1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
|
<!DOCTYPE html>
<html lang="en" data-content_root="../../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>LME: Linear Matrix Equation — SLEPc 3.24.1 documentation</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../../_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="../../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../../_static/togglebutton.css?v=13237357" />
<link rel="stylesheet" type="text/css" href="../../_static/sphinx-design.min.css?v=95c83b7e" />
<link rel="stylesheet" type="text/css" href="../../_static/css/slepc.css?v=d285b177" />
<!-- So that users can add custom icons -->
<script src="../../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../../_static/documentation_options.js?v=d1c46438"></script>
<script src="../../_static/doctools.js?v=9a2dae69"></script>
<script src="../../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../../_static/copybutton.js?v=a56c686a"></script>
<script>let toggleHintShow = 'Click to show';</script>
<script>let toggleHintHide = 'Click to hide';</script>
<script>let toggleOpenOnPrint = 'true';</script>
<script src="../../_static/togglebutton.js?v=4a39c7ea"></script>
<script src="../../_static/design-tabs.js?v=f930bc37"></script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>window.MathJax = {"options": {"processHtmlClass": "tex2jax_process|mathjax_process|math|output_area"}}</script>
<script defer="defer" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'documentation/manual/lme';</script>
<link rel="icon" href="../../_static/favicon-slepc.ico"/>
<link rel="index" title="Index" href="../../genindex.html" />
<link rel="search" title="Search" href="../../search.html" />
<link rel="next" title="Auxiliary Classes" href="aux.html" />
<link rel="prev" title="MFN: Matrix Function" href="mfn.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="3.24" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../../index.html">
<img src="../../_static/logo-slepc.gif" class="logo__image only-light" alt="SLEPc Home"/>
<img src="../../_static/logo-slepc.gif" class="logo__image only-dark pst-js-only" alt="SLEPc Home"/>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../about/index.html">
About
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../installation/index.html">
Installation
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../index.html">
Documentation
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../manualpages/index.html">
C/Fortran API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../slepc4py/index.html">
slepc4py API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../material/index.html">
Material
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../contact/index.html">
Contact
</a>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://gitlab.com/slepc/slepc" title="GitLab" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-gitlab fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitLab</span></a>
</li>
<li class="nav-item">
<a href="https://www.upv.es" title="UPV" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><img src="https://www.upv.es/favicon.ico" class="icon-link-image" alt="UPV"/></a>
</li>
<li class="nav-item">
<a href="https://slepc.upv.es/release/_static/rss/slepc-news.xml" title="Feed" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-solid fa-square-rss fa-lg" aria-hidden="true"></i>
<span class="sr-only">Feed</span></a>
</li>
</ul></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../about/index.html">
About
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../installation/index.html">
Installation
</a>
</li>
<li class="nav-item current active">
<a class="nav-link nav-internal" href="../index.html">
Documentation
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../manualpages/index.html">
C/Fortran API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../slepc4py/index.html">
slepc4py API
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../material/index.html">
Material
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="../../contact/index.html">
Contact
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://gitlab.com/slepc/slepc" title="GitLab" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-gitlab fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitLab</span></a>
</li>
<li class="nav-item">
