File: nep.html

package info (click to toggle)
slepc 3.24.1%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 122,028 kB
  • sloc: ansic: 104,353; javascript: 12,732; python: 5,958; f90: 3,312; cpp: 1,528; makefile: 761; xml: 679; sh: 347
file content (1022 lines) | stat: -rw-r--r-- 97,489 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022

<!DOCTYPE html>


<html lang="en" data-content_root="../../" >

  <head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />

    <title>NEP: Nonlinear Eigenvalue Problems &#8212; SLEPc 3.24.1 documentation</title>
  
  
  
  <script data-cfasync="false">
    document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
    document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
  </script>
  <!--
    this give us a css class that will be invisible only if js is disabled
  -->
  <noscript>
    <style>
      .pst-js-only { display: none !important; }

    </style>
  </noscript>
  
  <!-- Loaded before other Sphinx assets -->
  <link href="../../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />

    <link rel="stylesheet" type="text/css" href="../../_static/pygments.css?v=8f2a1f02" />
    <link rel="stylesheet" type="text/css" href="../../_static/copybutton.css?v=76b2166b" />
    <link rel="stylesheet" type="text/css" href="../../_static/togglebutton.css?v=13237357" />
    <link rel="stylesheet" type="text/css" href="../../_static/sphinx-design.min.css?v=95c83b7e" />
    <link rel="stylesheet" type="text/css" href="../../_static/css/slepc.css?v=d285b177" />
  
  <!-- So that users can add custom icons -->
  <script src="../../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
  <!-- Pre-loaded scripts that we'll load fully later -->
  <link rel="preload" as="script" href="../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />

    <script src="../../_static/documentation_options.js?v=d1c46438"></script>
    <script src="../../_static/doctools.js?v=9a2dae69"></script>
    <script src="../../_static/sphinx_highlight.js?v=dc90522c"></script>
    <script src="../../_static/clipboard.min.js?v=a7894cd8"></script>
    <script src="../../_static/copybutton.js?v=a56c686a"></script>
    <script>let toggleHintShow = 'Click to show';</script>
    <script>let toggleHintHide = 'Click to hide';</script>
    <script>let toggleOpenOnPrint = 'true';</script>
    <script src="../../_static/togglebutton.js?v=4a39c7ea"></script>
    <script src="../../_static/design-tabs.js?v=f930bc37"></script>
    <script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
    <script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
    <script>window.MathJax = {"options": {"processHtmlClass": "tex2jax_process|mathjax_process|math|output_area"}}</script>
    <script defer="defer" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
    <script>DOCUMENTATION_OPTIONS.pagename = 'documentation/manual/nep';</script>
    <link rel="icon" href="../../_static/favicon-slepc.ico"/>
    <link rel="index" title="Index" href="../../genindex.html" />
    <link rel="search" title="Search" href="../../search.html" />
    <link rel="next" title="MFN: Matrix Function" href="mfn.html" />
    <link rel="prev" title="PEP: Polynomial Eigenvalue Problems" href="pep.html" />
  <meta name="viewport" content="width=device-width, initial-scale=1"/>
  <meta name="docsearch:language" content="en"/>
  <meta name="docsearch:version" content="3.24" />
  </head>
  
  
  <body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">

  
  
  <div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
  
  <div id="pst-scroll-pixel-helper"></div>
  
  <button type="button" class="btn rounded-pill" id="pst-back-to-top">
    <i class="fa-solid fa-arrow-up"></i>Back to top</button>

  
  <dialog id="pst-search-dialog">
    
<form class="bd-search d-flex align-items-center"
      action="../../search.html"
      method="get">
  <i class="fa-solid fa-magnifying-glass"></i>
  <input type="search"
         class="form-control"
         name="q"
         placeholder="Search the docs ..."
         aria-label="Search the docs ..."
         autocomplete="off"
         autocorrect="off"
         autocapitalize="off"
         spellcheck="false"/>
  <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
  </dialog>

  <div class="pst-async-banner-revealer d-none">
  <aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>

  
    <header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
  <button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
    <span class="fa-solid fa-bars"></span>
  </button>
  
  
  <div class="col-lg-3 navbar-header-items__start">
    
      <div class="navbar-item">

  
    
  

<a class="navbar-brand logo" href="../../index.html">
  
  
  
  
  
    
    
      
    
    
    <img src="../../_static/logo-slepc.gif" class="logo__image only-light" alt="SLEPc Home"/>
    <img src="../../_static/logo-slepc.gif" class="logo__image only-dark pst-js-only" alt="SLEPc Home"/>
  
  
</a></div>
    
  </div>
  
  <div class="col-lg-9 navbar-header-items">
    
    <div class="me-auto navbar-header-items__center">
      
        <div class="navbar-item">
<nav>
  <ul class="bd-navbar-elements navbar-nav">
    
<li class="nav-item ">
  <a class="nav-link nav-internal" href="../../about/index.html">
    About
  </a>
</li>


<li class="nav-item ">
  <a class="nav-link nav-internal" href="../../installation/index.html">
    Installation
  </a>
</li>


<li class="nav-item current active">
  <a class="nav-link nav-internal" href="../index.html">
    Documentation
  </a>
</li>


<li class="nav-item ">
  <a class="nav-link nav-internal" href="../../manualpages/index.html">
    C/Fortran API
  </a>
</li>


<li class="nav-item ">
  <a class="nav-link nav-internal" href="../../slepc4py/index.html">
    slepc4py API
  </a>
</li>


<li class="nav-item ">
  <a class="nav-link nav-internal" href="../../material/index.html">
    Material
  </a>
</li>


<li class="nav-item ">
  <a class="nav-link nav-internal" href="../../contact/index.html">
    Contact
  </a>
</li>

  </ul>
</nav></div>
      
    </div>
    
    
    <div class="navbar-header-items__end">
      
        <div class="navbar-item navbar-persistent--container">
          

<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
 <i class="fa-solid fa-magnifying-glass"></i>
 <span class="search-button__default-text">Search</span>
 <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
        </div>
      
      
        <div class="navbar-item">

<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode"  data-bs-placement="bottom" data-bs-toggle="tooltip">
  <i class="theme-switch fa-solid fa-sun                fa-lg" data-mode="light" title="Light"></i>
  <i class="theme-switch fa-solid fa-moon               fa-lg" data-mode="dark"  title="Dark"></i>
  <i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto"  title="System Settings"></i>
</button></div>
      
        <div class="navbar-item"><ul class="navbar-icon-links"
    aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          
          <a href="https://gitlab.com/slepc/slepc" title="GitLab" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-gitlab fa-lg" aria-hidden="true"></i>
            <span class="sr-only">GitLab</span></a>
        </li>
        <li class="nav-item">
          
          
          
          
          
          
          
          
          <a href="https://www.upv.es" title="UPV" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><img src="https://www.upv.es/favicon.ico" class="icon-link-image" alt="UPV"/></a>
        </li>
        <li class="nav-item">
          
          
          
          
          
          
          
          
          <a href="https://slepc.upv.es/release/_static/rss/slepc-news.xml" title="Feed" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-solid fa-square-rss fa-lg" aria-hidden="true"></i>
            <span class="sr-only">Feed</span></a>
        </li>
</ul></div>
      
    </div>
    
  </div>
  
  
    <div class="navbar-persistent--mobile">

<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
 <i class="fa-solid fa-magnifying-glass"></i>
 <span class="search-button__default-text">Search</span>
 <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
    </div>
  

  
    <button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
      <span class="fa-solid fa-outdent"></span>
    </button>
  
</div>

    </header>
  

  <div class="bd-container">
    <div class="bd-container__inner bd-page-width">
      
      
      
      <dialog id="pst-primary-sidebar-modal"></dialog>
      <div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
        

  
  <div class="sidebar-header-items sidebar-primary__section">
    
    
      <div class="sidebar-header-items__center">
        
          
          
            <div class="navbar-item">
<nav>
  <ul class="bd-navbar-elements navbar-nav">
    
<li class="nav-item ">
  <a class="nav-link nav-internal" href="../../about/index.html">
    About
  </a>
</li>


<li class="nav-item ">
  <a class="nav-link nav-internal" href="../../installation/index.html">
    Installation
  </a>
</li>


<li class="nav-item current active">
  <a class="nav-link nav-internal" href="../index.html">
    Documentation
  </a>
</li>


<li class="nav-item ">
  <a class="nav-link nav-internal" href="../../manualpages/index.html">
    C/Fortran API
  </a>
</li>


<li class="nav-item ">
  <a class="nav-link nav-internal" href="../../slepc4py/index.html">
    slepc4py API
  </a>
</li>


<li class="nav-item ">
  <a class="nav-link nav-internal" href="../../material/index.html">
    Material
  </a>
</li>


<li class="nav-item ">
  <a class="nav-link nav-internal" href="../../contact/index.html">
    Contact
  </a>
</li>

  </ul>
</nav></div>
          
        
      </div>
    
    
    
      <div class="sidebar-header-items__end">
        
          <div class="navbar-item">

<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode"  data-bs-placement="bottom" data-bs-toggle="tooltip">
  <i class="theme-switch fa-solid fa-sun                fa-lg" data-mode="light" title="Light"></i>
  <i class="theme-switch fa-solid fa-moon               fa-lg" data-mode="dark"  title="Dark"></i>
  <i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto"  title="System Settings"></i>
</button></div>
        
