also has many variants, represented by the <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DSType.html">DSType</a></span></code>.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>The projected problem associated with <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/MFN/MFN.html">MFN</a></span></code> solvers is a matrix function calculation, which is implemented in <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FN.html">FN</a></span></code> and not <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DS.html">DS</a></span></code>.</p>
</div>
<p>Not all <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DS.html">DS</a></span></code> types are covered by LAPACK subroutines, particularly <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DSGHIEP.html">DSGHIEP</a></span></code>, <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DSHSVD.html">DSHSVD</a></span></code>, <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DSPEP.html">DSPEP</a></span></code>, and <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DSNEP.html">DSNEP</a></span></code>. Hence <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DS.html">DS</a></span></code> provides implementations for solving those problems. In many cases, several methods are available, and this includes the case where LAPACK provides several subroutines for the same problem. The user can select a solution method with an integer set via <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DSSetMethod.html">DSSetMethod</a>()</span></code>.</p>
<p>The user interface is organized in a way that accommodates to the needs of iterative eigensolvers. The computation is split in three stages, <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DSSolve.html">DSSolve</a>()</span></code>, <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DSSort.html">DSSort</a>()</span></code> and <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DSVectors.html">DSVectors</a>()</span></code>, which are typically called at different times. There are also convenience functions for truncating a previously computed solution, <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DSTruncate.html">DSTruncate</a>()</span></code>, or to process the additional row present in <span class="math notranslate nohighlight">\(M\)</span> in case of Krylov methods, see <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DSUpdateExtraRow.html">DSUpdateExtraRow</a>()</span></code>, which results in the typical arrowhead form when restarting Lanczos, for instance.</p>
<p>To manipulate matrix <span class="math notranslate nohighlight">\(M\)</span> and other matrices associated with the projected problem, the <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DS.html">DS</a></span></code> interface provides a list of dense matrices, see <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DSMatType.html">DSMatType</a></span></code>, and operations to work with them, such as <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DSGetMat.html">DSGetMat</a>()</span></code> or <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/DS/DSGetArray.html">DSGetArray</a>()</span></code>.</p>
</section>
<section id="sec-bv">
<h2>BV: Basis Vectors<a class="headerlink" href="#sec-bv" title="Link to this heading">#</a></h2>
<p>The <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BV.html">BV</a></span></code> class may be useful for advanced users, so we briefly describe it here for completeness. <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BV.html">BV</a></span></code> is a convenient way of handling a collection of vectors that often operate together, rather than working with an array of <a class="reference external" href="https://petsc.org/release/manualpages/Vec/Vec/" title="(in PETSc v3.24)"><span class="xref std std-doc">Vec</span></a>. It can be seen as a generalization of <a class="reference external" href="https://petsc.org/release/manualpages/Vec/Vec/" title="(in PETSc v3.24)"><span class="xref std std-doc">Vec</span></a> to a tall-skinny matrix with several columns.</p>
<div class="pst-scrollable-table-container"><table class="table" id="tab-bv">
<caption><span class="caption-text">Operations available for <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BV.html">BV</a></span></code> objects</span><a class="headerlink" href="#tab-bv" title="Link to this table">#</a></caption>
<thead>
<tr class="row-odd"><th class="head"><p>Operation</p></th>
<th class="head"><p>Block version</p></th>
<th class="head"><p>Column version</p></th>
<th class="head"><p>Vector version</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p><span class="math notranslate nohighlight">\(Y=X\)</span></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVCopy.html">BVCopy</a>()</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVCopyColumn.html">BVCopyColumn</a>()</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVCopyVec.html">BVCopyVec</a>()</span></code></p></td>
</tr>
<tr class="row-odd"><td><p><span class="math notranslate nohighlight">\(Y=\beta Y+\alpha XQ\)</span></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVMult.html">BVMult</a>()</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVMultColumn.html">BVMultColumn</a>()</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVMultVec.html">BVMultVec</a>()</span></code></p></td>
</tr>
<tr class="row-even"><td><p><span class="math notranslate nohighlight">\(M=Y^*\!AX\)</span></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVMatProject.html">BVMatProject</a>()</span></code></p></td>
<td><p>–</p></td>
<td><p>–</p></td>
</tr>
<tr class="row-odd"><td><p><span class="math notranslate nohighlight">\(M=Y^*X\)</span></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVDot.html">BVDot</a>()</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVDotColumn.html">BVDotColumn</a>()</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVDotVec.html">BVDotVec</a>()</span></code></p></td>
</tr>
<tr class="row-even"><td><p><span class="math notranslate nohighlight">\(Y=\alpha Y\)</span></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVScale.html">BVScale</a>()</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVScaleColumn.html">BVScaleColumn</a>()</span></code></p></td>