<a href="https://www.upv.es" title="UPV" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><img src="https://www.upv.es/favicon.ico" class="icon-link-image" alt="UPV"/></a>
</li>
<li class="nav-item">
<a href="https://slepc.upv.es/release/_static/rss/slepc-news.xml" title="Feed" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-solid fa-square-rss fa-lg" aria-hidden="true"></i>
<span class="sr-only">Feed</span></a>
</li>
</ul></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Section Navigation">
<p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
<div class="bd-toc-item navbar-nav"><ul class="current nav bd-sidenav">
<li class="toctree-l1 current active has-children"><a class="reference internal" href="index.html">SLEPc Users Manual</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="intro.html">Getting Started</a></li>
<li class="toctree-l2"><a class="reference internal" href="eps.html">EPS: Eigenvalue Problem Solver</a></li>
<li class="toctree-l2"><a class="reference internal" href="st.html">ST: Spectral Transformation</a></li>
<li class="toctree-l2"><a class="reference internal" href="svd.html">SVD: Singular Value Decomposition</a></li>
<li class="toctree-l2"><a class="reference internal" href="pep.html">PEP: Polynomial Eigenvalue Problems</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep.html">NEP: Nonlinear Eigenvalue Problems</a></li>
<li class="toctree-l2"><a class="reference internal" href="mfn.html">MFN: Matrix Function</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">LME: Linear Matrix Equation</a></li>
<li class="toctree-l2"><a class="reference internal" href="aux.html">Auxiliary Classes</a></li>
<li class="toctree-l2"><a class="reference internal" href="extra.html">Additional Information</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../hands-on/index.html">Hands-on exercises</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on0.html">Exercise 0: Hello World</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on1.html">Exercise 1: Standard Symmetric Eigenvalue Problem</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on2.html">Exercise 2: Standard Non-Symmetric Eigenvalue Problem</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on3.html">Exercise 3: Generalized Eigenvalue Problem Stored in a File</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on4.html">Exercise 4: Singular Value Decomposition</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on5.html">Exercise 5: Problem without Explicit Matrix Storage</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on6.html">Exercise 6: Parallel Execution</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on7.html">Exercise 7: Use of Deflation Subspaces</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on8.html">Exercise 8: Quadratic Eigenvalue Problem</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="../presentations.html">Presentations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../license.html">License</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
<div class="sidebar-primary-item">
<div id="ethical-ad-placement"
class="flat"
data-ea-publisher="readthedocs"
data-ea-type="readthedocs-sidebar"
data-ea-manual="true">
</div></div>
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="../index.html" class="nav-link">Documentation</a></li>
<li class="breadcrumb-item"><a href="index.html" class="nav-link">SLEPc Users Manual</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">LME: Linear Matrix Equation</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section class="tex2jax_ignore mathjax_ignore" id="lme-linear-matrix-equation">
<span id="ch-lme"></span><h1>LME: Linear Matrix Equation<a class="headerlink" href="#lme-linear-matrix-equation" title="Link to this heading">#</a></h1>
<p>The Linear Matrix Equation (<code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LME.html">LME</a></span></code>) solver object encapsulates functionality intended for the solution of linear matrix equations such as Lyapunov, Sylvester, and their various generalizations. A matrix equation is an equation where the unknown and the coefficients are all matrices, and it is linear if there are no nonlinear terms involving the unknown. This excludes some types of equations such as the Algebraic Riccati Equation or other quadratic matrix equations, which are not considered here.</p>
<p>The general form of a linear matrix equation is</p>