          <div class="navbar-item"><ul class="navbar-icon-links"
    aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          
          <a href="https://gitlab.com/slepc/slepc" title="GitLab" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-gitlab fa-lg" aria-hidden="true"></i>
            <span class="sr-only">GitLab</span></a>
        </li>
        <li class="nav-item">
          
          
          
          
          
          
          
          
          <a href="https://www.upv.es" title="UPV" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><img src="https://www.upv.es/favicon.ico" class="icon-link-image" alt="UPV"/></a>
        </li>
        <li class="nav-item">
          
          
          
          
          
          
          
          
          <a href="https://slepc.upv.es/release/_static/rss/slepc-news.xml" title="Feed" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-solid fa-square-rss fa-lg" aria-hidden="true"></i>
            <span class="sr-only">Feed</span></a>
        </li>
</ul></div>
        
      </div>
    
  </div>
  
    <div class="sidebar-primary-items__start sidebar-primary__section">
        <div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
     aria-label="Section Navigation">
  <p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
  <div class="bd-toc-item navbar-nav"><ul class="current nav bd-sidenav">
<li class="toctree-l1 current active has-children"><a class="reference internal" href="index.html">SLEPc Users Manual</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="intro.html">Getting Started</a></li>
<li class="toctree-l2"><a class="reference internal" href="eps.html">EPS: Eigenvalue Problem Solver</a></li>
<li class="toctree-l2"><a class="reference internal" href="st.html">ST: Spectral Transformation</a></li>
<li class="toctree-l2"><a class="reference internal" href="svd.html">SVD: Singular Value Decomposition</a></li>
<li class="toctree-l2"><a class="reference internal" href="pep.html">PEP: Polynomial Eigenvalue Problems</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">NEP: Nonlinear Eigenvalue Problems</a></li>
<li class="toctree-l2"><a class="reference internal" href="mfn.html">MFN: Matrix Function</a></li>
<li class="toctree-l2"><a class="reference internal" href="lme.html">LME: Linear Matrix Equation</a></li>
<li class="toctree-l2"><a class="reference internal" href="aux.html">Auxiliary Classes</a></li>
<li class="toctree-l2"><a class="reference internal" href="extra.html">Additional Information</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../hands-on/index.html">Hands-on exercises</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on0.html">Exercise 0: Hello World</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on1.html">Exercise 1: Standard Symmetric Eigenvalue Problem</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on2.html">Exercise 2: Standard Non-Symmetric Eigenvalue Problem</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on3.html">Exercise 3: Generalized Eigenvalue Problem Stored in a File</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on4.html">Exercise 4: Singular Value Decomposition</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on5.html">Exercise 5: Problem without Explicit Matrix Storage</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on6.html">Exercise 6: Parallel Execution</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on7.html">Exercise 7: Use of Deflation Subspaces</a></li>
<li class="toctree-l2"><a class="reference internal" href="../hands-on/hands-on8.html">Exercise 8: Quadratic Eigenvalue Problem</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="../presentations.html">Presentations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../license.html">License</a></li>
</ul>
</div>
</nav></div>
    </div>
  
  
  <div class="sidebar-primary-items__end sidebar-primary__section">
      <div class="sidebar-primary-item">
<div id="ethical-ad-placement"
      class="flat"
      data-ea-publisher="readthedocs"
      data-ea-type="readthedocs-sidebar"
      data-ea-manual="true">
</div></div>
  </div>


      </div>
      
      <main id="main-content" class="bd-main" role="main">
        
        
          <div class="bd-content">
            <div class="bd-article-container">
              
              <div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
  
    <div class="header-article-items__start">
      
        <div class="header-article-item">

<nav aria-label="Breadcrumb" class="d-print-none">
  <ul class="bd-breadcrumbs">
    
    <li class="breadcrumb-item breadcrumb-home">
      <a href="../../index.html" class="nav-link" aria-label="Home">
        <i class="fa-solid fa-home"></i>
      </a>
    </li>
    
    <li class="breadcrumb-item"><a href="../index.html" class="nav-link">Documentation</a></li>
    
    
    <li class="breadcrumb-item"><a href="index.html" class="nav-link">SLEPc Users Manual</a></li>
    
    <li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">NEP: Nonlinear Eigenvalue Problems</span></li>
  </ul>
</nav>
</div>
      
    </div>
  
  
</div>
</div>
              
              
              