<td><p>–</p></td>
</tr>
<tr class="row-odd"><td><p><span class="math notranslate nohighlight">\(r=\|X\|_{type}\)</span></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVNorm.html">BVNorm</a>()</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVNormColumn.html">BVNormColumn</a>()</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVNormVec.html">BVNormVec</a>()</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Set to random values</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVSetRandom.html">BVSetRandom</a>()</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVSetRandomColumn.html">BVSetRandomColumn</a>()</span></code></p></td>
<td><p>–</p></td>
</tr>
<tr class="row-odd"><td><p>Orthogonalize</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVOrthogonalize.html">BVOrthogonalize</a>()</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVOrthogonalizeColumn.html">BVOrthogonalizeColumn</a>()</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVOrthogonalizeVec.html">BVOrthogonalizeVec</a>()</span></code></p></td>
</tr>
</tbody>
</table>
</div>
<p>Table <a class="reference internal" href="#tab-bv"><span class="std std-ref">Operations available for BV objects</span></a> shows a summary of the operations offered by the <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BV.html">BV</a></span></code> class, with variants that operate on the whole <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BV.html">BV</a></span></code>, on a single column, or on an external <a class="reference external" href="https://petsc.org/release/manualpages/Vec/Vec/" title="(in PETSc v3.24)"><span class="xref std std-doc">Vec</span></a> object. Missing variants can be achieved simply with <a class="reference external" href="https://petsc.org/release/manualpages/Vec/Vec/" title="(in PETSc v3.24)"><span class="xref std std-doc">Vec</span></a> and <a class="reference external" href="https://petsc.org/release/manualpages/Mat/Mat/" title="(in PETSc v3.24)"><span class="xref std std-doc">Mat</span></a> operations. Other available variants not shown in the table are <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVMultInPlace.html">BVMultInPlace</a>()</span></code>, <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVMultInPlaceHermitianTranspose.html">BVMultInPlaceHermitianTranspose</a>()</span></code> and <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVOrthogonalizeSomeColumn.html">BVOrthogonalizeSomeColumn</a>()</span></code>.</p>
<p>Most SLEPc solvers use a <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BV.html">BV</a></span></code> object to represent the working subspace basis. In particular, orthogonalization operations are mostly confined within <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BV.html">BV</a></span></code>. Hence, <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BV.html">BV</a></span></code> provides options for specifying the method of orthogonalization of vectors (Gram-Schmidt) as well as the method of block orthogonalization, see <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/BV/BVSetOrthogonalization.html">BVSetOrthogonalization</a>()</span></code>.</p>
<p class="rubric">References</p>
<div class="docutils container" id="id3">
<div role="list" class="citation-list">
<div class="citation" id="id4" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id2">And99</a><span class="fn-bracket">]</span></span>
<p>E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. <em>LAPACK Users' Guide</em>. Society for Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999.</p>
</div>
<div class="citation" id="id34" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id1">Hig10</a><span class="fn-bracket">]</span></span>
<p>N. J. Higham and A. H. Al-Mohy. Computing matrix functions. <em>Acta Numerica</em>, 19:159–208, 2010. <a class="reference external" href="https://doi.org/10.1017/S0962492910000036">doi:10.1017/S0962492910000036</a>.</p>
</div>
</div>
</div>
</section>
</section>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
<a class="left-prev"
href="lme.html"
title="previous page">
<i class="fa-solid fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title">LME: Linear Matrix Equation</p>
</div>
</a>
<a class="right-next"
href="extra.html"
title="next page">
<div class="prev-next-info">
<p class="prev-next-subtitle">next</p>
<p class="prev-next-title">Additional Information</p>
</div>
<i class="fa-solid fa-angle-right"></i>
</a>
</div>
</footer>
</div>
<dialog id="pst-secondary-sidebar-modal"></dialog>
<div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div
id="pst-page-navigation-heading-2"
class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> On this page
</div>
<nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#sec-fn">FN: Mathematical Functions</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#sec-rg">RG: Region</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#sec-ds">DS: Direct Solver (or Dense System)</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#sec-bv">BV: Basis Vectors</a></li>
</ul>
</nav></div>
<div class="sidebar-secondary-item">
<div class="tocsection editthispage">
<a href="https://gitlab.com/slepc/slepc/-/edit/release/doc/source/documentation/manual/aux.md">
<i class="fa-solid fa-pencil"></i>
Edit on GitLab
</a>
</div>
</div>
<div class="sidebar-secondary-item">
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="../../_sources/documentation/manual/aux.md.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div></div>
</div></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<p class="copyright">
© Copyright 2002-2025, Universitat Politecnica de Valencia, Spain.
<br/>
</p>
</div>
<div class="footer-item">
<p class="sphinx-version">
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 7.3.7.
<br/>
</p>
</div>
</div>
<div class="footer-items__end">
<div class="footer-item">
<p class="theme-version">
<!-- # L10n: Setting the PST URL as an argument as this does not need to be localized -->
Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.16.1.
</p></div>
</div>
</div>
</footer>
</body>
</html>
|