<div class="math notranslate nohighlight" id="equation-eq-lme">
<span class="eqno">(1)<a class="headerlink" href="#equation-eq-lme" title="Link to this equation">#</a></span>\[AXE+DXB=C,\]</div>
<p>where <span class="math notranslate nohighlight">\(X\)</span> is the solution.</p>
<p>Since SLEPc is mainly concerned with iterative methods, so is the <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LME.html">LME</a></span></code> module. This implies that <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LME.html">LME</a></span></code> can address only the case where the solution <span class="math notranslate nohighlight">\(X\)</span> has low rank. In many situations, <span class="math notranslate nohighlight">\(X\)</span> does not have low rank, which means that the <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LME.html">LME</a></span></code> solver, if it converges, will truncate the solution to an artificially small rank, with a large approximation error.</p>
<div class="admonition warning">
<p class="admonition-title">Warning</p>
<p>The <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LME.html">LME</a></span></code> module should be considered experimental. As explained below, the currently implemented functionality is quite limited, and may be extended in the future.</p>
</div>
<section id="current-functionality">
<h2>Current Functionality<a class="headerlink" href="#current-functionality" title="Link to this heading">#</a></h2>
<p>The user interface of the <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LME.html">LME</a></span></code> module is prepared for different types of equations, see a list in table <a class="reference internal" href="#tab-eqtype"><span class="std std-ref">Problem types considered in LME</span></a>. However, currently there is only basic support for continuous-time Lyapunov equations, and the rest are just a wish list.</p>
<div class="pst-scrollable-table-container"><table class="table" id="tab-eqtype">
<caption><span class="caption-text">Problem types considered in <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LME.html">LME</a></span></code></span><a class="headerlink" href="#tab-eqtype" title="Link to this table">#</a></caption>
<thead>
<tr class="row-odd"><th class="head"><p>Problem Type</p></th>
<th class="head"><p>Equation</p></th>
<th class="head"><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LMEProblemType.html">LMEProblemType</a></span></code></p></th>
<th class="head"><p><span class="math notranslate nohighlight">\(A\)</span></p></th>
<th class="head"><p><span class="math notranslate nohighlight">\(B\)</span></p></th>
<th class="head"><p><span class="math notranslate nohighlight">\(D\)</span></p></th>
<th class="head"><p><span class="math notranslate nohighlight">\(E\)</span></p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>Continuous-Time Lyapunov</p></td>
<td><p><span class="math notranslate nohighlight">\(AX+XA^*=-C\)</span></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LME_LYAPUNOV.html">LME_LYAPUNOV</a></span></code></p></td>
<td><p>yes</p></td>
<td><p><span class="math notranslate nohighlight">\(A^*\)</span></p></td>
<td><p>-</p></td>
<td><p>-</p></td>
</tr>
<tr class="row-odd"><td><p>Sylvester</p></td>
<td><p><span class="math notranslate nohighlight">\(AX+XB=C\)</span></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LME_SYLVESTER.html">LME_SYLVESTER</a></span></code></p></td>
<td><p>yes</p></td>
<td><p>yes</p></td>
<td><p>-</p></td>
<td><p>-</p></td>
</tr>
<tr class="row-even"><td><p>Generalized Lyapunov</p></td>
<td><p><span class="math notranslate nohighlight">\(AXD^*+DXA^*=-C\)</span></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LME_GEN_LYAPUNOV.html">LME_GEN_LYAPUNOV</a></span></code></p></td>
<td><p>yes</p></td>
<td><p><span class="math notranslate nohighlight">\(A^*\)</span></p></td>
<td><p>yes</p></td>
<td><p><span class="math notranslate nohighlight">\(D^*\)</span></p></td>
</tr>
<tr class="row-odd"><td><p>Generalized Sylvester</p></td>
<td><p><span class="math notranslate nohighlight">\(AXE+DXB=C\)</span></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LME_GEN_SYLVESTER.html">LME_GEN_SYLVESTER</a></span></code></p></td>
<td><p>yes</p></td>
<td><p>yes</p></td>
<td><p>yes</p></td>
<td><p>yes</p></td>
</tr>
<tr class="row-even"><td><p>Discrete-Time Lyapunov</p></td>