                
<div id="searchbox"></div>
                <article class="bd-article">
                  
  <section class="tex2jax_ignore mathjax_ignore" id="nep-nonlinear-eigenvalue-problems">
<span id="ch-nep"></span><h1>NEP: Nonlinear Eigenvalue Problems<a class="headerlink" href="#nep-nonlinear-eigenvalue-problems" title="Link to this heading">#</a></h1>
<p>The Nonlinear Eigenvalue Problem (<code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code>) solver object covers the general case where the eigenproblem is nonlinear with respect to the eigenvalue, but it cannot be expressed in terms of a polynomial. We will write the problem as <span class="math notranslate nohighlight">\(T(\lambda)x=0\)</span>, where <span class="math notranslate nohighlight">\(T\)</span> is a matrix-valued function of the eigenvalue <span class="math notranslate nohighlight">\(\lambda\)</span>. Note that <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code> does not cover the even more general case of having a nonlinear dependence on the eigenvector <span class="math notranslate nohighlight">\(x\)</span>.</p>
<p>In terms of the user interface, <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code> is quite similar to previously discussed solvers. The main difference is how to represent the function <span class="math notranslate nohighlight">\(T\)</span>. We will show different alternatives for this.</p>
<p>The <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code> module of SLEPc has been explained with more detail in <span id="id1">[<a class="reference internal" href="../../manualpages/NEP/NEPNARNOLDI.html#id45" title="C. Campos and J. E. Roman. NEP: a module for the parallel solution of nonlinear eigenvalue problems in SLEPc. ACM Trans. Math. Software, 47(3):23:1–23:29, 2021. doi:10.1145/3447544.">Campos and Roman, 2021</a>]</span>, including an algorithmic description of the implemented solvers.</p>
<section id="sec-nep">
<h2>General Nonlinear Eigenproblems<a class="headerlink" href="#sec-nep" title="Link to this heading">#</a></h2>
<p>As in previous chapters, we first set up the notation and briefly review basic properties of the eigenvalue problems to be addressed. In this case, we focus on general nonlinear eigenproblems, that is, those that cannot be expressed in a simpler form such as a polynomial eigenproblem. These problems arise in many applications, such as the discretization of delay differential equations. Some of the methods designed to solve such problems are based on Newton-type iterations, so in some ways <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code> has similarities to PETSc’s nonlinear solvers <a class="reference external" href="https://petsc.org/release/manualpages/SNES/SNES/" title="(in PETSc v3.24)"><span class="xref std std-doc">SNES</span></a>. For background material on the nonlinear eigenproblem, the reader is referred to <span id="id2">[<a class="reference internal" href="#id43" title="S. Güttel and F. Tisseur. The nonlinear eigenvalue problem. Acta Numerica, 26:1–94, 2017. doi:10.1017/S0962492917000034.">Güttel and Tisseur, 2017</a>, <a class="reference internal" href="#id33" title="V. Mehrmann and H. Voss. Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. GAMM Mitt., 27(2):121–152, 2004. doi:10.1002/gamm.201490007.">Mehrmann and Voss, 2004</a>]</span>.</p>
<p>We consider nonlinear eigenvalue problems of the form</p>
<div class="math notranslate nohighlight" id="equation-eq-nep">
<span class="eqno">(1)<a class="headerlink" href="#equation-eq-nep" title="Link to this equation">#</a></span>\[T(\lambda)x=0,\qquad x\neq 0,\]</div>
<p>where <span class="math notranslate nohighlight">\(T:\Omega\rightarrow\mathbb{C}^{n\times n}\)</span> is a matrix-valued function that is analytic on an open set of the complex plane <span class="math notranslate nohighlight">\(\Omega\subseteq\mathbb{C}\)</span>. Assuming that the problem is regular, that is, <span class="math notranslate nohighlight">\(\det T(\lambda)\)</span> does not vanish identically, any pair <span class="math notranslate nohighlight">\((\lambda,x)\)</span> satisfying equation <a class="reference internal" href="#equation-eq-nep">(1)</a> is an eigenpair, where <span class="math notranslate nohighlight">\(\lambda\in\Omega\)</span> is the eigenvalue and <span class="math notranslate nohighlight">\(x\in\mathbb{C}^n\)</span> is the eigenvector. Linear and polynomial eigenproblems are particular cases of equation <a class="reference internal" href="#equation-eq-nep">(1)</a>.</p>
<p>An example application is the rational eigenvalue problem</p>
<div class="math notranslate nohighlight" id="equation-eq-rep">
<span class="eqno">(2)<a class="headerlink" href="#equation-eq-rep" title="Link to this equation">#</a></span>\[-Kx+\lambda Mx+\sum_{j=1}^k\frac{\lambda}{\sigma_j-\lambda}C_jx=0,\]</div>
<p>arising in the study of free vibration of plates with elastically attached masses. Here, all matrices are symmetric, <span class="math notranslate nohighlight">\(K\)</span> and <span class="math notranslate nohighlight">\(M\)</span> are positive-definite and <span class="math notranslate nohighlight">\(C_j\)</span> have small rank. Another example comes from the discretization of parabolic partial differential equations with time delay <span class="math notranslate nohighlight">\(\tau\)</span>, resulting in</p>
<div class="math notranslate nohighlight" id="equation-eq-delay">
<span class="eqno">(3)<a class="headerlink" href="#equation-eq-delay" title="Link to this equation">#</a></span>\[(-\lambda I + A + e^{-\tau\lambda}B)x = 0.\]</div>
<p><strong>Split Form</strong>:
Equation <a class="reference internal" href="#equation-eq-nep">(1)</a> can always be rewritten as</p>
<div class="math notranslate nohighlight" id="equation-eq-split">
<span class="eqno">(4)<a class="headerlink" href="#equation-eq-split" title="Link to this equation">#</a></span>\[\big(A_0f_0(\lambda)+A_1f_1(\lambda)+\cdots+A_{\ell-1}f_{\ell-1}(\lambda)\big)x=
\left(\sum_{i=0}^{\ell-1}A_if_i(\lambda)\right)x = 0,\]</div>
<p>where <span class="math notranslate nohighlight">\(A_i\)</span> are <span class="math notranslate nohighlight">\(n\times n\)</span> matrices and <span class="math notranslate nohighlight">\(f_i:\Omega\rightarrow\mathbb{C}\)</span> are analytic functions. We will call equation <a class="reference internal" href="#equation-eq-split">(4)</a> the split form of the nonlinear eigenvalue problem. Often, the formulation arising from applications already has this form, as illustrated by the examples above. Also, a polynomial eigenvalue problem fits this form, where in this case the <span class="math notranslate nohighlight">\(f_i\)</span> functions are the polynomial bases of degree <span class="math notranslate nohighlight">\(i\)</span>, either monomial or non-monomial.</p>
</section>
<section id="defining-the-problem">
<h2>Defining the Problem<a class="headerlink" href="#defining-the-problem" title="Link to this heading">#</a></h2>
<p>The user interface of the <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code> package is quite similar to <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/EPS/EPS.html">EPS</a></span></code> and <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/PEP/PEP.html">PEP</a></span></code>. As mentioned above, the main difference is the way in which the eigenproblem is defined. In equation <a class="reference internal" href="#sec-nepjac"><span class="std std-ref">Using Callback Functions</span></a>, we focus on the case where the problem is defined as in PETSc’s nonlinear solvers <a class="reference external" href="https://petsc.org/release/manualpages/SNES/SNES/" title="(in PETSc v3.24)"><span class="xref std std-doc">SNES</span></a>, that is, providing user-defined callback functions to compute the nonlinear function matrix, <span class="math notranslate nohighlight">\(T(\lambda)\)</span>, and its derivative, <span class="math notranslate nohighlight">\(T'(\lambda)\)</span>. We defer the discussion of using the split form of the nonlinear eigenproblem to section <a class="reference internal" href="#sec-nepsplit"><span class="std std-ref">Expressing the NEP in Split Form</span></a>.</p>
<section id="sec-nepjac">
<h3>Using Callback Functions<a class="headerlink" href="#sec-nepjac" title="Link to this heading">#</a></h3>
<p>A sample code for solving a nonlinear eigenproblem with <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code> is shown in listing <a class="reference internal" href="#fig-ex-nep"><span class="std std-ref">Example code for basic solution with NEP using callbacks</span></a>. The usual steps are performed, starting with the creation of the solver context with <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPCreate.html">NEPCreate</a>()</span></code>. Then the problem matrices are defined, see discussion below. The call to <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPSetFromOptions.html">NEPSetFromOptions</a>()</span></code> captures relevant options specified in the command line. The actual solver is invoked with <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPSolve.html">NEPSolve</a>()</span></code>. Then, the solution is retrieved with <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPGetConverged.html">NEPGetConverged</a>()</span></code> and <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPGetEigenpair.html">NEPGetEigenpair</a>()</span></code>. Finally, <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPDestroy.html">NEPDestroy</a>()</span></code> destroys the object.</p>
<div class="literal-block-wrapper docutils container" id="fig-ex-nep">
<div class="code-block-caption"><span class="caption-text">Example code for basic solution with <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code> using callbacks</span><a class="headerlink" href="#fig-ex-nep" title="Link to this code">#</a></div>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/NEP/NEP.html">NEP</a></span><span class="w">         </span><span class="n">nep</span><span class="p">;</span><span class="w">       </span><span class="cm">/*  eigensolver context */</span>
<span class="n"><a href="https://petsc.org/release/manualpages/Mat/Mat/">Mat</a></span><span class="w">         </span><span class="n">F</span><span class="p">,</span><span class="w"> </span><span class="n">J</span><span class="p">;</span><span class="w">      </span><span class="cm">/*  Function and Jacobian matrices  */</span>
<span class="n"><a href="https://petsc.org/release/manualpages/Vec/Vec/">Vec</a></span><span class="w">         </span><span class="n">xr</span><span class="p">,</span><span class="w"> </span><span class="n">xi</span><span class="p">;</span><span class="w">    </span><span class="cm">/*  eigenvector, x       */</span>
<span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscScalar/">PetscScalar</a></span><span class="w"> </span><span class="n">kr</span><span class="p">,</span><span class="w"> </span><span class="n">ki</span><span class="p">;</span><span class="w">    </span><span class="cm">/*  eigenvalue, k        */</span>
<span class="n">ApplCtx</span><span class="w">     </span><span class="n">ctx</span><span class="p">;</span><span class="w">       </span><span class="cm">/*  user-defined context */</span>
<span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscInt/">PetscInt</a></span><span class="w">    </span><span class="n">j</span><span class="p">,</span><span class="w"> </span><span class="n">nconv</span><span class="p">;</span>
<span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscReal/">PetscReal</a></span><span class="w">   </span><span class="n">error</span><span class="p">;</span>

<span class="n"><a href="../../manualpages/NEP/NEPCreate.html">NEPCreate</a></span><span class="p">(</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PETSC_COMM_WORLD/">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">nep</span><span class="p">);</span>
<span class="cm">/* create and preallocate F and J matrices */</span>
<span class="n"><a href="../../manualpages/NEP/NEPSetFunction.html">NEPSetFunction</a></span><span class="p">(</span><span class="n">nep</span><span class="p">,</span><span class="w"> </span><span class="n">F</span><span class="p">,</span><span class="w"> </span><span class="n">F</span><span class="p">,</span><span class="w"> </span><span class="n">FormFunction</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">ctx</span><span class="p">);</span>
<span class="n"><a href="../../manualpages/NEP/NEPSetJacobian.html">NEPSetJacobian</a></span><span class="p">(</span><span class="n">nep</span><span class="p">,</span><span class="w"> </span><span class="n">J</span><span class="p">,</span><span class="w"> </span><span class="n">FormJacobian</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">ctx</span><span class="p">);</span>
<span class="n"><a href="../../manualpages/NEP/NEPSetFromOptions.html">NEPSetFromOptions</a></span><span class="p">(</span><span class="n">nep</span><span class="p">);</span>
<span class="n"><a href="../../manualpages/NEP/NEPSolve.html">NEPSolve</a></span><span class="p">(</span><span class="n">nep</span><span class="p">);</span>
<span class="n"><a href="../../manualpages/NEP/NEPGetConverged.html">NEPGetConverged</a></span><span class="p">(</span><span class="n">nep</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">nconv</span><span class="p">);</span>
<span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">j</span><span class="o">=</span><span class="mi">0</span><span class="p">;</span><span class="n">j</span><span class="o">&lt;</span><span class="n">nconv</span><span class="p">;</span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<span class="w">  </span><span class="n"><a href="../../manualpages/NEP/NEPGetEigenpair.html">NEPGetEigenpair</a></span><span class="p">(</span><span class="n">nep</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">kr</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">ki</span><span class="p">,</span><span class="w"> </span><span class="n">xr</span><span class="p">,</span><span class="w"> </span><span class="n">xi</span><span class="p">);</span>
<span class="w">  </span><span class="n"><a href="../../manualpages/NEP/NEPComputeError.html">NEPComputeError</a></span><span class="p">(</span><span class="n">nep</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../../manualpages/NEP/NEPErrorType.html">NEP_ERROR_RELATIVE</a></span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">error</span><span class="p">);</span>
<span class="p">}</span>
<span class="n"><a href="../../manualpages/NEP/NEPDestroy.html">NEPDestroy</a></span><span class="p">(</span><span class="o">&amp;</span><span class="n">nep</span><span class="p">);</span>
</pre></div>
</div>
</div>
<p>In <a class="reference external" href="https://petsc.org/release/manualpages/SNES/SNES/" title="(in PETSc v3.24)"><span class="xref std std-doc">SNES</span></a>, the usual way to define a set of nonlinear equations <span class="math notranslate nohighlight">\(F(x)=0\)</span> is to provide two user-defined callback functions, one to compute the residual vector, <span class="math notranslate nohighlight">\(r=F(x)\)</span> for a given <span class="math notranslate nohighlight">\(x\)</span>, and another one to evaluate the Jacobian matrix, <span class="math notranslate nohighlight">\(J(x)=F'(x)\)</span>. In the case of <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code> there are some differences, since the function <span class="math notranslate nohighlight">\(T\)</span> depends on the parameter <span class="math notranslate nohighlight">\(\lambda\)</span> only. For a given value of <span class="math notranslate nohighlight">\(\lambda\)</span> and its associated vector <span class="math notranslate nohighlight">\(x\)</span>, the residual vector is defined as</p>
<div class="math notranslate nohighlight" id="equation-eq-nlres">
<span class="eqno">(5)<a class="headerlink" href="#equation-eq-nlres" title="Link to this equation">#</a></span>\[r=T(\lambda)x.\]</div>
<p>We require the user to provide a callback function to evaluate <span class="math notranslate nohighlight">\(T(\lambda)\)</span>, rather than computing the residual <span class="math notranslate nohighlight">\(r\)</span>. Once <span class="math notranslate nohighlight">\(T(\lambda)\)</span> has been built, <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code> solvers can compute its action on any vector <span class="math notranslate nohighlight">\(x\)</span>. Regarding the derivative, in <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code> we use <span class="math notranslate nohighlight">\(T'(\lambda)\)</span>, which will be referred to as the Jacobian matrix by analogy to <code class="docutils notranslate"><span class="pre"><a href="https://petsc.org/release/manualpages/SNES/SNES/">SNES</a></span></code>. This matrix must be computed with another callback function.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>The derivative <span class="math notranslate nohighlight">\(T'(\lambda)\)</span> is optional in some cases, depending on the selected solver.</p>
</div>
<p>Hence, both callback functions must compute a matrix. The nonzero pattern of these matrices does not usually change, so they must be created at the beginning of the solution process. Then, these <a class="reference external" href="https://petsc.org/release/manualpages/Mat/Mat/" title="(in PETSc v3.24)"><span class="xref std std-doc">Mat</span></a> objects are passed to the solver, together with the pointers to the callback functions, with:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/NEP/NEPSetFunction.html">NEPSetFunction</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/NEP/NEP.html">NEP</a></span><span class="w"> </span><span class="n">nep</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Mat/Mat/">Mat</a></span><span class="w"> </span><span class="n">F</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Mat/Mat/">Mat</a></span><span class="w"> </span><span class="n">P</span><span class="p">,</span><span class="n"><a href="../../manualpages/NEP/NEPFunctionFn.html">NEPFunctionFn</a></span><span class="w"> </span><span class="o">*</span><span class="n">fun</span><span class="p">,</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">ctx</span><span class="p">);</span>
<span class="n"><a href="../../manualpages/NEP/NEPSetJacobian.html">NEPSetJacobian</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/NEP/NEP.html">NEP</a></span><span class="w"> </span><span class="n">nep</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Mat/Mat/">Mat</a></span><span class="w"> </span><span class="n">J</span><span class="p">,</span><span class="n"><a href="../../manualpages/NEP/NEPJacobianFn.html">NEPJacobianFn</a></span><span class="w"> </span><span class="o">*</span><span class="n">jac</span><span class="p">,</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">ctx</span><span class="p">)</span>
</pre></div>
</div>
<p>The argument <code class="docutils notranslate"><span class="pre">ctx</span></code> is an optional user-defined context intended to contain application-specific parameters required to build <span class="math notranslate nohighlight">\(T(\lambda)\)</span> or <span class="math notranslate nohighlight">\(T'(\lambda)\)</span>, and it is received as the last argument in the callback functions. The callback routines also get an argument containing the value of <span class="math notranslate nohighlight">\(\lambda\)</span> at which <span class="math notranslate nohighlight">\(T\)</span> or <span class="math notranslate nohighlight">\(T'\)</span> must be evaluated. Note that the <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPSetFunction.html">NEPSetFunction</a>()</span></code> callback takes two <a class="reference external" href="https://petsc.org/release/manualpages/Mat/Mat/" title="(in PETSc v3.24)"><span class="xref std std-doc">Mat</span></a> arguments instead of one. The rationale for this is that some <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code> solvers require to perform linear solves with <span class="math notranslate nohighlight">\(T(\lambda)\)</span> within the iteration (in <a class="reference external" href="https://petsc.org/release/manualpages/SNES/SNES/" title="(in PETSc v3.24)"><span class="xref std std-doc">SNES</span></a> this is done with the Jacobian), so <span class="math notranslate nohighlight">\(T(\lambda)\)</span> will be passed as the coefficient matrix to a <a class="reference external" href="https://petsc.org/release/manualpages/KSP/KSP/" title="(in PETSc v3.24)"><span class="xref std std-doc">KSP</span></a> object. The second <a class="reference external" href="https://petsc.org/release/manualpages/Mat/Mat/" title="(in PETSc v3.24)"><span class="xref std std-doc">Mat</span></a> argument <code class="docutils notranslate"><span class="pre">P</span></code> is the matrix from which the preconditioner is constructed (which is usually the same as <code class="docutils notranslate"><span class="pre">F</span></code>).</p>
<p>There is the possibility of solving the problem in a matrix-free fashion, that is, just implementing subroutines that compute the action of <span class="math notranslate nohighlight">\(T(\lambda)\)</span> or <span class="math notranslate nohighlight">\(T'(\lambda)\)</span> on a vector, instead of having to explicitly compute all nonzero entries of these two matrices. The example program <a class="reference external" href="https://slepc.upv.es/release/src/nep/tutorials/ex21.c.html" target="_blank">ex21.c</a> illustrates this, using the concept of <em>shell</em> matrices (see section <a class="reference internal" href="extra.html#sec-supported"><span class="std std-ref">Supported Matrix Types</span></a> for details).</p>
<section id="parameters-for-problem-definition">
<h4>Parameters for Problem Definition<a class="headerlink" href="#parameters-for-problem-definition" title="Link to this heading">#</a></h4>
<p>Once <span class="math notranslate nohighlight">\(T\)</span> and <span class="math notranslate nohighlight">\(T'\)</span> have been set up, the definition of the problem is completed with the number and location of the eigenvalues to compute, in a similar way as eigensolvers discussed in previous chapters.</p>
<p>The number of requested eigenvalues (and eigenvectors), <code class="docutils notranslate"><span class="pre">nev</span></code>, is established with:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/NEP/NEPSetDimensions.html">NEPSetDimensions</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/NEP/NEP.html">NEP</a></span><span class="w"> </span><span class="n">nep</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscInt/">PetscInt</a></span><span class="w"> </span><span class="n">nev</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscInt/">PetscInt</a></span><span class="w"> </span><span class="n">ncv</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscInt/">PetscInt</a></span><span class="w"> </span><span class="n">mpd</span><span class="p">);</span>
</pre></div>
</div>
<p>By default, <code class="docutils notranslate"><span class="pre">nev</span></code>=1. The other two arguments control the dimension of the subspaces used internally (the number of column vectors, <code class="docutils notranslate"><span class="pre">ncv</span></code>, and the maximum projected dimension, <code class="docutils notranslate"><span class="pre">mpd</span></code>), although they are relevant only in eigensolvers based on subspace projection (basic algorithms ignore them). There are command-line keys for these parameters: <code class="docutils notranslate"><span class="pre">-nep_nev</span></code>, <code class="docutils notranslate"><span class="pre">-nep_ncv</span></code> and <code class="docutils notranslate"><span class="pre">-nep_mpd</span></code>.</p>
<div class="pst-scrollable-table-container"><table class="table" id="tab-portionn">
<caption><span class="caption-text">Available possibilities for selection of the eigenvalues of interest in <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code></span><a class="headerlink" href="#tab-portionn" title="Link to this table">#</a></caption>
<thead>
<tr class="row-odd"><th class="head"><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPWhich.html">NEPWhich</a></span></code></p></th>
<th class="head"><p>Command line key</p></th>
<th class="head"><p>Sorting criterion</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPWhich.html">NEP_LARGEST_MAGNITUDE</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">-nep_largest_magnitude</span></code></p></td>
<td><p>Largest <span class="math notranslate nohighlight">\(|\lambda|\)</span></p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPWhich.html">NEP_SMALLEST_MAGNITUDE</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">-nep_smallest_magnitude</span></code></p></td>
<td><p>Smallest <span class="math notranslate nohighlight">\(|\lambda|\)</span></p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPWhich.html">NEP_LARGEST_REAL</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">-nep_largest_real</span></code></p></td>
<td><p>Largest <span class="math notranslate nohighlight">\(\mathrm{Re}(\lambda)\)</span></p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPWhich.html">NEP_SMALLEST_REAL</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">-nep_smallest_real</span></code></p></td>
<td><p>Smallest <span class="math notranslate nohighlight">\(\mathrm{Re}(\lambda)\)</span></p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPWhich.html">NEP_LARGEST_IMAGINARY</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">-nep_largest_imaginary</span></code></p></td>
<td><p>Largest <span class="math notranslate nohighlight">\(\mathrm{Im}(\lambda)\)</span></p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPWhich.html">NEP_SMALLEST_IMAGINARY</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">-nep_smallest_imaginary</span></code></p></td>
<td><p>Smallest <span class="math notranslate nohighlight">\(\mathrm{Im}(\lambda)\)</span></p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPWhich.html">NEP_TARGET_MAGNITUDE</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">-nep_target_magnitude</span></code></p></td>
<td><p>Smallest <span class="math notranslate nohighlight">\(|\lambda-\tau|\)</span></p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPWhich.html">NEP_TARGET_REAL</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">-nep_target_real</span></code></p></td>
<td><p>Smallest <span class="math notranslate nohighlight">\(|\mathrm{Re}(\lambda-\tau)|\)</span></p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPWhich.html">NEP_TARGET_IMAGINARY</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">-nep_target_imaginary</span></code></p></td>
<td><p>Smallest <span class="math notranslate nohighlight">\(|\mathrm{Im}(\lambda-\tau)|\)</span></p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPWhich.html">NEP_ALL</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">-nep_all</span></code></p></td>
<td><p>All <span class="math notranslate nohighlight">\(\lambda\in\Omega\)</span></p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPWhich.html">NEP_WHICH_USER</a></span></code></p></td>
<td><p><code class="docutils notranslate"> </code></p></td>
<td><p><em>user-defined</em></p></td>
</tr>
</tbody>
</table>
</div>
<p>For the selection of the portion of the spectrum of interest, there are several alternatives listed in table <a class="reference internal" href="#tab-portionn"><span class="std std-ref">Available possibilities for selection of the eigenvalues of interest in NEP</span></a>, to be selected with the function:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/NEP/NEPSetWhichEigenpairs.html">NEPSetWhichEigenpairs</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/NEP/NEP.html">NEP</a></span><span class="w"> </span><span class="n">nep</span><span class="p">,</span><span class="n"><a href="../../manualpages/NEP/NEPWhich.html">NEPWhich</a></span><span class="w"> </span><span class="n">which</span><span class="p">);</span>
</pre></div>
</div>
<p>The default is to compute the largest magnitude eigenvalues. For the sorting criteria relative to a target value, <span class="math notranslate nohighlight">\(\tau\)</span> must be specified with <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPSetTarget.html">NEPSetTarget</a>()</span></code> or in the command-line with <code class="docutils notranslate"><span class="pre">-nep_target</span></code>.</p>
<p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code> solvers can also work with a region of the complex plane (<code class="docutils notranslate"><span class="pre"><a href="../../manualpages/RG/RG.html">RG</a></span></code>), as discussed in section <a class="reference internal" href="eps.html#sec-region"><span class="std std-ref">Specifying a Region for Filtering</span></a> for linear problems. Some eigensolvers (NLEIGS) use the definition of the region to compute <code class="docutils notranslate"><span class="pre">nev</span></code> eigenvalues in its interior. If <em>all</em> eigenvalues inside the region are required, then a contour-integral method is required, see discussion in <span id="id3">[<a class="reference internal" href="../../manualpages/EPS/EPSCISSSetThreshold.html#id66" title="Y. Maeda, T. Sakurai, and J. E. Roman. Contour integral spectrum slicing method in SLEPc. Technical Report STR-11, Universitat Politècnica de València, 2016. URL: https://slepc.upv.es/documentation.">Maeda <em>et al.</em>, 2016</a>]</span>.</p>
</section>
<section id="left-eigenvectors">
<h4>Left Eigenvectors<a class="headerlink" href="#left-eigenvectors" title="Link to this heading">#</a></h4>
<p>As in the case of linear eigensolvers, some <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code> solvers have two-sided variants to compute also left eigenvectors. In the case of <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code>, left eigenvectors are defined as</p>
<div class="math notranslate nohighlight" id="equation-eq-nepleft">
<span class="eqno">(6)<a class="headerlink" href="#equation-eq-nepleft" title="Link to this equation">#</a></span>\[y^*T(\lambda)=0^*,\qquad y\neq 0.\]</div>
<p>Two-sided variants can be selected with:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/NEP/NEPSetTwoSided.html">NEPSetTwoSided</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/NEP/NEP.html">NEP</a></span><span class="w"> </span><span class="n">eps</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscBool/">PetscBool</a></span><span class="w"> </span><span class="n">twosided</span><span class="p">);</span>
</pre></div>
</div>
</section>
</section>
<section id="sec-nepsplit">
<h3>Expressing the NEP in Split Form<a class="headerlink" href="#sec-nepsplit" title="Link to this heading">#</a></h3>
<p>Instead of implementing callback functions for <span class="math notranslate nohighlight">\(T(\lambda)\)</span> and <span class="math notranslate nohighlight">\(T'(\lambda)\)</span>, a usually simpler alternative is to use the split form of the nonlinear eigenproblem, equation <a class="reference internal" href="#equation-eq-split">(4)</a>. Note that in split form, we have <span class="math notranslate nohighlight">\(T'(\lambda)=\sum_{i=0}^{\ell-1}A_if'_i(\lambda)\)</span>, so the derivatives of <span class="math notranslate nohighlight">\(f_i(\lambda)\)</span> are also required. As described below, we will represent each of the analytic functions <span class="math notranslate nohighlight">\(f_i\)</span> by means of an auxiliary object <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FN.html">FN</a></span></code> that holds both the function and its derivative.</p>
<div class="literal-block-wrapper docutils container" id="fig-ex-split">
<div class="code-block-caption"><span class="caption-text">Example code for defining the <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code> eigenproblem in split form</span><a class="headerlink" href="#fig-ex-split" title="Link to this code">#</a></div>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/FN/FNCreate.html">FNCreate</a></span><span class="p">(</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PETSC_COMM_WORLD/">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="o">&amp;</span><span class="n">f1</span><span class="p">);</span><span class="w">  </span><span class="cm">/* f1 = -lambda */</span>
<span class="n"><a href="../../manualpages/FN/FNSetType.html">FNSetType</a></span><span class="p">(</span><span class="n">f1</span><span class="p">,</span><span class="n"><a href="../../manualpages/FN/FNRATIONAL.html">FNRATIONAL</a></span><span class="p">);</span>
<span class="n">coeffs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">-1.0</span><span class="p">;</span><span class="w"> </span><span class="n">coeffs</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0.0</span><span class="p">;</span>
<span class="n"><a href="../../manualpages/FN/FNRationalSetNumerator.html">FNRationalSetNumerator</a></span><span class="p">(</span><span class="n">f1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="n">coeffs</span><span class="p">);</span>