<td><p><span class="math notranslate nohighlight">\(AXA^*-X=-C\)</span></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LME_DT_LYAPUNOV.html">LME_DT_LYAPUNOV</a></span></code></p></td>
<td><p>yes</p></td>
<td><p>-</p></td>
<td><p>-</p></td>
<td><p><span class="math notranslate nohighlight">\(A^*\)</span></p></td>
</tr>
<tr class="row-odd"><td><p>Stein</p></td>
<td><p><span class="math notranslate nohighlight">\(AXE-X=-C\)</span></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LME_STEIN.html">LME_STEIN</a></span></code></p></td>
<td><p>yes</p></td>
<td><p>-</p></td>
<td><p>-</p></td>
<td><p>yes</p></td>
</tr>
</tbody>
</table>
</div>
<section id="continuous-time-lyapunov-equation">
<h3>Continuous-Time Lyapunov Equation<a class="headerlink" href="#continuous-time-lyapunov-equation" title="Link to this heading">#</a></h3>
<p>Given two matrices <span class="math notranslate nohighlight">\(A,C\in\mathbb{C}^{n\times n}\)</span>, with <span class="math notranslate nohighlight">\(C\)</span> Hermitian positive-definite, the continuous-time Lyapunov equation, assuming that the right-hand side matrix <span class="math notranslate nohighlight">\(C\)</span> has low rank, can be expressed as</p>
<div class="math notranslate nohighlight" id="equation-eq-clyap">
<span class="eqno">(2)<a class="headerlink" href="#equation-eq-clyap" title="Link to this equation">#</a></span>\[AX+XA^*=-C_1C_1^*,\]</div>
<p>where we have written the right-hand side in factored form, <span class="math notranslate nohighlight">\(C=C_1C_1^*\)</span>, <span class="math notranslate nohighlight">\(C_1\in\mathbb{C}^{n\times r}\)</span> with <span class="math notranslate nohighlight">\(r = \operatorname{rank}(C)\)</span>. In general, <span class="math notranslate nohighlight">\(X\)</span> will not have low rank, but our intention is to compute a low-rank approximation <span class="math notranslate nohighlight">\(\tilde X=X_1X_1^*\)</span>, <span class="math notranslate nohighlight">\(X_1\in\mathbb{C}^{n\times p}\)</span> for a given value <span class="math notranslate nohighlight">\(p\)</span>. Note that the equation has a unique solution if and only if <span class="math notranslate nohighlight">\(A\)</span> is stable, i.e., all of its eigenvalues have strictly negative real part.</p>
<p>The reason why SLEPc provides a solver for equation <a class="reference internal" href="#equation-eq-clyap">(2)</a> is that it is required in the eigensolver <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/EPS/EPSLYAPII.html">EPSLYAPII</a></span></code>, which implements the Lyapunov inverse iteration <span id="id1">[<a class="reference internal" href="../../manualpages/EPS/EPSLYAPII.html#id75" title="H. Elman and M. Wu. Lyapunov inverse iteration for computing a few rightmost eigenvalues of large generalized eigenvalue problems. SIAM J. Matrix Anal. Appl., 34(4):1685–1707, 2013. doi:10.1137/120897468.">Elman and Wu, 2013</a>, <a class="reference internal" href="../../manualpages/EPS/EPSLYAPII.html#id74" title="K. Meerbergen and A. Spence. Inverse iteration for purely imaginary eigenvalues with application to the detection of Hopf bifurcations in large-scale problems. SIAM J. Matrix Anal. Appl., 31(4):1982–1999, 2010. doi:10.1137/080742890.">Meerbergen and Spence, 2010</a>]</span>.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>The <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LME.html">LME</a></span></code> solvers currently implemented in SLEPc are very basic. Users interested in applying <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LME.html">LME</a></span></code> to matrix equations appearing in their applications are encouraged to contact SLEPc developers describing their use case.</p>
</div>
</section>
<section id="krylov-solver">
<h3>Krylov Solver<a class="headerlink" href="#krylov-solver" title="Link to this heading">#</a></h3>
<p>Currently, the solver for the continuous-time Lyapunov equation available in SLEPc is based on the following procedure for each column <span class="math notranslate nohighlight">\(c\)</span> of <span class="math notranslate nohighlight">\(C_1\)</span>:</p>
<ol class="arabic simple">
<li><p>Build an <em>Arnoldi factorization</em> for the Krylov subspace <span class="math notranslate nohighlight">\(\mathcal{K}_m(A,c)\)</span>,
<span class="math notranslate nohighlight">\(AV_m=V_mH_m+h_{m+1,m}v_{m+1}e_m^*\)</span>.</p></li>
<li><p>Solve the <em>compressed Lyapunov equation</em>,