<span class="n"><a href="../../manualpages/FN/FNCreate.html">FNCreate</a></span><span class="p">(</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PETSC_COMM_WORLD/">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="o">&amp;</span><span class="n">f2</span><span class="p">);</span><span class="w">  </span><span class="cm">/* f2 = 1 */</span>
<span class="n"><a href="../../manualpages/FN/FNSetType.html">FNSetType</a></span><span class="p">(</span><span class="n">f2</span><span class="p">,</span><span class="n"><a href="../../manualpages/FN/FNRATIONAL.html">FNRATIONAL</a></span><span class="p">);</span>
<span class="n">coeffs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1.0</span><span class="p">;</span>
<span class="n"><a href="../../manualpages/FN/FNRationalSetNumerator.html">FNRationalSetNumerator</a></span><span class="p">(</span><span class="n">f2</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="n">coeffs</span><span class="p">);</span>

<span class="n"><a href="../../manualpages/FN/FNCreate.html">FNCreate</a></span><span class="p">(</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PETSC_COMM_WORLD/">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="o">&amp;</span><span class="n">f3</span><span class="p">);</span><span class="w">  </span><span class="cm">/* f3 = exp(-tau*lambda) */</span>
<span class="n"><a href="../../manualpages/FN/FNSetType.html">FNSetType</a></span><span class="p">(</span><span class="n">f3</span><span class="p">,</span><span class="n"><a href="../../manualpages/FN/FNEXP.html">FNEXP</a></span><span class="p">);</span>
<span class="n"><a href="../../manualpages/FN/FNSetScale.html">FNSetScale</a></span><span class="p">(</span><span class="n">f3</span><span class="p">,</span><span class="o">-</span><span class="n">tau</span><span class="p">,</span><span class="mf">1.0</span><span class="p">);</span>

<span class="n">mats</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">A</span><span class="p">;</span><span class="w">  </span><span class="n">funs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">f2</span><span class="p">;</span>
<span class="n">mats</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Id</span><span class="p">;</span><span class="w"> </span><span class="n">funs</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">f1</span><span class="p">;</span>
<span class="n">mats</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">B</span><span class="p">;</span><span class="w">  </span><span class="n">funs</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">f3</span><span class="p">;</span>
<span class="n"><a href="../../manualpages/NEP/NEPSetSplitOperator.html">NEPSetSplitOperator</a></span><span class="p">(</span><span class="n">nep</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="n">mats</span><span class="p">,</span><span class="n">funs</span><span class="p">,</span><span class="n">SUBSET_NONZERO_PATTERN</span><span class="p">);</span>
</pre></div>
</div>
</div>
<p>Hence, for the split form representation we must provide <span class="math notranslate nohighlight">\(\ell\)</span> matrices <span class="math notranslate nohighlight">\(A_i\)</span> and the corresponding functions <span class="math notranslate nohighlight">\(f_i(\lambda)\)</span>, by means of:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/NEP/NEPSetSplitOperator.html">NEPSetSplitOperator</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/NEP/NEP.html">NEP</a></span><span class="w"> </span><span class="n">nep</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscInt/">PetscInt</a></span><span class="w"> </span><span class="n">l</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Mat/Mat/">Mat</a></span><span class="w"> </span><span class="n">A</span><span class="p">[],</span><span class="n"><a href="../../manualpages/FN/FN.html">FN</a></span><span class="w"> </span><span class="n">f</span><span class="p">[],</span><span class="n"><a href="https://petsc.org/release/manualpages/Mat/MatStructure/">MatStructure</a></span><span class="w"> </span><span class="n">str</span><span class="p">);</span>
</pre></div>
</div>
<p>Here, the <a class="reference external" href="https://petsc.org/release/manualpages/Mat/MatStructure/" title="(in PETSc v3.24)"><span class="xref std std-doc">MatStructure</span></a> flag is used to indicate whether all matrices have the same (or subset) nonzero pattern with respect to the first one. Listing <a class="reference internal" href="#fig-ex-split"><span class="std std-ref">Example code for defining the NEP eigenproblem in split form</span></a> illustrates this usage with the problem of equation <a class="reference internal" href="#equation-eq-delay">(3)</a>, where <span class="math notranslate nohighlight">\(\ell=3\)</span> and the matrices are <span class="math notranslate nohighlight">\(I\)</span>, <span class="math notranslate nohighlight">\(A\)</span> and <span class="math notranslate nohighlight">\(B\)</span> (note that in the code we have changed the order for efficiency reasons, since the nonzero pattern of <span class="math notranslate nohighlight">\(I\)</span> and <span class="math notranslate nohighlight">\(B\)</span> is a subset of <span class="math notranslate nohighlight">\(A\)</span>’s in this case). Two of the associated functions are polynomials (<span class="math notranslate nohighlight">\(-\lambda\)</span> and <span class="math notranslate nohighlight">\(1\)</span>) and the other one is the exponential <span class="math notranslate nohighlight">\(e^{-\tau\lambda}\)</span>.</p>
<p>Details of how to define the <span class="math notranslate nohighlight">\(f_i\)</span> functions by using the <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/FN/FN.html">FN</a></span></code> class are provided in section <a class="reference internal" href="aux.html#sec-fn"><span class="std std-ref">FN: Mathematical Functions</span></a>.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>Using the split form is required in order to be able to use some eigensolvers, in particular, those that project the nonlinear eigenproblem onto a low dimensional subspace and then use a dense nonlinear solver for the projected problem.</p>
</div>
<div class="pst-scrollable-table-container"><table class="table" id="tab-ntypeq">
<caption><span class="caption-text">Problem types considered in <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code></span><a class="headerlink" href="#tab-ntypeq" title="Link to this table">#</a></caption>
<thead>
<tr class="row-odd"><th class="head"><p>Problem Type</p></th>
<th class="head"><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPProblemType.html">NEPProblemType</a></span></code></p></th>
<th class="head"><p>Command line key</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>General</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPProblemType.html">NEP_GENERAL</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">-nep_general</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Rational</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPProblemType.html">NEP_RATIONAL</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">-nep_rational</span></code></p></td>
</tr>
</tbody>
</table>
</div>
<p>When defining the problem in split form, it may also be useful to specify a problem type. For example, if the user knows that all <span class="math notranslate nohighlight">\(f_i\)</span> functions are rational, as in equation <a class="reference internal" href="#equation-eq-rep">(2)</a>, then setting the problem type to <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPProblemType.html">NEP_RATIONAL</a></span></code> gives a hint to the solver that may simplify the solution process. The problem types currently supported for <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code> are listed in table <a class="reference internal" href="#tab-ntypeq"><span class="std std-ref">Problem types considered in NEP</span></a>. When in doubt, use the default problem type (<code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPProblemType.html">NEP_GENERAL</a></span></code>).</p>
<p>The problem type can be specified at run time with the corresponding command line key or, more usually, within the program with:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/NEP/NEPSetProblemType.html">NEPSetProblemType</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/NEP/NEP.html">NEP</a></span><span class="w"> </span><span class="n">nep</span><span class="p">,</span><span class="n"><a href="../../manualpages/NEP/NEPProblemType.html">NEPProblemType</a></span><span class="w"> </span><span class="n">type</span><span class="p">);</span>
</pre></div>
</div>
<p>Currently, the problem type is ignored in most solvers and it is taken into account only in NLEIGS for determining singularities automatically.</p>
</section>
</section>
<section id="selecting-the-solver">
<h2>Selecting the Solver<a class="headerlink" href="#selecting-the-solver" title="Link to this heading">#</a></h2>
<p>The solution method can be specified procedurally with:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/NEP/NEPSetType.html">NEPSetType</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/NEP/NEP.html">NEP</a></span><span class="w"> </span><span class="n">nep</span><span class="p">,</span><span class="n"><a href="../../manualpages/NEP/NEPType.html">NEPType</a></span><span class="w"> </span><span class="n">method</span><span class="p">);</span>
</pre></div>
</div>
<p>or via the options database command <code class="docutils notranslate"><span class="pre">-nep_type</span></code> followed by the name of the method (see table <a class="reference internal" href="#tab-solversn"><span class="std std-ref">Nonlinear eigenvalue solvers available in the NEP module</span></a>). The methods currently available in <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code> are the following:</p>
<ul class="simple">
<li><p>Residual inverse iteration (RII), where in each iteration the eigenvector correction is computed as <span class="math notranslate nohighlight">\(T(\sigma)^{-1}\)</span> times the residual <span class="math notranslate nohighlight">\(r\)</span>.</p></li>
<li><p>Successive linear problems (SLP), where in each iteration a linear eigenvalue problem <span class="math notranslate nohighlight">\(T(\tilde\lambda)\tilde x=\mu T'(\tilde\lambda)\tilde x\)</span> is solved for the eigenvalue correction <span class="math notranslate nohighlight">\(\mu\)</span>.</p></li>
<li><p>Nonlinear Arnoldi, which builds an orthogonal basis <span class="math notranslate nohighlight">\(V_j\)</span> of a subspace expanded with the vectors generated by RII, then chooses the approximate eigenpair <span class="math notranslate nohighlight">\((\tilde\lambda,\tilde x)\)</span> such that <span class="math notranslate nohighlight">\(\tilde x=V_jy\)</span> and <span class="math notranslate nohighlight">\(V_j^*T(\tilde\lambda)V_jy=0\)</span>.</p></li>
<li><p>NLEIGS, which is based on a (rational) Krylov iteration operating on a companion-type linearization of a rational interpolant of the nonlinear function.</p></li>
<li><p>CISS, a contour-integral solver that allows computing all eigenvalues in a given region.</p></li>
<li><p>Polynomial interpolation, where a polynomial matrix <span class="math notranslate nohighlight">\(P(\lambda)\)</span> is built by evaluating <span class="math notranslate nohighlight">\(T(\cdot)\)</span> at a few points, then <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/PEP/PEP.html">PEP</a></span></code> is used to solve the resulting polynomial eigenproblem.</p></li>
</ul>
<div class="pst-scrollable-table-container"><table class="table" id="tab-solversn">
<caption><span class="caption-text">Nonlinear eigenvalue solvers available in the <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code> module</span><a class="headerlink" href="#tab-solversn" title="Link to this table">#</a></caption>
<thead>
<tr class="row-odd"><th class="head"><p>Method</p></th>
<th class="head"><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPType.html">NEPType</a></span></code></p></th>
<th class="head"><p>Options Database</p></th>
<th class="head"><p>Need <span class="math notranslate nohighlight">\(T'(\cdot)\)</span></p></th>
<th class="head"><p>Two-sided</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>Residual inverse iteration</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPRII.html">NEPRII</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">rii</span></code></p></td>
<td><p>no</p></td>
<td><p></p></td>
</tr>
<tr class="row-odd"><td><p>Successive linear problems</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPSLP.html">NEPSLP</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">slp</span></code></p></td>
<td><p>yes</p></td>
<td><p>yes</p></td>
</tr>
<tr class="row-even"><td><p>Nonlinear Arnoldi</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPNARNOLDI.html">NEPNARNOLDI</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">narnoldi</span></code></p></td>
<td><p>no</p></td>
<td><p></p></td>
</tr>
<tr class="row-odd"><td><p>Rational Krylov (NLEIGS)</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPNLEIGS.html">NEPNLEIGS</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">nleigs</span></code></p></td>
<td><p>no</p></td>
<td><p>yes</p></td>
</tr>
<tr class="row-even"><td><p>Contour integral SS</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPCISS.html">NEPCISS</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">ciss</span></code></p></td>
<td><p>yes</p></td>
<td><p></p></td>
</tr>
<tr class="row-odd"><td><p>Polynomial interpolation</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPINTERPOL.html">NEPINTERPOL</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">interpol</span></code></p></td>
<td><p>no</p></td>
<td><p></p></td>
</tr>
</tbody>
</table>
</div>
<p>The <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPSLP.html">NEPSLP</a></span></code> method performs a linearization that results in a (linear) generalized eigenvalue problem. This is handled by an <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/EPS/EPS.html">EPS</a></span></code> object created internally. If required, this <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/EPS/EPS.html">EPS</a></span></code> object can be extracted with the operation:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/NEP/NEPSLPGetEPS.html">NEPSLPGetEPS</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/NEP/NEP.html">NEP</a></span><span class="w"> </span><span class="n">nep</span><span class="p">,</span><span class="n"><a href="../../manualpages/EPS/EPS.html">EPS</a></span><span class="w"> </span><span class="o">*</span><span class="n">eps</span><span class="p">);</span>
</pre></div>
</div>
<p>This allows the application programmer to set any of the <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/EPS/EPS.html">EPS</a></span></code> options directly within the code. These options can also be set through the command-line, simply by prefixing the <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/EPS/EPS.html">EPS</a></span></code> options with <code class="docutils notranslate"><span class="pre">-nep_slp_</span></code>.</p>
<p>Similarly, <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPINTERPOL.html">NEPINTERPOL</a></span></code> works with a <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/PEP/PEP.html">PEP</a></span></code> object internally, that can be retrieved by <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPInterpolGetPEP.html">NEPInterpolGetPEP</a>()</span></code>. Another relevant option of this solver is the degree of the interpolation polynomial, that can be set with:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/NEP/NEPInterpolSetInterpolation.html">NEPInterpolSetInterpolation</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/NEP/NEP.html">NEP</a></span><span class="w"> </span><span class="n">nep</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscReal/">PetscReal</a></span><span class="w"> </span><span class="n">tol</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscInt/">PetscInt</a></span><span class="w"> </span><span class="n">deg</span><span class="p">);</span>
</pre></div>
</div>
<p>The polynomial interpolation solver currently uses Chebyshev polynomials of the 1st kind and requires the user to specify an interval of the real line where the eigenvalues must be computed, e.g.</p>
<div class="highlight-console notranslate"><div class="highlight"><pre><span></span><span class="gp">$ </span>./ex22<span class="w"> </span>-nep_type<span class="w"> </span>interpol<span class="w"> </span>-rg_interval_endpoints<span class="w"> </span><span class="m">0</span>.1,14.0,-0.1,0.1<span class="w"> </span>-nep_nev<span class="w"> </span><span class="m">2</span><span class="w"> </span>-nep_interpol_interpolation_degree<span class="w"> </span><span class="m">15</span><span class="w"> </span>-nep_target<span class="w"> </span><span class="m">1</span>.0