<span class="math notranslate nohighlight">\(H_mY+YH_m^*=-\tilde c\,\tilde c^* \quad\mathrm{with}\quad\tilde c=V_m^*c\)</span>.</p></li>
<li><p>Set the approximate solution to <span class="math notranslate nohighlight">\(X_m=V_mYV_m^*\)</span>.</p></li>
</ol>
<p>Furthermore, our Krylov solver incorporates an Eiermann-Ernst-type restart as proposed by <span id="id2">Kressner [<a class="reference internal" href="#id77" title="D. Kressner. Memory-efficient Krylov subspace techniques for solving large-scale Lyapunov equations. In 2008 IEEE International Conference on Computer-Aided Control Systems, 613–618. IEEE, 2008. doi:10.1109/cacsd.2008.4627370.">2008</a>]</span>. The restart will discard the Arnoldi basis <span class="math notranslate nohighlight">\(V_m\)</span> but keep <span class="math notranslate nohighlight">\(H_m\)</span>, then continue the Arnoldi recurrence from <span class="math notranslate nohighlight">\(v_{m+1}\)</span>. The upper Hessenberg matrices generated at each restart are glued together. This implies that at each restart the size of the compressed Lyapunov equation grows. After convergence, once the full <span class="math notranslate nohighlight">\(Y\)</span> is available, we perform a second pass to reconstruct the successive <span class="math notranslate nohighlight">\(V_m\)</span> bases.</p>
<p>The restarted algorithm is as follows:</p>
<blockquote>
<div><p><strong>for</strong> <span class="math notranslate nohighlight">\(k=1,2,\ldots\)</span></p>
<ul class="simple">
<li><p>Run Arnoldi <span class="math notranslate nohighlight">\(AV_m^{(k)}=V_m^{(k)}H_m^{(k)}+h_{m+1,m}^{(k)}v_{m+1}^{(k)}e_m^*\)</span>.</p></li>
<li><p>Set <span class="math notranslate nohighlight">\(H_{km}=\left[\begin{array}{cc}H_{(k-1)m}&0\\h_{m+1,m}^{(k-1)}e_1e_{(k-1)m}^*&H_m^{(k)}\end{array}\right]\)</span>.</p></li>
<li><p>Solve compressed equation <span class="math notranslate nohighlight">\(H_{km}Y+YH_{km}^*=-\|c\|_2^2\,e_1e_1^*\)</span>.</p></li>
<li><p>Compute residual norm <span class="math notranslate nohighlight">\(\|R_k\|_2=h_{m+1,m}^{(k)}\|e_{km}^*Y\|_2\)</span>.</p></li>
</ul>
<p><strong>end</strong></p>
</div></blockquote>
<p>The residual norm is used for the stopping criterion.</p>
</section>
<section id="projected-problem">
<h3>Projected Problem<a class="headerlink" href="#projected-problem" title="Link to this heading">#</a></h3>
<p>As mentioned in the previous section, the projected problem is a smaller Lyapunov equation, which must be solved in each outer iteration of the method (restart). The solution of this small dense matrix equation is also implemented within the <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LME.html">LME</a></span></code> module (there is no auxiliary class for this).</p>
<p>If <span class="math notranslate nohighlight">\(A\)</span> is stable, then <span class="math notranslate nohighlight">\(X\)</span> is symmetric positive semidefinite. Hence, looking at step 3 of the algorithm in the previous section, it is better to compute the Cholesky factor <span class="math notranslate nohighlight">\(Y=LL^*\)</span> to obtain the low rank factor <span class="math notranslate nohighlight">\(X_1=V_mL\)</span>. The method of Hammarling will compute <span class="math notranslate nohighlight">\(L\)</span> directly, without computing <span class="math notranslate nohighlight">\(Y\)</span> first.</p>
<p>If SLEPc has been configured with the option <code class="docutils notranslate"><span class="pre">--download-slicot</span></code> (see <a class="reference internal" href="extra.html#sec-wrap"><span class="std std-ref">Wrappers to External Libraries</span></a>), it will be possible to use SLICOT subroutines to apply Hammarling’s method, otherwise a more basic algorithm will be used.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>Most of the SLICOT subroutines are implemented for real arithmetic only, so it is not possible to use them in a complex build of PETSc/SLEPc.</p>
</div>
<p>In the restarted algorithm described above, in the second pass to recalculate the successive <span class="math notranslate nohighlight">\(V_m\)</span>’s, the update is based on the truncated SVD of the Cholesky factor
<div class="math notranslate nohighlight">
\[\begin{split}L=\begin{bmatrix}Q_1 & Q_2\end{bmatrix}\begin{bmatrix}\Sigma_1 & 0 \\ 0 & \Sigma_2\end{bmatrix}\begin{bmatrix}Z_1 & Z_2\end{bmatrix}^*\quad\mathrm{with}\quad\|\Sigma_2\|_2<\varepsilon,\end{split}\]</div>