</pre></div>
</div>
<p>Note that the target <span class="math notranslate nohighlight">\(\tau\)</span> must lie inside the region. For details about specifying a region, see section <a class="reference internal" href="aux.html#sec-rg"><span class="std std-ref">RG: Region</span></a>.</p>
<p>Some solvers such as <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPRII.html">NEPRII</a></span></code> and <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPNARNOLDI.html">NEPNARNOLDI</a></span></code> need a <a class="reference external" href="https://petsc.org/release/manualpages/KSP/KSP/" title="(in PETSc v3.24)"><span class="xref std std-doc">KSP</span></a> object to handle the solution of linear systems of equations. This <a class="reference external" href="https://petsc.org/release/manualpages/KSP/KSP/" title="(in PETSc v3.24)"><span class="xref std std-doc">KSP</span></a> and can be retrieved, e.g., with:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/NEP/NEPRIIGetKSP.html">NEPRIIGetKSP</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/NEP/NEP.html">NEP</a></span><span class="w"> </span><span class="n">nep</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/KSP/KSP/">KSP</a></span><span class="w"> </span><span class="o">*</span><span class="n">ksp</span><span class="p">);</span>
</pre></div>
</div>
<p>This <a class="reference external" href="https://petsc.org/release/manualpages/KSP/KSP/" title="(in PETSc v3.24)"><span class="xref std std-doc">KSP</span></a> object is typically used to compute the action of <span class="math notranslate nohighlight">\(T(\sigma)^{-1}\)</span> on a given vector. In principle, <span class="math notranslate nohighlight">\(\sigma\)</span> is an approximation of an eigenvalue, but it is usually more efficient to keep this value constant, otherwise the factorization or preconditioner must be recomputed every time since eigensolvers update eigenvalue approximations in each iteration. This behavior can be changed with:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/NEP/NEPRIISetLagPreconditioner.html">NEPRIISetLagPreconditioner</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/NEP/NEP.html">NEP</a></span><span class="w"> </span><span class="n">nep</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscInt/">PetscInt</a></span><span class="w"> </span><span class="n">lag</span><span class="p">);</span>
</pre></div>
</div>
<p>Recomputing the preconditioner every 2 iterations, say, will introduce a considerable overhead, but may reduce the number of iterations significantly. Another related comment is that, when using an iterative linear solver, the requested accuracy is adapted as the outer iteration progresses, being the tolerance larger in the first solves. Again, the user can modify this behavior with <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPRIISetConstCorrectionTol.html">NEPRIISetConstCorrectionTol</a>()</span></code>. Both options can also be changed at run time. As an example, consider the following command line:</p>
<div class="highlight-console notranslate"><div class="highlight"><pre><span></span><span class="gp">$ </span>./ex22<span class="w"> </span>-nep_type<span class="w"> </span>rii<span class="w"> </span>-nep_rii_lag_preconditioner<span class="w"> </span><span class="m">2</span><span class="w"> </span>-nep_rii_ksp_type<span class="w"> </span>bcgs<span class="w"> </span>-nep_rii_pc_type<span class="w"> </span>ilu<span class="w"> </span>-nep_rii_const_correction_tol<span class="w"> </span><span class="m">1</span><span class="w"> </span>-nep_rii_ksp_rtol<span class="w"> </span>1e-3
</pre></div>
</div>
<p>The example uses RII with BiCGStab plus ILU, where the preconditioner is updated every two outer iterations and linear systems are solved up to a tolerance of <span class="math notranslate nohighlight">\(10^{-3}\)</span>.</p>
<p>The NLEIGS solver is most appropriate for problems where <span class="math notranslate nohighlight">\(T(\cdot)\)</span> is singular at some known parts of the complex plane, for instance the case that <span class="math notranslate nohighlight">\(T(\cdot)\)</span> contains <span class="math notranslate nohighlight">\(\sqrt{\lambda}\)</span>. To treat this case effectively, the NLEIGS solver requires a discretization of the singularity set, which can be provided by the user in the form of a callback function:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/NEP/NEPNLEIGSSetSingularitiesFunction.html">NEPNLEIGSSetSingularitiesFunction</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/NEP/NEP.html">NEP</a></span><span class="w"> </span><span class="n">nep</span><span class="p">,</span><span class="n"><a href="../../manualpages/NEP/NEPNLEIGSSingularitiesFn.html">NEPNLEIGSSingularitiesFn</a></span><span class="w"> </span><span class="o">*</span><span class="n">fun</span><span class="p">,</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">ctx</span><span class="p">);</span>
</pre></div>
</div>
<p>Alternatively, if the problem is known to be a rational eigenvalue problem, the user can avoid the computation of singularities by just specifying the problem type with <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPSetProblemType.html">NEPSetProblemType</a>()</span></code>, as explained at the end of the previous section. If none of the above functions is invoked by the user, then the NLEIGS solver attempts to determine the singularities automatically.</p>
</section>
<section id="retrieving-the-solution">
<h2>Retrieving the Solution<a class="headerlink" href="#retrieving-the-solution" title="Link to this heading">#</a></h2>
<p>The procedure for obtaining the computed eigenpairs is similar to previously discussed eigensolvers. After the call to <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPSolve.html">NEPSolve</a>()</span></code>, the computed results are stored internally and a call to <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPGetConverged.html">NEPGetConverged</a>()</span></code> must be issued to obtain the number of converged solutions. Then calling <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPGetEigenpair.html">NEPGetEigenpair</a>()</span></code> repeatedly will retrieve each eigenvalue-eigenvector pair.</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/NEP/NEPGetEigenpair.html">NEPGetEigenpair</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/NEP/NEP.html">NEP</a></span><span class="w"> </span><span class="n">nep</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscInt/">PetscInt</a></span><span class="w"> </span><span class="n">j</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscScalar/">PetscScalar</a></span><span class="w"> </span><span class="o">*</span><span class="n">kr</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscScalar/">PetscScalar</a></span><span class="w"> </span><span class="o">*</span><span class="n">ki</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Vec/Vec/">Vec</a></span><span class="w"> </span><span class="n">xr</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Vec/Vec/">Vec</a></span><span class="w"> </span><span class="n">xi</span><span class="p">);</span>
</pre></div>
</div>
<p>In two-sided solvers (see last column of table <a class="reference internal" href="#tab-solversn"><span class="std std-ref">Nonlinear eigenvalue solvers available in the NEP module</span></a>), it is also possible to retrieve left eigenvectors with:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/NEP/NEPGetLeftEigenvector.html">NEPGetLeftEigenvector</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/NEP/NEP.html">NEP</a></span><span class="w"> </span><span class="n">nep</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscInt/">PetscInt</a></span><span class="w"> </span><span class="n">j</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Vec/Vec/">Vec</a></span><span class="w"> </span><span class="n">yr</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Vec/Vec/">Vec</a></span><span class="w"> </span><span class="n">yi</span><span class="p">);</span>
</pre></div>
</div>
<div class="admonition warning">
<p class="admonition-title">Warning</p>
<p><strong>Real vs complex scalar versions</strong>. The interface makes provision for returning a complex eigenvalue (or eigenvector) when doing the computation in a PETSc/SLEPc version built with real scalars, as is done in other eigensolvers such as <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/EPS/EPS.html">EPS</a></span></code>. However, in some cases this will not be possible. In particular, when callback functions are used and a complex eigenvalue approximation is hit, the solver will fail unless configured with complex scalars. The reason is that the definitions of callback functions only have a single <a class="reference external" href="https://petsc.org/release/manualpages/Sys/PetscScalar/" title="(in PETSc v3.24)"><span class="xref std std-doc">PetscScalar</span></a> <code class="docutils notranslate"><span class="pre">lambda</span></code> argument and hence cannot handle complex arguments in real arithmetic.</p>
</div>
<p>The following function:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/NEP/NEPComputeError.html">NEPComputeError</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/NEP/NEP.html">NEP</a></span><span class="w"> </span><span class="n">nep</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscInt/">PetscInt</a></span><span class="w"> </span><span class="n">j</span><span class="p">,</span><span class="n"><a href="../../manualpages/NEP/NEPErrorType.html">NEPErrorType</a></span><span class="w"> </span><span class="n">type</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscReal/">PetscReal</a></span><span class="w"> </span><span class="o">*</span><span class="n">error</span><span class="p">);</span>
</pre></div>
</div>
<p>can be used to assess the accuracy of the computed solutions. The error is based on the 2-norm of the residual vector <span class="math notranslate nohighlight">\(r\)</span> defined in equation <a class="reference internal" href="#equation-eq-nlres">(5)</a>.</p>
<p>As in the case of <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/EPS/EPS.html">EPS</a></span></code>, in <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code> the number of iterations carried out by the solver can be determined with <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPGetIterationNumber.html">NEPGetIterationNumber</a>()</span></code>, and the tolerance and maximum number of iterations can be set with <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEPSetTolerances.html">NEPSetTolerances</a>()</span></code>. Also, convergence can be monitored with either textual monitors <code class="docutils notranslate"><span class="pre">-nep_monitor</span></code>, <code class="docutils notranslate"><span class="pre">-nep_monitor_all</span></code>, <code class="docutils notranslate"><span class="pre">-nep_monitor_conv</span></code>, or graphical monitors <code class="docutils notranslate"><span class="pre">-nep_monitor</span> <span class="pre">draw::draw_lg</span></code>, <code class="docutils notranslate"><span class="pre">-nep_monitor_all</span> <span class="pre">draw::draw_lg</span></code>. See section <a class="reference internal" href="eps.html#sec-monitor"><span class="std std-ref">Controlling and Monitoring Convergence</span></a> for additional details. Similarly, there is support for viewing the computed solution as explained in section <a class="reference internal" href="eps.html#sec-epsviewers"><span class="std std-ref">Viewing the Solution</span></a>.</p>
<p>The <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/NEP/NEP.html">NEP</a></span></code> class also provides some kind of iterative refinement, similar to the one available in <code class="docutils notranslate"><span class="pre"><a href="../../manualpages/PEP/PEP.html">PEP</a></span></code>, see section <a class="reference internal" href="pep.html#sec-refine"><span class="std std-ref">Iterative Refinement</span></a>. The parameters can be set with:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../../manualpages/NEP/NEPSetRefine.html">NEPSetRefine</a></span><span class="p">(</span><span class="n"><a href="../../manualpages/NEP/NEP.html">NEP</a></span><span class="w"> </span><span class="n">nep</span><span class="p">,</span><span class="n"><a href="../../manualpages/NEP/NEPRefine.html">NEPRefine</a></span><span class="w"> </span><span class="n">refine</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscInt/">PetscInt</a></span><span class="w"> </span><span class="n">npart</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscReal/">PetscReal</a></span><span class="w"> </span><span class="n">tol</span><span class="p">,</span><span class="n"><a href="https://petsc.org/release/manualpages/Sys/PetscInt/">PetscInt</a></span><span class="w"> </span><span class="n">its</span><span class="p">,</span><span class="n"><a href="../../manualpages/NEP/NEPRefineScheme.html">NEPRefineScheme</a></span><span class="w"> </span><span class="n">scheme</span><span class="p">);</span>
</pre></div>
</div>
<p class="rubric">References</p>
<div class="docutils container" id="id4">
<div role="list" class="citation-list">
<div class="citation" id="id46" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id1">Cam21</a><span class="fn-bracket">]</span></span>
<p>C. Campos and J. E. Roman. NEP: a module for the parallel solution of nonlinear eigenvalue problems in SLEPc. <em>ACM Trans. Math. Software</em>, 47(3):23:1–23:29, 2021. <a class="reference external" href="https://doi.org/10.1145/3447544">doi:10.1145/3447544</a>.</p>
</div>
<div class="citation" id="id43" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id2">Gut17</a><span class="fn-bracket">]</span></span>
<p>S. Güttel and F. Tisseur. The nonlinear eigenvalue problem. <em>Acta Numerica</em>, 26:1–94, 2017. <a class="reference external" href="https://doi.org/10.1017/S0962492917000034">doi:10.1017/S0962492917000034</a>.</p>
</div>
<div class="citation" id="id68" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id3">Mae16</a><span class="fn-bracket">]</span></span>
<p>Y. Maeda, T. Sakurai, and J. E. Roman. Contour integral spectrum slicing method in SLEPc. Technical Report STR-11, Universitat Politècnica de València, 2016. URL: <a class="reference external" href="https://slepc.upv.es/documentation">https://slepc.upv.es/documentation</a>.</p>
</div>
<div class="citation" id="id33" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id2">Meh04</a><span class="fn-bracket">]</span></span>
<p>V. Mehrmann and H. Voss. Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. <em>GAMM Mitt.</em>, 27(2):121–152, 2004. <a class="reference external" href="https://doi.org/10.1002/gamm.201490007">doi:10.1002/gamm.201490007</a>.</p>
</div>
</div>
</div>
</section>
</section>