so that the final <span class="math notranslate nohighlight">\(X_1\)</span> has the appropriate rank.</p>
</section>
</section>
<section id="basic-usage">
<h2>Basic Usage<a class="headerlink" href="#basic-usage" title="Link to this heading">#</a></h2>
<p>Once the solver object has been created with <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LMECreate.html">LMECreate</a>()</span></code>, the user has to define the matrix equation to be solved. First, the type of equation must be set with <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LMESetProblemType.html">LMESetProblemType</a>()</span></code>, choosing one from table <a class="reference internal" href="#tab-eqtype"><span class="std std-ref">Problem types considered in LME</span></a>.</p>
<p>The coefficient matrices <span class="math notranslate nohighlight">\(A\)</span>, <span class="math notranslate nohighlight">\(B\)</span>, <span class="math notranslate nohighlight">\(D\)</span>, <span class="math notranslate nohighlight">\(E\)</span> must be provided via <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LMESetCoefficients.html">LMESetCoefficients</a>()</span></code>, but some of them are optional depending on the matrix equation. For Lyapunov equations, only <span class="math notranslate nohighlight">\(A\)</span> must be set, which is normally a large, sparse matrix stored in <a class="reference external" href="https://petsc.org/release/manualpages/Mat/MATAIJ/" title="(in PETSc v3.24)"><span class="xref std std-doc">MATAIJ</span></a> format. Note that in table <a class="reference internal" href="#tab-eqtype"><span class="std std-ref">Problem types considered in LME</span></a>, the notation <span class="math notranslate nohighlight">\(A^*\)</span> means that this matrix need not be passed, but the user may choose to pass an explicit transpose of matrix <span class="math notranslate nohighlight">\(A\)</span> (for improved efficiency). Also note that some of the equation types impose restrictions on the properties of the coefficient matrices (e.g., <span class="math notranslate nohighlight">\(A\)</span> stable in Lyapunov equations) and possibly on the right-hand side <span class="math notranslate nohighlight">\(C\)</span>.</p>
<p>To conclude the definition of the equation, we must pass the right-hand side <span class="math notranslate nohighlight">\(C\)</span> with <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LMESetRHS.html">LMESetRHS</a>()</span></code>. Note that <span class="math notranslate nohighlight">\(C\)</span> is expressed as the outer product of a tall-skinny matrix, <span class="math notranslate nohighlight">\(C=C_1C_1^*\)</span>. This can be represented in PETSc using a special type of matrix, <a class="reference external" href="https://petsc.org/release/manualpages/Mat/MATLRC/" title="(in PETSc v3.24)"><span class="xref std std-doc">MATLRC</span></a>, that can be created with <a class="reference external" href="https://petsc.org/release/manualpages/Mat/MatCreateLRC/" title="(in PETSc v3.24)"><span class="xref std std-doc">MatCreateLRC</span></a> passing a dense matrix <span class="math notranslate nohighlight">\(C_1\)</span>.</p>
<p>The call to <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LMESolve.html">LMESolve</a>()</span></code> will run the solver to compute the solution <span class="math notranslate nohighlight">\(X\)</span>. The rank of <span class="math notranslate nohighlight">\(X\)</span> may be prescribed by the user or selected dynamically by the solver. Next, we discuss these two options:</p>
<ul class="simple">
<li><p>To prescribe a fixed rank for <span class="math notranslate nohighlight">\(X\)</span>, we must preallocate it, creating a <a class="reference external" href="https://petsc.org/release/manualpages/Mat/MATLRC/" title="(in PETSc v3.24)"><span class="xref std std-doc">MATLRC</span></a> matrix, and then pass it via <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LMESetSolution.html">LMESetSolution</a>()</span></code> <em>before</em> calling <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LMESolve.html">LMESolve</a>()</span></code>. In this way, the solver will be restricted to a rank equal to the number of columns provided in <span class="math notranslate nohighlight">\(X_1\)</span>.</p></li>
<li><p>If we do not call <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LMESetSolution.html">LMESetSolution</a>()</span></code> beforehand, the solver will select the rank dynamically. Then after <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LMESolve.html">LMESolve</a>()</span></code> we must call <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/LME/LMEGetSolution.html">LMEGetSolution</a>()</span></code> to retrieve a <a class="reference external" href="https://petsc.org/release/manualpages/Mat/MATLRC/" title="(in PETSc v3.24)"><span class="xref std std-doc">MATLRC</span></a> matrix representing <span class="math notranslate nohighlight">\(X\)</span>.</p></li>
</ul>
<p class="rubric">References</p>
<div class="docutils container" id="id3">
<div role="list" class="citation-list">
<div class="citation" id="id76" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id1">Elm13</a><span class="fn-bracket">]</span></span>
<p>H. Elman and M. Wu. Lyapunov inverse iteration for computing a few rightmost eigenvalues of large generalized eigenvalue problems. <em>SIAM J. Matrix Anal. Appl.</em>, 34(4):1685–1707, 2013. <a class="reference external" href="https://doi.org/10.1137/120897468">doi:10.1137/120897468</a>.</p>
</div>
<div class="citation" id="id77" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id2">Kre08</a><span class="fn-bracket">]</span></span>
<p>D. Kressner. Memory-efficient Krylov subspace techniques for solving large-scale Lyapunov equations. In <em>2008 IEEE International Conference on Computer-Aided Control Systems</em>, 613–618. IEEE, 2008. <a class="reference external" href="https://doi.org/10.1109/cacsd.2008.4627370">doi:10.1109/cacsd.2008.4627370</a>.</p>
</div>
<div class="citation" id="id75" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id1">Mee10</a><span class="fn-bracket">]</span></span>
<p>K. Meerbergen and A. Spence. Inverse iteration for purely imaginary eigenvalues with application to the detection of Hopf bifurcations in large-scale problems. <em>SIAM J. Matrix Anal. Appl.</em>, 31(4):1982–1999, 2010. <a class="reference external" href="https://doi.org/10.1137/080742890">doi:10.1137/080742890</a>.</p>
</div>
</div>
</div>
</section>
</section>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
<a class="left-prev"
href="mfn.html"
title="previous page">
<i class="fa-solid fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title">MFN: Matrix Function</p>
</div>
</a>
<a class="right-next"
href="aux.html"
title="next page">
<div class="prev-next-info">
<p class="prev-next-subtitle">next</p>
<p class="prev-next-title">Auxiliary Classes</p>
</div>
<i class="fa-solid fa-angle-right"></i>
</a>
</div>
</footer>
</div>
<dialog id="pst-secondary-sidebar-modal"></dialog>
<div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div
id="pst-page-navigation-heading-2"
class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> On this page
</div>
<nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#current-functionality">Current Functionality</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#continuous-time-lyapunov-equation">Continuous-Time Lyapunov Equation</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#krylov-solver">Krylov Solver</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#projected-problem">Projected Problem</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#basic-usage">Basic Usage</a></li>
</ul>
</nav></div>
<div class="sidebar-secondary-item">
<div class="tocsection editthispage">
<a href="https://gitlab.com/slepc/slepc/-/edit/release/doc/source/documentation/manual/lme.md">
<i class="fa-solid fa-pencil"></i>
Edit on GitLab
</a>
</div>
</div>
<div class="sidebar-secondary-item">
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="../../_sources/documentation/manual/lme.md.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div></div>
</div></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<p class="copyright">
© Copyright 2002-2025, Universitat Politecnica de Valencia, Spain.
<br/>
</p>
</div>
<div class="footer-item">
<p class="sphinx-version">
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 7.3.7.
<br/>
</p>
</div>
</div>
<div class="footer-items__end">
<div class="footer-item">
<p class="theme-version">
<!-- # L10n: Setting the PST URL as an argument as this does not need to be localized -->
Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.16.1.
</p></div>
</div>
</div>
</footer>
</body>
</html>
|