                </article>
              
              
              
              
              
                <footer class="prev-next-footer d-print-none">
                  
<div class="prev-next-area">
    <a class="left-prev"
       href="pep.html"
       title="previous page">
      <i class="fa-solid fa-angle-left"></i>
      <div class="prev-next-info">
        <p class="prev-next-subtitle">previous</p>
        <p class="prev-next-title">PEP: Polynomial Eigenvalue Problems</p>
      </div>
    </a>
    <a class="right-next"
       href="mfn.html"
       title="next page">
      <div class="prev-next-info">
        <p class="prev-next-subtitle">next</p>
        <p class="prev-next-title">MFN: Matrix Function</p>
      </div>
      <i class="fa-solid fa-angle-right"></i>
    </a>
</div>
                </footer>
              
            </div>
            
            
              
                <dialog id="pst-secondary-sidebar-modal"></dialog>
                <div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">


  <div class="sidebar-secondary-item">
<div
    id="pst-page-navigation-heading-2"
    class="page-toc tocsection onthispage">
    <i class="fa-solid fa-list"></i> On this page
  </div>
  <nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
    <ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#sec-nep">General Nonlinear Eigenproblems</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#defining-the-problem">Defining the Problem</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#sec-nepjac">Using Callback Functions</a><ul class="nav section-nav flex-column">
<li class="toc-h4 nav-item toc-entry"><a class="reference internal nav-link" href="#parameters-for-problem-definition">Parameters for Problem Definition</a></li>
<li class="toc-h4 nav-item toc-entry"><a class="reference internal nav-link" href="#left-eigenvectors">Left Eigenvectors</a></li>
</ul>
</li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#sec-nepsplit">Expressing the NEP in Split Form</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#selecting-the-solver">Selecting the Solver</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#retrieving-the-solution">Retrieving the Solution</a></li>
</ul>
  </nav></div>

  <div class="sidebar-secondary-item">

  
  <div class="tocsection editthispage">
    <a href="https://gitlab.com/slepc/slepc/-/edit/release/doc/source/documentation/manual/nep.md">
      <i class="fa-solid fa-pencil"></i>
      
      
        
          Edit on GitLab
        
      
    </a>
  </div>
</div>

  <div class="sidebar-secondary-item">
  <div role="note" aria-label="source link">
    <h3>This Page</h3>
    <ul class="this-page-menu">
      <li><a href="../../_sources/documentation/manual/nep.md.txt"
            rel="nofollow">Show Source</a></li>
    </ul>
   </div></div>

</div></div>
              
            
          </div>
          <footer class="bd-footer-content">
            
          </footer>
        
      </main>
    </div>
  </div>
  
  <!-- Scripts loaded after <body> so the DOM is not blocked -->
  <script defer src="../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>

  <footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
  
    <div class="footer-items__start">
      
        <div class="footer-item">

  <p class="copyright">
    
      © Copyright 2002-2025, Universitat Politecnica de Valencia, Spain.
      <br/>
    
  </p>
</div>
      
        <div class="footer-item">

  <p class="sphinx-version">
    Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 7.3.7.
    <br/>
  </p>
</div>
      
    </div>
  
  
  
    <div class="footer-items__end">
      
        <div class="footer-item">
<p class="theme-version">
  <!-- # L10n: Setting the PST URL as an argument as this does not need to be localized -->
  Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.16.1.
</p></div>
      
    </div>
  
</div>

  </footer>
  </body>
</html>